Problem set 6

Due date: Apr 16

April 17, 2018

- Suppose that X is a Banach space with the norm topology. Show that the Ball X is norm closed if and only if it is weakly closed.
 Solution: This became a rather silly question. The question was supposed to be to show that a convex set is weakly closed if and only if it is norm closed. A simple application of Hahn Banach shows that *BallX* is weakly closed, and it is clearly norm closed.
- 2. Sequential non-compactness of $\ell^{\infty}(\mathbb{N})^*$. Let $b_n : \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ be the functions defined by

$$b_n(x) = x_n$$

where $x = (x_1, x_2, \ldots, x_n, x_{n+1}, \ldots)$. Show that b_n does not have any subsequence that converges pointwise, where pointwise convergence in this setup means that for every fixed $x \in \ell^{\infty}(\mathbb{N}), b_n(x)$ is Cauchy.

Solution:

The proof is by contradiction. Let us assume that $\{b_{n_k}(x)\}_{k=1}^{\infty}$ and $n_k < n_{k+1}$ is a subsequence that converges pointwise. The claim is that for the following x, the sequence $b_{n_k}(x)$ does not converge.

$$x = \sum_{k=1}^{\infty} (k \mod 2) 2^{-n_k}$$

Then $b_{n_k}(x)$ is an alternating sequence of 0's and 1's and hence $\{b_{n_k}(x)\}_{k=1}^{\infty}$ does not converge.

3. Suppose that X is a reflexive Banach space, M is a closed linear subspace of X and that $x_0 \in X \setminus M$, then there is a point $y_0 \in M$ such that $||x_0 - y_0|| = \operatorname{dist}(x_0, M)$. In order to prove this result show that, the norm on X is lower semicontinuous for the weak topology, and the norm of X^* is lower semicontinuous for the weak-* topology. Further show that a lower semicontinuous function on a compact set must achieve its minimum. Note that a function $f: X \to \mathbb{R}$ is lower semicontinuous at x_0 in a topological space if there exists an open neighborhood U of x_0 such that

$$f(x) \ge f(x_0) - \varepsilon \quad \forall x \in U$$

Solution: First, we show that the norm is weakly semicontinuous. We wish to find an open neighborhood of x_0 such that

$$||x|| \ge ||x_0|| - \varepsilon, \quad \forall x \in U.$$

By Hahn-Banach, there exists $x_0^* \in X^*$ such that $x_0^*(x_0) = ||x_0||$ and $||x_0^*|| = 1$. Consider the open neighborhood of x_0 defined by

$$U := \{x : |x_0^*(x - x_0)| < \varepsilon\}.$$

For all $x \in U$, we have

$$\varepsilon > |x_0^*(x) - x_0^*(x_0)| \ge ||x_0^*(x_0)|| - ||x_0^*(x)||$$

$$\varepsilon > ||x_0|| - ||x_0^*(x)|| .$$

$$\therefore ||x_0|| - \varepsilon < ||x_0^*(x)|| \le ||x_0^*|| ||x|| = ||x|| .$$

A similar result holds for the norm of X^* in the weak-* topology.

Now, we show that every semi lower continuous function achieves its minimum on a compact set. Suppose not. Suppose f is semi-lower continuous and K is a compact set. Suppose that $f_0 = \inf_{x \in K} f(x)$. Then for each x in K, there exists an $\varepsilon > 0$ such that $f(x) - \varepsilon > f_0$. Since f is lower semi-continuous, there exists an open neighborhood of x, denoted by V(x) such that a < f(y) for all $y \in V(x)$. Then $K \subset \bigcup_{x \in K} V(x)$ is an open cover, since K is compact there exists a finite cover, i.e. $K \subset \bigcup_{j=1}^n V(x_j)$. Then it is easy to show that $a < a' = \min_{k=1}^n f(x_k) - \varepsilon_k$ is such that a' < f(x) for all $x \in K$ which contradicts that a is the infinimum.

Given both of these pieces of information, we now proceed to the main theorem. Consider $B_{2r}(x_0)$, where $r = \operatorname{dis}(x_0, M)$. Then $B_{2r}(x_0)$ is weakly compact, since X is reflexive, and thus $M \cap B_{2r}(x_0)$ is weakly compact, since M is closed. Moreover $M \cap B_{2r}(x_0)$ is non-empty. Since the norm is weakly semi continuous and $M \cap B_{2r}(x_0)$ is a weakly compact set, we conclude that the norm achieves its minimum on this set.

4. Show that a sequence $f_n \in C[0, 1]$ equipped with the supremum norm converges weakly if and only if it is norm bounded and pointwise convergent. Give an example of a sequence in the space which converges weakly but not in norm. Solution:

a) $C[0,1]^* =$ signed finite measures on [0,1].

Necessity: Suppose $f_n \to f$ weakly. Then L(f) = f(x) is a bounded linear function. Weak convergence implies $L(f_n) = f_n(x) \to L(f) = f(x)$. Hence $f_n \to f$ pointwise. By part 2 of the previous problem f_n is norm bounded.

Sufficienct: Suppose the sequence f_n is norm bounded and converges pointwise to f. Then $f_n \to f$ weakly. Let $L(f) = \int_0^1 f d\mu$ where μ is a finite signed measure be a bounded linear functional on C[0, 1]. Then by bounded convergence theorem

$$\lim_{n \uparrow \infty} L\left(f_n\right) = \lim_{n \uparrow \infty} \int_0^1 f_n d\mu = \int_0^1 f d\mu = L\left(f\right) \tag{1}$$

Hence $f_n \uparrow f$ weakly

b) Consider the following sequence of functions

$$f_n(x) = \begin{cases} 0 & x > \frac{1}{n} \\ 1 - |2nx - 1| & 0 < x \le \frac{1}{n} \end{cases}$$

Then $f_n(x) \in C[0,1]$, $\sup_n ||f_n||_{\infty} = 1$ and $f_n \uparrow 0$ pointwise in [0,1]. Thus by part a) $f_n \uparrow 0$ weakly. However $||f_n - 0|| = 1$ $\forall n$ and hence f_n does not converge to 0 in norm