Practice Problem set 3

February 26, 2018

- 1. Suppose that A is closed convex compact subset of X a complete vector space. Suppose that $F = \{x_0\}$ is an extreme set of A. Show that $x_0 \in \mathcal{E}(A)$.
- 2. Prove the inverse mapping theorem. If $T: X \to Y$ is linear, bounded and a bijection. Then show that T^{-1} is bounded.
- 3. Suppose that $T: X \to Y$ is linear and bounded. Show that T is an open map, i.e. T(A) is open for every open set A, if and only if $T(B_1(0))$ contains a ball centered at the origin.
- 4. Suppose that B is a closed extreme subset of A, a compact closed convex set. Suppose that $\ell \in X^*$ is a bounded linear functional. Show that

$$F = \left\{ x \in B \mid \ell(x) = \sup_{y \in B} \ell(y) \right\},\$$

is a non-empty, closed, convex extreme subset of A.

- 5. Suppose that $X = L^1[0, 1]$. Show that $\overline{B_1(0)} \subset X$ has no extreme points.
- 6. Show that $\ell^p(\mathbb{N})$, 0 , is a metric space with the metric

$$d(a,b) = \sum_{j=1}^{\infty} |a_j - b_j|^p.$$

Construct a compact set in X whose convex hull is unbounded.