Problem set 7

Due date: Apr 23

April 16, 2018

1. Suppose that R and L are the standard right shift and left shift operators on $\ell^{2}(\mathbb{N})$. Show that

$$
\begin{gathered}
\sigma_{p}(R)=\emptyset, \quad \sigma_{c}(R)=\{\lambda \in \mathbb{C}:|\lambda|=1\}, \quad \sigma_{r}(R)=\{\lambda \in \mathbb{C}:|\lambda|<1\}, \\
\operatorname{sigma}_{p}(L)=\{\lambda \in \mathbb{C}:|\lambda|<1\}, \quad \sigma_{c}(L)=\{\lambda \in \mathbb{C}:|\lambda|=1\}, \quad \operatorname{sigma}_{r}(L)=\emptyset .
\end{gathered}
$$

2. Suppose that e_{i} are the standard coordinate vectors in $\ell^{2}(\mathbb{N})$ and T is the operator defined by

$$
T e_{i}=\lambda_{i} e_{i}
$$

where λ_{i} are distinct. Show that $\sigma_{r}(T)=\emptyset$ and that

$$
\lambda \in \overline{\left\{\lambda_{i}\right\}} \backslash\left\{\lambda_{i}\right\} \in \sigma_{c}(T)
$$

3. Construct a compact operator T such that 0 is in a) the point spectrum, b) the continuous spectrum, and c) the residual spectrum.
4. Suppose that $\lambda \in \mathbb{R}$. Show that if $\lambda \in \sigma_{p}(T)$ annd $\lambda \notin \sigma_{p}\left(T^{*}\right)$, then $\lambda \in \sigma_{r}\left(T^{*}\right)$.
