Practice Problem set 1

January 29, 2018

1. If P is the orthogonal projection onto a closed linear subspace S, then show that $P^{2}=P$ and $P^{*}=P$
2. Prove the converse of the above result, i.e. if $P^{2}=P$ and $P^{*}=P$, then P is orthogonal projection onto some closed subspace of the Hilbert space
3. Show that the multiplication operator $T e_{k}=\alpha_{k} e_{k}$, where $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthogonal basis for a Hilbert space \mathcal{H} is compact if and only if $\left|\alpha_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$
4. Suppose that $w(x)$ is a non-negative bounded function. Suppose $K(x, y)$ satisfies

$$
\begin{aligned}
& \int_{\mathbb{R}}|K(x, y)| w(y) d y \leq A w(x) \quad \text { for almost every } x \in \mathbb{R} \\
& \int_{\mathbb{R}}|K(x, y)| w(x) d x \leq A w(y) \quad \text { for almost every } y \in \mathbb{R}
\end{aligned}
$$

Prove that the integral operator defined by $T f=\int_{\mathbb{R}} K(x, y) f(y) d y$ is bounded on $\mathbb{L}^{2}(\mathbb{R})$ with $\|T\| \leq A$.
5. Show that if T_{1} and T_{2} are bounded operators then

$$
\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|
$$

6. Suppose \mathcal{H}_{0} is a pre-Hilbert space and $A: \mathcal{H}_{0} \rightarrow \mathcal{H}_{0}$ is a bounded operator. Suppose that \mathcal{H} is the completion of \mathcal{H}, show that there exists a bounded operator $\tilde{A}: \mathcal{H} \rightarrow \mathcal{H}$, such that $\tilde{A} h=A h$ for all $h \in \mathcal{H}_{0}$. The operator \tilde{A} is referred to as the continuous extension of the operator A.
