PROBLEM SET 2

DUE DATE: FEB 28

- Sections 2.4-3.5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 2.4

1) (Prob 9, Pg 53) Solve the diffusion equation $u_{t}=k u_{x x}$ with the initial condition $u(x, 0)=x^{2}$ by the following method. i) Show that $u_{x x x}$ also satisfies the diffusion equation with zero initial condition.

Solution:

$$
\begin{aligned}
u_{t} & =k u_{x x} \\
\partial_{x x x}\left(u_{t}\right) & =k \partial_{x x x} u_{x x} \\
\partial_{t}\left(u_{x x x}\right) & =k \partial_{x x}\left(u_{x x x}\right) \quad \text { (Since partials commute) }
\end{aligned}
$$

ii) Conclude that $u_{x x x}(x, t) \equiv 0$ for all (x, t) assuming $|u(x, t)| \leq M e^{a x^{2}}$ for all x, t. (Refer to practice problem set 2)

Solution: $u_{x x x}(x, 0) \equiv 0$ since $u(x, 0)=x^{2}$. Since under the growth conditions, we have uniqueness for the heat equation on the real line, we conclude that $u_{x x x}(x, t)=0$
iii) Using ii, show that

$$
u(x, t)=A(t) x^{2}+B(t) x+C(t)
$$

Solution: Follows from integrating the above expression 3 times.
iv) Plug in the above expression for $u(x, t)$ in the differential equation, to obtain a system of differential equations for $A(t), B(t), C(t)$. (Hint: the functions $1, x, x^{2}$ are linearly independent)

$$
\begin{gathered}
A^{\prime}(t) x^{2}+B^{\prime}(t) x+C^{\prime}(t)=\partial_{t} u=k u_{x x}=2 k A(t) \\
A^{\prime}(t)=0 \\
B^{\prime}(t)=0 \\
C^{\prime}(t)=2 k A(t)
\end{gathered}
$$

Solving the above system, we get

$$
\begin{aligned}
& A(t)=a \\
& B(t)=b \\
& C(t)=2 k a t+c
\end{aligned}
$$

v) Using the initial conditions, obtain initial values for $A(0), B(0)$ and $C(0)$ and solve the above system of differential equations to compute $u(x, t)$

$$
\begin{gathered}
A(0) x^{2}+B(0) x+C(0)=x^{2} \\
A(0)=1, B(0)=0, C(0)=0 \\
u(x, t)=x^{2}+2 k t
\end{gathered}
$$

2) (Prob 15, Pg 53) Using the energy method, prove uniqueness of the diffusion problem with Neumann boundary conditions:

$$
\begin{aligned}
u_{t}-k u_{x x} & =f(x, t) \quad 0<x<1, t>0 \\
u(x, 0) & =\phi(x) \\
u_{x}(0, t) & =g(t) \\
u_{x}(0,1) & =h(t)
\end{aligned}
$$

Solution: To prove uniqueness for the neumann problem, we consider the problem above with $f(x, t) \equiv 0, \phi(x) \equiv 0$, $g(t) \equiv 0$ and $h(t) \equiv 0$ and show that the solution

$$
u(x, t) \equiv 0
$$

$$
\begin{aligned}
e(t) & =\int_{0}^{1} u^{2}(x, t) d x \\
e^{\prime}(t) & =\int_{0}^{1} 2 u u_{t} d x \\
& =2 k \int_{0}^{1} u u_{x x} d x \\
& =\left.2 k u u_{x}\right|_{0} ^{1}-2 k \int_{0}^{1} u_{x}^{2} d x \quad \text { (Integration by parts) } \\
& =-2 k \int_{0}^{1} u_{x}^{2} d x \leq 0 \quad\left(u_{x}(0, t)=u_{x}(1, t)=0\right)
\end{aligned}
$$

Thus, the energy is a decreasing function of time. Moreover $e(0)=0$ since $u(x, 0) \equiv 0 . e(t)$ is a non negative, decreasing function of time, which is 0 at $t=0$, so we conclude that $e(t) \equiv 0$ and thus $u(x, t) \equiv 0$.
3) (Prob 16, Pg 54) Solve the diffusion equation with constant dissipation:

$$
\begin{aligned}
u_{t}-k u_{x x}+b u & =0 \quad-\infty<x<\infty \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

where $b>0$ is a constant by setting $u(x, t)=e^{-b t} v(x, t)$.

Solution:

$$
\begin{aligned}
v(x, t) & =e^{b t} u(x, t) \\
\partial_{t} v(x, t) & =e^{b t} \partial_{t} u(x, t)+b e^{b t} u(x, t) \\
\partial_{x x} v(x, t) & =e^{b t} \partial_{x x} u(x, t) \\
\partial_{t} v-k \partial_{x x} v & =e^{b t}\left(\partial_{t} u+b u-k \partial_{x x} u\right)=0
\end{aligned}
$$

Thus, $v(x, t)$ satisfies the heat equation with initial data $v(x, 0)=e^{b \cdot 0} \phi(x)=\phi(x)$. The solution for $v(x, t)$ is given by

$$
\begin{aligned}
& v(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y \\
& u(x, t)=e^{-b t} \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y
\end{aligned}
$$

Section 3.1

4) (Prob 2, Pg 60) Solve $u_{t}=k u_{x x} ; u(x, 0)=0 ; u(0, t)=1$ on the half life $0<x<\infty$. (Hint: Set $v(x, t)=u(x, t)-1$.)

Solution: Let $v(x, t)=u(x, t)-1$. Then v satisfies the differential equation

$$
\begin{aligned}
\partial_{t} v & =k \partial_{x x} v \\
v(0, t) & =0 \quad \forall t>0 \\
v(x, 0) & =-1 \quad 0<x<\infty
\end{aligned}
$$

The solution is given by

$$
\begin{aligned}
v(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(\exp \left(-\frac{(x-y)^{2}}{4 k t}\right)-\exp \left(-\frac{(x+y)^{2}}{4 k t}\right)\right) \phi(y) d y \\
& =-\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(\exp \left(-\frac{(x-y)^{2}}{4 k t}\right)-\exp \left(-\frac{(x+y)^{2}}{4 k t}\right)\right) d y \\
& =-\operatorname{erf}\left(\frac{x}{\sqrt{4 k t}}\right) \\
u(x, t) & =1-\operatorname{erf}\left(\frac{x}{\sqrt{4 k t}}\right)
\end{aligned}
$$

Section 3.2

5) (Prob 3, Pg 66) A wave $f(x+c t)$ travels along a semi-infinite string $0<x<\infty$ for $t>0$. Find the solution $u(x, t)$ of the string for $t>0$ if the end $x=0$ is fixed, i.e. $u(0, t)=0$. Plot the solution in the three different regimes. Repeat the same exercise if $u_{x}(0, t)=0$. Comment on the results.

Solution:
Dirichlet case

$$
u(x, t)= \begin{cases}f(x+c t) & x>c t \\ f(x+c t)-f(c t-x) & x<c t\end{cases}
$$

Neumann case

$$
u(x, t)= \begin{cases}f(x+c t) & x>c t \\ f(x+c t)+f(c t-x) & x<c t\end{cases}
$$

6) (Prob 5, Pg 66) Solve $u_{t t}=4 u_{x x}$ for $0<x<\infty, u(0, t)=0, u(x, 0)=1$ and $u_{t}(x, 0)=0$ using the reflection method. Find the location of the singularity of the solution in the (x, t) space.

Solution:

$$
u(x, t)= \begin{cases}1 & x \geq 2 t \\ 0 & x<2 t\end{cases}
$$

The singularity is on the line $x=2 t$.

Section 3.3

7) (Prob 2, Pg 71) Solve the completely inhomogeneous diffusion problem on the half line

$$
\begin{aligned}
v_{t}-k v_{x x} & =f(x, t) \quad 0<x<\infty, \quad 0<t<\infty \\
v(0, t) & =h(t), \quad v(x, 0)=\phi(x)
\end{aligned}
$$

by setting $V(x, t)=v(x, t)-h(t)$.
Solution: Let $V(x, t)=v(x, t)-h(t)$. Then $V(x, t)$ satisfies

$$
\begin{aligned}
V_{t}-k V_{x x} & =v_{t}-h^{\prime}(t)-k v_{x x}=f(x, t)-h^{\prime}(t) \\
V(0, t) & =0 \\
V(x, 0) & =\phi(x)-h(0)
\end{aligned}
$$

By Duhamel's principle, the solution to the above inhomogeneous problem is given by

$$
\begin{aligned}
V(x, t)= & \int_{0}^{t} \int_{-\infty}^{\infty}[S(x-y, t-s)-S(x+y, t-s)] \cdot\left[f(y, s)-h^{\prime}(s)\right] d y d s+ \\
& \int_{-\infty}^{\infty}[S(x-y, t)-S(x+y, t)] \cdot[\phi(y)-h(0)] d y \\
v(x, t)= & h(t)+V(x, t)
\end{aligned}
$$

Section 3.4

8) (Prob 12,13, $\operatorname{Pg} 80)$ Derive the solution of the fully inhomogeneous wave equation on the half-line

$$
\begin{aligned}
v_{t t}-c^{2} v_{x x} & =f(x, t), \quad 0<x<\infty \\
v(x, 0) & =\phi(x) \quad v_{t}(x, 0)=\psi(x) \\
v(0, t) & =h(t)
\end{aligned}
$$

by setting $V(x, t)=v(x, t)-h(t)$. Find the solution for $h(t)=t^{2}, \phi(x)=x$ and $\psi(x)=0$.
Solution: Let $V(x, t)=v(x, t)-h(t)$. Then $V(x, t)$ satisfies the differential equation

$$
\begin{aligned}
V_{t t}-c^{2} V_{x x} & =f(x, t)-h^{\prime \prime}(t) \\
V(x, 0) & =\phi(x)-h(0) \\
V_{t}(x, 0) & =\psi(x)-h^{\prime}(0) \\
V(0, t) & =0
\end{aligned}
$$

Let

$$
\begin{aligned}
\bar{\phi}_{\text {odd }}(x) & = \begin{cases}\phi(x)-h(0) & x \geq 0 \\
-(\phi(-x)-h(0)) & x<0\end{cases} \\
\bar{\psi}_{\text {odd }}(x) & = \begin{cases}\psi(x)-h^{\prime}(0) & x \geq 0 \\
-\left(\psi(-x)-h^{\prime}(0)\right) & x<0\end{cases} \\
\bar{f}_{\text {odd }}(x, t) & = \begin{cases}f(x, t)-h^{\prime \prime}(t) & x \geq 0 t>0 \\
-\left(f(-x, t)-h^{\prime \prime}(t)\right) & x<0 t>0\end{cases}
\end{aligned}
$$

By Duhamel's principle, the solution is given by

$$
\begin{gathered}
V(x, t)=\frac{1}{2}\left[\bar{\phi}_{\text {odd }}(x+c t)+\bar{\phi}_{\text {odd }}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \bar{\psi}_{o d d}(y) d y+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} \bar{f}_{o d d}(y, s) d y d s \\
v(x, t)=V(x, t)+h(t) \\
v(x, t)= \begin{cases}x & x \geq c t \\
x+\left(t-\frac{x}{c}\right)^{2} & 0 \leq x \leq c t\end{cases}
\end{gathered}
$$

9) (Stability to small perturbations for the heat equation) Consider the inhomogeneous heat equation on the real line

$$
\begin{aligned}
u_{t}-k u_{x x} & =f(x, t) \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

Show that the solutions are stable under small perturbations, i.e. Show that

$$
\|u\|_{\mathbb{L}^{\infty}(\mathbb{R} \times[0, T])}=\sup _{x \in \mathbb{R}, t \in[0, T]}|u(x, t)| \leq T\|f\|_{\mathbb{L}^{\infty}(\mathbb{R} \times[0, T])}+\|\phi\|_{\mathbb{L}^{\infty}(\mathbb{R})}
$$

Use the formula for the solution and the fact that

$$
\int_{-\infty}^{\infty} S(x, t) d x=1 \quad \forall t>0
$$

Comment on why the above result implies stability of solutions to the data for the heat equation.

Solution:

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y d s+\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \\
|u(x, t)| & =\left|\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y d s+\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y\right| \\
& \leq\left|\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y d s\right|+\left|\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y\right| \quad \text { (Triangle ineq) } \\
& \leq \int_{0}^{t} \int_{-\infty}^{\infty}|S(x-y, t-s) f(y, s)| d y d s+\int_{-\infty}^{\infty}|S(x-y, t) \phi(y)| d y \quad\left(\left|\int f\right| \leq \int|f|\right) \\
& \leq\|f\|_{\mathbb{L}^{\infty}(\mathbb{R} \times[0, T])} \int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) d y d s+\|\phi\|_{\mathbb{L}^{\infty}(\mathbb{R})} \int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \quad(S>0) \\
& \leq\|f\|_{\mathbb{L}^{\infty}(\mathbb{R} \times[0, T])} \int_{0}^{t} d s+\|\phi\|_{\mathbb{L}^{\infty}(\mathbb{R})} \quad\left(\int_{\mathbb{R}} S d x=1\right) \\
& \leq T\|f\|_{\mathbb{L}^{\infty}(\mathbb{R} \times[0, T])}+\|\phi\|_{\mathbb{L}^{\infty}(\mathbb{R})}
\end{aligned}
$$

The above result implies stability because small perturbations in f and ϕ, result in small perturbations in the solution u.

