Problem set 6

Due date: Apr 16

April 17, 2018

1. Suppose that X is a Banach space with the norm topology. Show that the Ball X is norm closed if and only if it is weakly closed.
Solution: This became a rather silly question. The question was supposed to be to show that a convex set is weakly closed if and only if it is norm closed. A simple application of Hahn Banach shows that BallX is weakly closed, and it is clearly norm closed.
2. Sequential non-compactness of $\ell^{\infty}(\mathbb{N})^{*}$. Let $b_{n}: \ell^{\infty}(\mathbb{N}) \rightarrow \mathbb{R}$ be the functions defined by

$$
b_{n}(x)=x_{n}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots\right)$. Show that b_{n} does not have any subsequence that converges pointwise, where pointwise convergence in this setup means that for every fixed $x \in \ell^{\infty}(\mathbb{N}), b_{n}(x)$ is Cauchy.

Solution:

The proof is by contradiction. Let us assume that $\left\{b_{n_{k}}(x)\right\}_{k=1}^{\infty}$ and $n_{k}<n_{k+1}$ is a subseqeunce that converges pointwise. The claim is that for the following x, the sequence $b_{n_{k}}(x)$ does not converge.

$$
x=\sum_{k=1}^{\infty}(k \bmod 2) 2^{-n_{k}}
$$

Then $b_{n_{k}}(x)$ is an alternating sequence of 0's and 1's and hence $\left\{b_{n_{k}}(x)\right\}_{k=1}^{\infty}$ does not converge.
3. Suppose that X is a reflexive Banach space, M is a closed linear subspace of X and that $x_{0} \in X \backslash M$, then there is a point $y_{0} \in M$ such that $\left\|x_{0}-y_{0}\right\|=\operatorname{dist}\left(x_{0}, M\right)$. In order to prove this result show that, the norm on X is lower semicontinuous for the weak topology, and the norm of X^{*} is lower semicontinuous for the weak-* topology. Further show that a lower semicontinuous function on a compact set must achieve its minimum. Note that a function $f: X \rightarrow \mathbb{R}$ is lower semicontinuous at x_{0} in a topological space if there exists an open neighborhood U of x_{0} such that

$$
f(x) \geq f\left(x_{0}\right)-\varepsilon \quad \forall x \in U
$$

Solution: First, we show that the norm is weakly semicontinuous. We wish to find an open neighborhood of x_{0} such that

$$
\|x\| \geq\left\|x_{0}\right\|-\varepsilon, \quad \forall x \in U .
$$

By Hahn-Banach, there exists $x_{0}^{*} \in X^{*}$ such that $x_{0}^{*}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\left\|x_{0}^{*}\right\|=1$. Consider the open neighborhood of x_{0} defined by

$$
U:=\left\{x:\left|x_{0}^{*}\left(x-x_{0}\right)\right|<\varepsilon\right\} .
$$

For all $x \in U$, we have

$$
\begin{aligned}
\varepsilon>\left|x_{0}^{*}(x)-x_{0}^{*}\left(x_{0}\right)\right| & \geq\left\|x_{0}^{*}\left(x_{0}\right)\right\|-\left\|x_{0}^{*}(x)\right\| \\
\varepsilon & >\left\|x_{0}\right\|-\left\|x_{0}^{*}(x)\right\| \\
\therefore\left\|x_{0}\right\|-\varepsilon & <\left\|x_{0}^{*}(x)\right\| \leq\left\|x_{0}^{*}\right\|\|x\|=\|x\| .
\end{aligned}
$$

A similar result holds for the norm of X^{*} in the weak-* topology.
Now, we show that every semi lower continuous function achieves its minimum on a compact set. Suppose not. Suppose f is semi-lower continuous and K is a compact set. Suppose that $f_{0}=\inf _{x \in K} f(x)$. Then for each x in K, there exists an $\varepsilon>0$ such that $f(x)-\varepsilon>f_{0}$. Since f is lower semi-continuous, there exists an open neighborhood of x, denoted by $V(x)$ such that $a<f(y)$ for all $y \in V(x)$. Then $K \subset \cup_{x \in K} V(x)$ is an open cover, since K is compact there exists a finite cover, i.e. $K \subset \cup_{j=1}^{n} V\left(x_{j}\right)$. Then it is easy to show that $a<a^{\prime}=\min _{k=1}^{n} f\left(x_{k}\right)-\varepsilon_{k}$ is such that $a^{\prime}<f(x)$ for all $x \in K$ which contradicts that a is the infinimum.

Given both of these pieces of information, we now proceed to the main theorem. Consider $B_{2 r}\left(x_{0}\right)$, where $r=\operatorname{dis}\left(x_{0}, M\right)$. Then $B_{2 r}\left(x_{0}\right)$ is weakly compact, since X is reflexive, and thus $M \cap B_{2 r}\left(x_{0}\right)$ is weakly compact, since M is closed. Moreover $M \cap B_{2 r}\left(x_{0}\right)$ is non-empty. Since the norm is weakly semi continuous and $M \cap B_{2 r}\left(x_{0}\right)$ is a weakly compact set, we conclude that the norm achieves its minimum on this set.
4. Show that a sequence $f_{n} \in C[0,1]$ equipped with the supremum norm converges weakly if and only if it is norm bounded and pointwise convergent. Give an example of a sequence in the space which converges weakly but not in norm.

Solution:

a) $C[0,1]^{*}=$ signed finite measures on $[0,1]$.

Necessity: Suppose $f_{n} \rightarrow f$ weakly. Then $L(f)=f(x)$ is a bounded linear function. Weak convergence implies $L\left(f_{n}\right)=f_{n}(x) \rightarrow L(f)=f(x)$. Hence $f_{n} \rightarrow f$ pointwise. By part 2 of the previous problem f_{n} is norm bounded.
Sufficienct: Suppose the sequence f_{n} is norm bounded and converges pointwise to f. Then $f_{n} \rightarrow f$ weakly. Let $L(f)=\int_{0}^{1} f d \mu$ where μ is a finite signed measure be a bounded linear functional on $C[0,1]$. Then by bounded convergence theorem

$$
\begin{equation*}
\lim _{n \uparrow \infty} L\left(f_{n}\right)=\lim _{n \uparrow \infty} \int_{0}^{1} f_{n} d \mu=\int_{0}^{1} f d \mu=L(f) \tag{1}
\end{equation*}
$$

Hence $f_{n} \uparrow f$ weakly
b) Consider the following sequence of functions

$$
f_{n}(x)= \begin{cases}0 & x>\frac{1}{n} \\ 1-|2 n x-1| & 0<x \leq \frac{1}{n}\end{cases}
$$

Then $f_{n}(x) \in C[0,1], \sup _{n}\left\|f_{n}\right\|_{\infty}=1$ and $f_{n} \uparrow 0$ pointwise in [0, $]$. Thus by part a) $f_{n} \uparrow 0$ weakly. However $\left\|f_{n}-0\right\|=1 \quad \forall n$ and hence f_{n} does not converge to 0 in norm

