PROBLEM SET 5

DUE DATE: - APR 11

• Chap 5

• Questions are either directly from the text or a small variation of a problem in the text.

• Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.

• The terms in the bracket indicate the problem number from the text.

Section 6.1

1) (Prob 7, Pg 160) Solve $u_{xx} + u_{yy} + u_{zz} = 1$ in the spherical shell 1 < r < 2, with $u(1, \theta, \phi) = u(2, \theta, \phi) = 0$ for all θ, ϕ .

2) (Prob 13, Pg 160) A function u is subharmonic in D if it satisfies $\Delta u \geq 0$ in D. Prove that it's maximum value is attained on the boundary. Note that the same is not true for the minimum value.

Section 6.2

3) (Prob 1, Pg 164) Solve $u_{xx} + u_{yy} = 0$ in the rectangle 0 < x < 1, 0 < y < 2 with the following boundary conditions:

$$u_x = -1 \quad x = 0$$
$$u_y = 2 \quad y = 0$$

$$u_x = 0$$
 $x = 1$

$$u_y = 0 \quad y = 2.$$

4) (Prob 7, Pg 165) Find the harmonic function in the semi-infinite strip $\{0 \le x \le \pi, 0 \le y < \infty\}$ that satisfy the boundary conditions:

$$u\left(0,y\right)=u\left(\pi,y\right)=0\,,\quad u\left(x,0\right)=h\left(x\right)\,,\quad \lim_{y\to\infty}u\left(x,y\right)=0\,.$$

b) What would be the issue if the condition at ∞ is not imposed?

Section 6.3

5) (Prob 2, Pg 172) Solve $u_{xx} + u_{yy} = 0$ in the disk $\{r < a\}$ with the boundary condition

$$u(a, \theta) = 1 + 3\sin(\theta).$$

Section 6.4

6) (Prob 1, Pg 175) Solve $u_{xx} + u_{yy} = 0$ in the exterior $\{r > a\}$ of the disk, with the boundary condition $u(a, \theta) = 1 + 3\sin(\theta)$ and the condition that u remains bounded as $r \to \infty$

1

7) (Prob 4, Pg 176) Derive Poisson's formula for the exterior of a circle.