Practice Problem set 1

January 29, 2018

- 1. If P is the orthogonal projection onto a closed linear subspace S, then show that $P^2 = P$ and $P^* = P$
- 2. Prove the converse of the above result, i.e. if $P^2 = P$ and $P^* = P$, then P is orthogonal projection onto some closed subspace of the Hilbert space
- 3. Show that the multiplication operator $Te_k = \alpha_k e_k$, where $\{e_k\}_{k=1}^{\infty}$ is an orthogonal basis for a Hilbert space \mathcal{H} is compact if and only if $|\alpha_k| \to 0$ as $k \to \infty$
- 4. Suppose that w(x) is a non-negative bounded function. Suppose K(x,y) satisfies

$$\int_{\mathbb{R}} |K(x,y)| w(y) dy \le Aw(x) \quad \text{for almost every } x \in \mathbb{R}$$

$$\int_{\mathbb{R}} |K(x,y)| w(x) dx \le Aw(y) \quad \text{for almost every } y \in \mathbb{R} \,.$$

Prove that the integral operator defined by $Tf = \int_{\mathbb{R}} K(x,y)f(y)dy$ is bounded on $\mathbb{L}^2(\mathbb{R})$ with $||T|| \leq A$.

5. Show that if T_1 and T_2 are bounded operators then

$$||T_1 + T_2|| \le ||T_1|| + ||T_2||$$

6. Suppose \mathcal{H}_0 is a pre-Hilbert space and $A: \mathcal{H}_0 \to \mathcal{H}_0$ is a bounded operator. Suppose that \mathcal{H} is the completion of \mathcal{H} , show that there exists a bounded operator $\tilde{A}: \mathcal{H} \to \mathcal{H}$, such that $\tilde{A}h = Ah$ for all $h \in \mathcal{H}_0$. The operator \tilde{A} is referred to as the continuous extension of the operator A.