
Problem set 5

Due date: Apr 9

April 17, 2018

If needed you may assume that the topology on vector spaces is generated by a family of
seminorms if that helps.

1. Suppose that X is a topological vector space (TVS), and let U be the collection of all
open sets containing the origin. Prove the following.
a) If U ∈ U , then there is a V ∈ U such that V + V ⊂ U .
b) If U ∈ U , then there is a V in U such that V ⊂ U and αV ⊂ V for all |α| ≤ 1.
Solution: Since 0+0 = 0 and addition is continuous, there exist neighborhoods V1, V2
of zero such that V1 + V2 ⊂ U . Set V = V1 ∩ V2, then clearly V + V ⊂ V1 + V2 ⊂ W .

Since 0×0 = 0 and multiplication is continuous, there exist neighborhoods (−ε, ε) and
V1 such that αV1 ⊂ U for all α ∈ (−ε, ε). Define V = εV , then clearly αV ⊂ U for all
α ∈ (−1, 1).

2. Suppose that X is a vector space whose topology is defined by a family of seminorms
P , i.e., every open neighborhood of x0 is of the form

Ux0 = ∩nj=1{x ∈ X : pj(x− x0) < εj} ,

where the seminorms further satisfy

∩p∈P{x : p(x) = 0} = (0) .

Then show that X is a topological vector space with this topology.
Solution: All we need to show that if f(x, y) = x+y and f(α, x) = αx are continuous
functions. Continuity of x + y. The generating sets in the product topology centered
at x0, y0 are of the form

Ux0,y0,ε = {(x, y) ∈ X × X : |pj(x− x0)| < ε and |pj(y − y0)| < ε} .

Suppose that A is an open set in X given by

A =: {x : |pj(x− x0| < ε} .

Let B = f−1(A) and suppose that (x1, y1) ∈ B. We need to find an open neighborhood
of B such that its image under x+ y is completely contained in A. Since (x1, y1) ∈ B,
x1 + y1 ∈ A and satisfies

|pj(x1 + y1 − x0)| = c0 < ε .
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Suppose that ε′ is such that c0 + ε′ < ε. Consider the open set in X × X given by
Ux1,y1,ε′/2, i.e.

Ux1,y1,ε′/2 = {(x, y) ∈ X × X : |pj(x− x1)| < ε′/2 and |pj(y − y1)| < ε′/2} .

Clearly, (x1, y1) ∈ Ux1,y1,ε′/2. Moreover, for all (x, y) ∈ Ux1,y1,ε′/2,

|pj(f(x, y)− x0)| = |pj(x+ y − x0)|
≤ |pj(x− x1|+ |pj(y − y1)|+ |pj(x1 + y1 − x0)|
≤ ε′/2 + ε′/2 + c0 < ε .

Thus for all (x, y) ∈ Ux1,y1,ε′/2, f(x, y) ∈ A, and thus U ⊂ f−1(A). Thus B is an open
neighborhood of X ×X and addition is a continuous function.

A similar proof holds for multiplication.

3. Let X be a TVS. Show: a) if x0 ∈ X , then the mapping x→ x+x0 is a homeomorphism,
i.e., a continuous function and continuous inverse; b) if α ∈ F , and α 6= .0, the map
x→ αx is a homeomorphism.
Solution: Let f(x) = x + x0. Let τ be the topology on X generated by a collection
of semi-norms. Then let A be an open set of the form

A = {x : |pj(x− x1)| < ε} .

and let B = f−1(A). Suppose that x2 ∈ B, then

|pj(x2 + x0 − x1)| = c0 < ε .

Let ε′ such that c0 +ε′ < ε. Then consider the open set V centered containing x2 given
by

V = {x : |pj(x− x2)| < ε′} ,
Then

f(V ) = {x+ x0 : |pj(x− x2| < ε′}
= {x : |pj(x− x0 − x2)| < ε′}
= {x : |pj(x− x1 + x1 − x0 − x2)| < ε′}

We note that

|pj(x− x0 − x2)| < ε′ =⇒ |pj(x− x1)| = |pj(x− x0 − x2 + x0 + x2 − x1)|
≤ |pj(x− x0 − x2)|+ |pj(x0 + x2 − x1)|
≤ c0 + ε′ < ε .

Thus, f(V ) ⊂ A or V ⊂ f−1(A). Thus, B is open since every point in B contains an
open neighborhood. This shows the continuity of f . Clearly, f has an inverse defined
by f−1(x) = x− x0 which is continuous by the same argument.

The proof for x→ αx being a homeomorphism follows in a similar manner.
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4. Show that the weak topology is the smallest topology on X such that each x∗ ∈ X ∗ is
continuous.
Solution: First let us show that x∗ are continuous in the weak topology. Consider any
open set (a, b) ∈ R. Let U = (x∗)−1(a, b). Suppose that x0 ∈ U . Let x∗(x0) = α0 ∈
(a, b). Let ε > 0 such that (α0−ε, α0+ε) ∈ (a, b). Then Ux0,ε = {x : |x∗(x−x0)| < ε} is
an open set contained in U , since for all x ∈ U , x∗(x0)− ε ≤ x∗(x) ≤ x∗(x0) + ε. Thus,
every x0 ∈ U , contains a weakly open neighborhood around x0. Thus U is weakly open
and hence x∗ is continuous in the weak topology.

Now suppose that τ is a topology in which all x∗ are continuous. Fix an x∗ ∈ x, then
Then

Ux0,ε := {x : |x∗(x− x0)| < ε} ∈ τ ,

since it is the inverse image of an open set of a continuous function. This is precisely
the generator sets for the weak topology.

Remark 1. The proof of problem 5 is similar.

5. Show that the weak−∗ topology is the smallest topology on X ∗ such that each x ∈ X ,
x∗ → x∗(x) is continuous.

6. If H is a Hilbert space and {hn} is a sequence in H such that hn → h weakly, i.e.
(hn, f) → (h, f) as n → ∞ for each f ∈ H. Suppose further that ‖hn‖ → ‖h‖, then
show that ‖hn − h‖ → 0.
Solution:

‖hn − h‖2 = ‖hn‖2 + ‖h2‖ − 2(hn, h)→ 0 ,

since (hn, h)→ (h, h) and ‖hn‖2 → ‖h‖2.

7. Suppose that X is an infinite-dimensional normed space. If S = {x ∈ X : ‖x‖ = 1},
then the weak closure of S is {x : ‖x‖ ≤ 1}.
Solution: Let S denote the weak closure of S. First suppose that x0 is such that
‖x0‖ > 1. Then by the Hahn-Banach there exists an ` such that

|`(x− x0)| > ε , for allx such that‖x‖ ≤ 1 .

Thus, there exists an open neighborhood U of x0 given by

U := {x : |`(x− x0)| < ε} ,

such that U ∩ S = ∅. Hence, if ‖x0‖ > 1, then x0 is not in the weak closure of S.

This shows that S ⊂ {x : ‖x‖ ≤ 1}. Now suppose that x0 is such that ‖x0‖ < 1, and
suppose that x0 ∈ S

c
. Since Sc is weakly open, there must exist an open neighborhood

of x0, U , such that U ⊂ Sc. However, consider any open neighborhood of x0 which
takes the form

U =: ∩nj=1x : |x∗j(x− x0)| < ε .
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Claim, there exists y ∈ S such that y ∈ U . Since X is infinite dimensional, suppose that
x1, x2, . . . xn+1 are linearly independent elements of X. Now, consider the collection of
vectors

∑n+1
j=1 cjxj, and consider the linear system formed by

xastj (
n+1∑
k=1

ckxk) = 0 ,

This is a linear mapping from Rn+1 → Rn for the coefficients cj. By the rank-nullity
theorem, there exists a vector {dj}nj=1 in the null space of the mapping, i.e.

x∗j(
n+1∑
k

dkxk) = 0 .

Thus, y =
∑n+1

j=1 djxj ∈ U . By the same argument y/‖y‖ ∈ U is the element in S we
are looking for. Thus, every open neighborhood of x0 intersects with S and hence x0
cannot be in Sc.

8. In an infinite dimensional vector space, show that a bounded set cannot be open in
the weak topology.
Solution: We shall show the contrapositive, that every open set in the weak topology
is unbounded. Consider a point x, the neighborhood basis in the weak topology which
contain x are sets of the form Vf1,f2...fn,ε (x) = {y ∈ X, |fi (y)− fi (x)| < ε ∀i = 1, 2, . . . n}
where fi ∈ X∗ and n ∈ N. So without loss of generality, we can assume x = 0 since

Vf!,f2......fn,ε (x) = {y + x ∈ X; |fi (y)| < ε} = {y + x; y ∈ Vf1,f2...fn,ε (0)} = Vf1,f2...fn,ε (0) + x

Since we are in an infinite dimensional vector space, then ∃xi, such that, ‖xi‖ = 1 and
d (xi, span (x1, x2 . . . xi−1)) ≥ 1

2
, ∀i = 1, 2, . . . n + 1. Let x ∈ span {x1, x2 . . . xn+1}.

Then x =
∑n+1

j=1 cjxj.


f1 (x)
f2 (x)

...
fn−1 (x)
fn (x)

 =


f1 (x1) f1 (x2) . . . f1 (xn) f1 (xn+1)
f2 (x1) f2 (x2) . . . f2 (xn) f2 (xn+1)

...
...

. . .
...

...
...

...
. . .

...
...

fn (x1) fn (x2) . . . fn (xn) fn (xn+1)




c1
c2
...
cn
cn+1


Thus the mapping of [c1, c2 . . . cn+1] → [f1 (x) , f2 (x) . . . fn (x)] is a linear map from
Rn+1 → Rn. Hence by the rank nullity theorem, ∃c 6= 0 such that fi (x) = 0,

∀i = 1, 2, . . . n. That is fi

(∑n+1
j=1 cjxj

)
= 0 for all i = 1, 2, . . . n. The claim is that∑n+1

j=1 cjxj 6= 0. Suppose not. Then let jm = maxj=1,2,...n+1 {cj 6= 0}. jm > 0 since c 6=
0. If jm > 1, then xjm =

∑jm−1

j=1 cjxj contradicting the fact that d (xjm , span (x1, x2 . . . xjm−1)) ≥
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2
. If jm = 1, then c1x1 = 0, contradicting the fact that ‖x1‖ = 1. Hence x =∑n+1
j=1 cjxj ∈ ∩ni=1Ker (fi) and K = ∩ni=1Ker {fi} is a linear subspace of Vf1,f2...fn,ε (0).

Hence if x ∈ K, αx ∈ K for all α ∈ F . Since we have shown that K is non trivial,
that is there ∃x 6= 0 and x ∈ K, we conclude that Vf1,f2,...fn,ε (0) is unbounded for any
n ∈ N and for all ε > 0. Every open set (open in the weak topology) which contains
0, is the union of such sets. Hence every open set containing 0, must be unbounded
which implies that every weakly open set containing a point is unbounded. Hence a
bounded set cannot be weakly open.
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