PROBLEM SET 5

DUE DATE: - APR 11

- Chap 5
- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 6.1

1) (Prob $7, \operatorname{Pg} 160)$ Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $1<r<2$, with $u(1, \theta, \phi)=u(2, \theta, \phi)=0$ for all θ, ϕ.
2) (Prob 13, Pg 160) A function u is subharmonic in D if it satisfies $\Delta u \geq 0$ in D. Prove that it's maximum value is attained on the boundary. Note that the same is not true for the minimum value.

Section 6.2

3) (Prob 1, $\operatorname{Pg} 164)$ Solve $u_{x x}+u_{y y}=0$ in the rectangle $0<x<1,0<y<2$ with the following boundary conditions:

$$
\begin{array}{rl}
u_{x}=-1 & x=0 \\
u_{y}=2 & y=0 \\
u_{x}=0 & x=1 \\
u_{y}=0 & y=2
\end{array}
$$

4) (Prob 7, Pg 165) Find the harmonic function in the semi-infinite strip $\{0 \leq x \leq \pi, 0 \leq y<\infty\}$ that satisfy the boundary conditions:

$$
u(0, y)=u(\pi, y)=0, \quad u(x, 0)=h(x), \quad \lim _{y \rightarrow \infty} u(x, y)=0
$$

b) What would be the issue if the condition at ∞ is not imposed?

Section 6.3

5) (Prob 2, Pg 172) Solve $u_{x x}+u_{y y}=0$ in the disk $\{r<a\}$ with the boundary condition

$$
u(a, \theta)=1+3 \sin (\theta)
$$

Section 6.4

6) (Prob 1, $\operatorname{Pg} 175$) Solve $u_{x x}+u_{y y}=0$ in the exterior $\{r>a\}$ of the disk, with the boundary condition $u(a, \theta)=$ $1+3 \sin (\theta)$ and the condition that u remains bounded as $r \rightarrow \infty$
7) (Prob 4, Pg 176) Derive Poisson's formula for the exterior of a circle.
