Practice Problem set 2

February 13, 2018

- 1. Show that $(L^p[0,1])^* = L^q[0,1]$ for all $1 \le p < \infty$ where 1/p + 1/q = 1
- 2. If X is a normed space, show that X^* is a normed space
- 3. Suppose that X = C([0,1]) with the norm

$$||f|| = \int_0^1 |f(t)| dt$$
,

and defined $L: X \to \mathcal{F}$ by

$$L(f) = f\left(\frac{1}{2}\right) .$$

Show that L is unbounded.

- 4. Show that X is a Banach space if and only if whenever x_n is a sequence such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then $\sum_{n=1}^{\infty} x_n$ converges.
- 5. Suppose that $\tau:[0,1]\to [0,1]$ is a continuous function. Suppose that $A:C[0,1]\to C[0,1]$ is defined by $A[f](x)=f(\tau(x))$ where C[0,1] is equipped with the standard sup norm. Then show that A is bounded with ||A||=1. Give necessary and sufficient conditions on τ such that a) A is injective and b) A is surjective.
- 6. Suppose $X = \mathbb{R}^n$. Find sharp constants c and C, such that

$$c||f||_{\infty} \le ||f||_{1} \le C||f||_{\infty}$$

and find the vectors for which the optimal constant is achieved. For a harder version of the problem, replace the ∞ norm by the p norm.