Section 2.4
1) (Prob 9, Pg 53) Solve the diffusion equation $u_t = ku_{xx}$ with the initial condition $u(x, 0) = x^2$ by the following method.

i) Show that u_{xxx} also satisfies the diffusion equation with zero initial condition.

Solution:

\[
\begin{align*}
& \frac{\partial}{\partial x} u = ku_{xx} \\
& \frac{\partial}{\partial x} (u_t) = k\frac{\partial}{\partial x} u_{xx} \\
& \frac{\partial}{\partial x} (u_{xxx}) = k\frac{\partial}{\partial x} (u_{xx}) \quad \text{(Since partials commute)}
\end{align*}
\]

ii) Conclude that $u_{xxx}(x, t) \equiv 0$ for all (x, t) assuming $|u(x, t)| \leq Me^{\alpha x^2}$ for all x, t. (Refer to practice problem set 2)

Solution: $u_{xxx}(x, 0) \equiv 0$ since $u(x, 0) = x^2$. Since under the growth conditions, we have uniqueness for the heat equation on the real line, we conclude that $u_{xxx}(x, t) = 0$

iii) Using ii, show that $u(x, t) = A(t)x^2 + B(t)x + C(t)$

Solution: Follows from integrating the above expression 3 times.

iv) Plug in the above expression for $u(x, t)$ in the differential equation, to obtain a system of differential equations for $A(t), B(t), C(t)$. (Hint: the functions $1, x, x^2$ are linearly independent)

\[
A'(t)x^2 + B'(t)x + C'(t) = \frac{\partial}{\partial t} u = ku_{xx} = 2kA(t)
\]

\[
\begin{align*}
A'(t) &= 0 \\
B'(t) &= 0 \\
C'(t) &= 2kA(t)
\end{align*}
\]

Solving the above system, we get

\[
\begin{align*}
A(t) &= a \\
B(t) &= b \\
C(t) &= 2kat + c
\end{align*}
\]

v) Using the initial conditions, obtain initial values for $A(0), B(0)$ and $C(0)$ and solve the above system of differential equations to compute $u(x, t)$

\[
A(0)x^2 + B(0)x + C(0) = x^2
\]

\[
A(0) = 1, B(0) = 0, C(0) = 0.
\]

\[
u(x, t) = x^2 + 2kt
\]
2) (Prob 15, Pg 53) Using the energy method, prove uniqueness of the diffusion problem with Neumann boundary conditions:

\[
\begin{align*}
 u_t - ku_{xx} &= f(x,t) & 0 < x < 1, t > 0 \\
 u(x,0) &= \phi(x) \\
 u_x(0,t) &= g(t) \\
 u_x(0,1) &= h(t)
\end{align*}
\]

Solution: To prove uniqueness for the neumann problem, we consider the problem above with \(f(x,t) \equiv 0, \phi(x) \equiv 0, g(t) \equiv 0 \) and \(h(t) \equiv 0 \) and show that the solution \(u(x,t) \equiv 0 \).

\[
e(t) = \int_0^1 u^2(x,t) \, dx
\]

\[
e'(t) = \int_0^1 2uu_t \, dx
\]

\[
= 2k \int_0^1 uu_{xx} \, dx
\]

\[
= 2k u_x [1]_0^1 - 2k \int_0^1 u_x^2 \, dx \quad \text{(Integration by parts)}
\]

\[
= -2k \int_0^1 u_x^2 \, dx \leq 0 \quad (u_x(0,t) = u_x(1,t) = 0)
\]

Thus, the energy is a decreasing function of time. Moreover \(e(0) = 0 \) since \(u(x,0) \equiv 0 \). \(e(t) \) is a non negative, decreasing function of time, which is \(0 \) at \(t = 0 \), so we conclude that \(e(t) \equiv 0 \) and thus \(u(x,t) \equiv 0 \).

3) (Prob 16, Pg 54) Solve the diffusion equation with constant dissipation:

\[
\begin{align*}
 u_t - ku_{xx} + bu &= 0 & -\infty < x < \infty \\
 u(x,0) &= \phi(x)
\end{align*}
\]

where \(b > 0 \) is a constant by setting \(u(x,t) = e^{-bt}v(x,t) \).

Solution:

\[
v(x,t) = e^{bt}u(x,t)
\]

\[
\partial_t v(x,t) = e^{bt} \partial_t u(x,t) + be^{bt} u(x,t)
\]

\[
\partial_{xx} v(x,t) = e^{bt} \partial_{xx} u(x,t)
\]

\[
\partial_t v - k\partial_{xx} v = e^{bt} (\partial_t u + bu - k\partial_{xx} u) = 0
\]

Thus, \(v(x,t) \) satisfies the heat equation with initial data \(v(x,0) = e^{bt}\phi(x) = \phi(x) \). The solution for \(v(x,t) \) is given by

\[
v(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) \, dy
\]

\[
u(x,t) = e^{-bt} \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) \, dy
\]

Section 3.1

4) (Prob 2, Pg 60) Solve \(u_t = ku_{xx}; u(x,0) = 0; u(0,t) = 1 \) on the half life \(0 < x < \infty \). (Hint: Set \(v(x,t) = u(x,t) - 1 \).)

Solution: Let \(v(x,t) = u(x,t) - 1 \). Then \(v \) satisfies the differential equation

\[
\partial_t v = k\partial_{xx} v
\]

\[
v(0,t) = 0 \quad \forall t > 0
\]

\[
v(x,0) = -1 \quad 0 < x < \infty
\]
The solution is given by

\[v(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{0}^{\infty} \left(\exp \left(-\frac{(x-y)^2}{4kt} \right) - \exp \left(-\frac{(x+y)^2}{4kt} \right) \right) \phi(y) \, dy \]

\[= -\frac{1}{\sqrt{4\pi kt}} \int_{0}^{\infty} \left(\exp \left(-\frac{(x-y)^2}{4kt} \right) - \exp \left(-\frac{(x+y)^2}{4kt} \right) \right) \, dy \]

\[= -\text{erf} \left(\frac{x}{\sqrt{4kt}} \right) \]

\[u(x,t) = 1 - \text{erf} \left(\frac{x}{\sqrt{4kt}} \right) \]

Section 3.2

5) (Prob 3, Pg 66) A wave \(f(x+ct) \) travels along a semi-infinite string \(0 < x < \infty \) for \(t > 0 \). Find the solution \(u(x,t) \) of the string for \(t > 0 \) if the end \(x = 0 \) is fixed, i.e. \(u(0,t) = 0 \). Plot the solution in the three different regimes. Repeat the same exercise if \(u_x(0,t) = 0 \). Comment on the results.

Solution:

Dirichlet case

\[u(x,t) = \begin{cases}
 f(x+ct) & x > ct \\
 f(x+ct) - f(ct-x) & x < ct
\end{cases} \]

Neumann case

\[u(x,t) = \begin{cases}
 f(x+ct) & x > ct \\
 f(x+ct) + f(ct-x) & x < ct
\end{cases} \]

6) (Prob 5, Pg 66) Solve \(u_{tt} = 4u_{xx} \) for \(0 < x < \infty \), \(u(0,t) = 0 \), \(u(x,0) = 1 \) and \(u_t(x,0) = 0 \) using the reflection method. Find the location of the singularity of the solution in the \((x,t)\) space.

Solution:

\[u(x,t) = \begin{cases}
 1 & x \geq 2t \\
 0 & x < 2t
\end{cases} \]

The singularity is on the line \(x = 2t \).

Section 3.3

7) (Prob 2, Pg 71) Solve the completely inhomogeneous diffusion problem on the half line

\[v_t - kv_{xx} = f(x,t) \quad 0 < x < \infty, \quad 0 < t < \infty \]

\[v(0,t) = h(t), \quad v(x,0) = \phi(x), \]

by setting \(V(x,t) = v(x,t) - h(t) \).

Solution: Let \(V(x,t) = v(x,t) - h(t) \). Then \(V(x,t) \) satisfies

\[V_t - kV_{xx} = v_t - h'(t) - kv_{xx} = f(x,t) - h'(t) \]

\[V(0,t) = 0 \]

\[V(x,0) = \phi(x) - h(0) \]
By Duhamel’s principle, the solution to the above inhomogeneous problem is given by
\[V(x, t) = \int_{0}^{t} \int_{-\infty}^{\infty} \left[S(x - y, t - s) - S(x + y, t - s) \right] \cdot \left[f(y, s) - h'(s) \right] \, dy \, ds + \]
\[\int_{-\infty}^{\infty} \left[S(x - y, t) - S(x + y, t) \right] \cdot [\phi(y) - h(0)] \, dy \]
\[v(x, t) = h(t) + V(x, t) \]

Section 3.4
8) (Prob 12.13, Pg 80) Derive the solution of the fully inhomogeneous wave equation on the half-line
\[v_{tt} - c^2 v_{xx} = f(x, t), \quad 0 < x < \infty \]
\[v(x, 0) = \phi(x) \quad v_t(x, 0) = \psi(x) \]
by setting \(V(x, t) = v(x, t) - h(t) \). Find the solution for \(h(t) = t^2, \phi(x) = x \) and \(\psi(x) = 0 \).

Solution: Let \(V(x, t) = v(x, t) - h(t) \). Then \(V(x, t) \) satisfies the differential equation
\[V_{tt} - c^2 V_{xx} = f(x, t) - h''(t) \]
\[V(x, 0) = \phi(x) - h(0) \]
\[V_t(x, 0) = \psi(x) - h'(0) \]
\[V(0, t) = 0. \]

Let
\[\overline{\phi}_{\text{odd}}(x) = \begin{cases} \phi(x) - h(0) & x \geq 0 \\ -\phi(-x) - h(0) & x < 0 \end{cases} \]
\[\overline{\psi}_{\text{odd}}(x) = \begin{cases} \psi(x) - h'(0) & x \geq 0 \\ -\psi(-x) - h'(0) & x < 0 \end{cases} \]
\[\overline{f}_{\text{odd}}(x, t) = \begin{cases} f(x, t) - h''(t) & x \geq 0 \ t > 0 \\ -f(-x, t) - h''(t) & x < 0 \ t > 0 \end{cases} \]

By Duhamel’s principle, the solution is given by
\[V(x, t) = \frac{1}{2} \left[\overline{\phi}_{\text{odd}}(x + ct) + \overline{\phi}_{\text{odd}}(x - ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \overline{\psi}_{\text{odd}}(y) \, dy + \frac{1}{2c} \int_{x-ct}^{x+ct} \overline{f}_{\text{odd}}(y, s) \, dy \, ds \]
\[v(x, t) = V(x, t) + h(t) \]
\[v(x, t) = \begin{cases} x & x \geq ct \\ x + (t - \frac{c}{t})^2 & 0 \leq x \leq ct \end{cases} \]

9) (Stability to small perturbations for the heat equation) Consider the inhomogeneous heat equation on the real line
\[u_t - ku_{xx} = f(x, t), \quad -\infty < x < \infty, \quad t > 0 \]
\[u(x, 0) = \phi(x). \]

Show that the solutions are stable under small perturbations, i.e. Show that
\[\|u\|_{L^\infty(\mathbb{R} \times [0, T])} = \sup_{x \in \mathbb{R}, t \in [0, T]} |u(x, t)| \leq T \|f\|_{L^\infty(\mathbb{R} \times [0, T])} + \|\phi\|_{L^\infty(\mathbb{R})}. \]

Use the formula for the solution and the fact that
\[\int_{-\infty}^{\infty} S(x, t) \, dx = 1, \forall t > 0. \]

Comment on why the above result implies stability of solutions to the data for the heat equation.

Solution:
\[u(x, t) = \int_0^t \int_{-\infty}^{\infty} S(x - y, t - s) f(y, s) \, dy \, ds + \int_{-\infty}^{\infty} S(x - y, t) \phi(y) \, dy \]

\[|u(x, t)| = \left| \int_0^t \int_{-\infty}^{\infty} S(x - y, t - s) f(y, s) \, dy \, ds + \int_{-\infty}^{\infty} S(x - y, t) \phi(y) \, dy \right| \]

\[\leq \left| \int_0^t \int_{-\infty}^{\infty} S(x - y, t - s) f(y, s) \, dy \, ds \right| + \left| \int_{-\infty}^{\infty} S(x - y, t) \phi(y) \, dy \right| \quad \text{(Triangle ineq)} \]

\[\leq \int_0^t \int_{-\infty}^{\infty} |S(x - y, t - s) f(y, s)| \, dy \, ds + \int_{-\infty}^{\infty} |S(x - y, t) \phi(y)| \, dy \quad \left(\int f \leq \int |f| \right) \]

\[\leq \|f\|_{L^\infty(\mathbb{R} \times [0, T])} \int_0^t \int_{-\infty}^{\infty} S(x - y, t - s) \, dy \, ds + \|\phi\|_{L^\infty(\mathbb{R})} \int_{-\infty}^{\infty} S(x - y, t) \phi(y) \, dy \quad (S > 0) \]

\[\leq \|f\|_{L^\infty(\mathbb{R} \times [0, T])} \int_0^t ds + \|\phi\|_{L^\infty(\mathbb{R})} \quad \left(\int S \, dx = 1 \right) \]

\[\leq T \|f\|_{L^\infty(\mathbb{R} \times [0, T])} + \|\phi\|_{L^\infty(\mathbb{R})} \]

The above result implies stability because small perturbations in \(f \) and \(\phi \), result in small perturbations in the solution \(u \).