
PROBLEM SET 2

DUE DATE: FEB 28

• Sections 2.4-3.5
• Questions are either directly from the text or a small variation of a problem in the text.
• Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
• The terms in the bracket indicate the problem number from the text.

Section 2.4
1) (Prob 9, Pg 53) Solve the diffusion equation ut = kuxx with the initial condition u (x, 0) = x2 by the following method.
i) Show that uxxx also satisfies the diffusion equation with zero initial condition.
Solution:

ut = kuxx

∂xxx (ut) = k∂xxxuxx

∂t (uxxx) = k∂xx (uxxx) (Since partials commute)

ii) Conclude that uxxx (x, t) ≡ 0 for all (x, t) assuming |u (x, t)| ≤Meax
2

for all x, t. (Refer to practice problem set 2)
Solution: uxxx (x, 0) ≡ 0 since u (x, 0) = x2. Since under the growth conditions, we have uniqueness for the heat equation

on the real line, we conclude that uxxx (x, t) = 0
iii) Using ii, show that

u (x, t) = A (t)x2 +B (t)x+ C (t)

Solution: Follows from integrating the above expression 3 times.
iv) Plug in the above expression for u (x, t) in the differential equation, to obtain a system of differential equations for

A (t) , B (t) , C (t). (Hint: the functions 1, x, x2 are linearly independent)

A′ (t)x2 +B′ (t)x+ C ′ (t) = ∂tu = kuxx = 2kA (t)

A′ (t) = 0

B′ (t) = 0

C ′ (t) = 2kA (t)

Solving the above system, we get

A (t) = a

B (t) = b

C (t) = 2kat+ c

v) Using the initial conditions, obtain initial values for A (0) , B (0) and C (0) and solve the above system of differential
equations to compute u (x, t)

A (0)x2 +B (0)x+ C (0) = x2

A (0) = 1, B (0) = 0, C (0) = 0.

u (x, t) = x2 + 2kt

1



PROBLEM SET 2 2

2) (Prob 15, Pg 53) Using the energy method, prove uniqueness of the diffusion problem with Neumann boundary
conditions:

ut − kuxx = f (x, t) 0 < x < 1 , t > 0

u (x, 0) = φ (x)

ux (0, t) = g (t)

ux (0, 1) = h (t)

Solution: To prove uniqueness for the neumann problem, we consider the problem above with f (x, t) ≡ 0, φ (x) ≡ 0,
g (t) ≡ 0 and h (t) ≡ 0 and show that the solution

u (x, t) ≡ 0 .

e (t) =

ˆ 1

0

u2 (x, t) dx

e′ (t) =

ˆ 1

0

2uut dx

= 2k

ˆ 1

0

uuxx dx

= 2kuux|10 − 2k

ˆ 1

0

u2x dx (Integration by parts)

= −2k
ˆ 1

0

u2x dx ≤ 0 (ux (0, t) = ux (1, t) = 0)

Thus, the energy is a decreasing function of time. Moreover e (0) = 0 since u (x, 0) ≡ 0. e (t) is a non negative, decreasing
function of time, which is 0 at t = 0, so we conclude that e (t) ≡ 0 and thus u (x, t) ≡ 0.

3) (Prob 16, Pg 54) Solve the diffusion equation with constant dissipation:

ut − kuxx + bu = 0 −∞ < x <∞
u (x, 0) = φ (x) ,

where b > 0 is a constant by setting u (x, t) = e−btv (x, t).
Solution:

v (x, t) = ebtu (x, t)

∂tv (x, t) = ebt∂tu (x, t) + bebtu (x, t)

∂xxv (x, t) = ebt∂xxu (x, t)

∂tv − k∂xxv = ebt (∂tu+ bu− k∂xxu) = 0

Thus, v (x, t) satisfies the heat equation with initial data v (x, 0) = eb·0φ (x) = φ (x). The solution for v (x, t) is given by

v (x, t) =
1√
4πkt

ˆ ∞
−∞

e−
(x−y)2

4kt φ (y) dy

u (x, t) = e−bt
1√
4πkt

ˆ ∞
−∞

e−
(x−y)2

4kt φ (y) dy

Section 3.1
4) (Prob 2, Pg 60) Solve ut = kuxx; u (x, 0) = 0; u (0, t) = 1 on the half life 0 < x <∞. (Hint: Set v (x, t) = u (x, t)− 1.)
Solution: Let v (x, t) = u (x, t)− 1. Then v satisfies the differential equation

∂tv = k∂xxv

v (0, t) = 0 ∀t > 0

v (x, 0) = −1 0 < x <∞
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The solution is given by

v (x, t) =
1√
4πkt

ˆ ∞
0

(
exp

(
− (x− y)2

4kt

)
− exp

(
− (x+ y)

2

4kt

))
φ (y) dy

= − 1√
4πkt

ˆ ∞
0

(
exp

(
− (x− y)2

4kt

)
− exp

(
− (x+ y)

2

4kt

))
dy

= −erf
(

x√
4kt

)
u (x, t) = 1− erf

(
x√
4kt

)

Section 3.2
5) (Prob 3, Pg 66) A wave f (x+ ct) travels along a semi-infinite string 0 < x < ∞ for t > 0. Find the solution u (x, t)

of the string for t > 0 if the end x = 0 is fixed, i.e. u (0, t) = 0. Plot the solution in the three different regimes. Repeat the
same exercise if ux (0, t) = 0. Comment on the results.

Solution:
Dirichlet case

u (x, t) =

{
f (x+ ct) x > ct

f (x+ ct)− f (ct− x) x < ct

Neumann case

u (x, t) =

{
f (x+ ct) x > ct

f (x+ ct) + f (ct− x) x < ct

6) (Prob 5, Pg 66) Solve utt = 4uxx for 0 < x <∞, u (0, t) = 0, u (x, 0) = 1 and ut (x, 0) = 0 using the reflection method.
Find the location of the singularity of the solution in the (x, t) space.

Solution:

u (x, t) =

{
1 x ≥ 2t

0 x < 2t

The singularity is on the line x = 2t.

Section 3.3
7) (Prob 2, Pg 71) Solve the completely inhomogeneous diffusion problem on the half line

vt − kvxx = f (x, t) 0 < x <∞ , 0 < t <∞
v (0, t) = h (t) , v (x, 0) = φ (x) ,

by setting V (x, t) = v (x, t)− h (t).
Solution: Let V (x, t) = v (x, t)− h (t). Then V (x, t) satisfies

Vt − kVxx = vt − h′ (t)− kvxx = f (x, t)− h′ (t)
V (0, t) = 0

V (x, 0) = φ (x)− h (0)



PROBLEM SET 2 4

By Duhamel’s principle, the solution to the above inhomogeneous problem is given by

V (x, t) =

ˆ t

0

ˆ ∞
−∞

[S (x− y, t− s)− S (x+ y, t− s)] · [f (y, s)− h′ (s)] dy ds+
ˆ ∞
−∞

[S (x− y, t)− S (x+ y, t)] · [φ (y)− h (0)] dy

v (x, t) = h (t) + V (x, t)

Section 3.4
8) (Prob 12,13, Pg 80) Derive the solution of the fully inhomogeneous wave equation on the half-line

vtt − c2vxx = f (x, t) , 0 < x <∞
v (x, 0) = φ (x) vt (x, 0) = ψ (x)

v (0, t) = h (t)

by setting V (x, t) = v (x, t)− h (t). Find the solution for h (t) = t2, φ(x) = x and ψ (x) = 0.
Solution: Let V (x, t) = v (x, t)− h (t). Then V (x, t) satisfies the differential equation

Vtt − c2Vxx = f (x, t)− h′′ (t)
V (x, 0) = φ (x)− h (0)
Vt (x, 0) = ψ (x)− h′ (0)
V (0, t) = 0 .

Let

φodd (x) =

{
φ (x)− h (0) x ≥ 0

− (φ (−x)− h (0)) x < 0

ψodd (x) =

{
ψ (x)− h′ (0) x ≥ 0

− (ψ (−x)− h′ (0)) x < 0

fodd (x, t) =

{
f (x, t)− h′′ (t) x ≥ 0 t > 0

− (f (−x, t)− h′′ (t)) x < 0 t > 0

By Duhamel’s principle, the solution is given by

V (x, t) =
1

2

[
φodd (x+ ct) + φodd (x− ct)

]
+

1

2c

ˆ x+ct

x−ct
ψodd (y) dy +

1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
fodd (y, s) dy ds

v (x, t) = V (x, t) + h (t)

v (x, t) =

{
x x ≥ ct
x+

(
t− x

c

)2
0 ≤ x ≤ ct

9) (Stability to small perturbations for the heat equation) Consider the inhomogeneous heat equation on the real line

ut − kuxx = f (x, t) −∞ < x <∞ , t > 0

u (x, 0) = φ (x) .

Show that the solutions are stable under small perturbations, i.e. Show that

‖u‖L∞(R×[0,T ]) = sup
x∈R,t∈[0,T ]

|u (x, t)| ≤ T‖f‖L∞(R×[0,T ]) + ‖φ‖L∞(R).

Use the formula for the solution and the fact thatˆ ∞
−∞

S (x, t) dx = 1 ∀t > 0 .

Comment on why the above result implies stability of solutions to the data for the heat equation.
Solution:
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u (x, t) =

ˆ t

0

ˆ ∞
−∞

S (x− y, t− s) f (y, s) dy ds+
ˆ ∞
−∞

S (x− y, t)φ (y) dy

|u (x, t)| =
∣∣∣∣ˆ t

0

ˆ ∞
−∞

S (x− y, t− s) f (y, s) dy ds+
ˆ ∞
−∞

S (x− y, t)φ (y) dy
∣∣∣∣

≤
∣∣∣∣ˆ t

0

ˆ ∞
−∞

S (x− y, t− s) f (y, s) dy ds
∣∣∣∣+ ∣∣∣∣ˆ ∞

−∞
S (x− y, t)φ (y) dy

∣∣∣∣ (Triangle ineq)

≤
ˆ t

0

ˆ ∞
−∞
|S (x− y, t− s) f (y, s)| dy ds+

ˆ ∞
−∞
|S (x− y, t)φ (y)| dy

(∣∣∣∣ˆ f

∣∣∣∣ ≤ ˆ |f |)
≤ ‖f‖L∞(R×[0,T ])

ˆ t

0

ˆ ∞
−∞

S (x− y, t− s) dy ds+ ‖φ‖L∞(R)

ˆ ∞
−∞

S (x− y, t)φ (y) dy (S > 0)

≤ ‖f‖L∞(R×[0,T ])

ˆ t

0

ds+ ‖φ‖L∞(R)

(ˆ
R
S dx = 1

)
≤ T‖f‖L∞(R×[0,T ]) + ‖φ‖L∞(R)

The above result implies stability because small perturbations in f and φ, result in small perturbations in the solution u.


