Problem set 5

Due date: Apr 9

April 17, 2018

If needed you may assume that the topology on vector spaces is generated by a family of seminorms if that helps.

1. Suppose that \mathcal{X} is a topological vector space (TVS), and let \mathcal{U} be the collection of all open sets containing the origin. Prove the following.
a) If $U \in \mathcal{U}$, then there is a $V \in \mathcal{U}$ such that $V+V \subset U$.
b) If $U \in \mathcal{U}$, then there is a V in \mathcal{U} such that $V \subset U$ and $\alpha V \subset V$ for all $|\alpha| \leq 1$. Solution: Since $0+0=0$ and addition is continuous, there exist neighborhoods V_{1}, V_{2} of zero such that $V_{1}+V_{2} \subset U$. Set $V=V_{1} \cap V_{2}$, then clearly $V+V \subset V_{1}+V_{2} \subset W$.
Since $0 \times 0=0$ and multiplication is continuous, there exist neighborhoods $(-\varepsilon, \varepsilon)$ and V_{1} such that $\alpha V_{1} \subset U$ for all $\alpha \in(-\varepsilon, \varepsilon)$. Define $V=\varepsilon V$, then clearly $\alpha V \subset U$ for all $\alpha \in(-1,1)$.
2. Suppose that \mathcal{X} is a vector space whose topology is defined by a family of seminorms \mathcal{P}, i.e., every open neighborhood of x_{0} is of the form

$$
U_{x_{0}}=\cap_{j=1}^{n}\left\{x \in \mathcal{X}: p_{j}\left(x-x_{0}\right)<\varepsilon_{j}\right\},
$$

where the seminorms further satisfy

$$
\cap_{p \in \mathcal{P}}\{x: p(x)=0\}=(0) .
$$

Then show that \mathcal{X} is a topological vector space with this topology.
Solution: All we need to show that if $f(x, y)=x+y$ and $f(\alpha, x)=\alpha x$ are continuous functions. Continuity of $x+y$. The generating sets in the product topology centered at x_{0}, y_{0} are of the form

$$
U_{x_{0}, y_{0}, \varepsilon}=\left\{(x, y) \in \mathcal{X} \times \mathcal{X}:\left|p_{j}\left(x-x_{0}\right)\right|<\varepsilon \quad \text { and } \quad\left|p_{j}\left(y-y_{0}\right)\right|<\varepsilon\right\} .
$$

Suppose that A is an open set in X given by

$$
A=:\left\{x: \mid p_{j}\left(x-x_{0} \mid<\varepsilon\right\} .\right.
$$

Let $B=f^{-1}(A)$ and suppose that $\left(x_{1}, y_{1}\right) \in B$. We need to find an open neighborhood of B such that its image under $x+y$ is completely contained in A. Since $\left(x_{1}, y_{1}\right) \in B$, $x_{1}+y_{1} \in A$ and satisfies

$$
\left|p_{j}\left(x_{1}+y_{1}-x_{0}\right)\right|=c_{0}<\varepsilon .
$$

Suppose that ε^{\prime} is such that $c_{0}+\varepsilon^{\prime}<\varepsilon$. Consider the open set in $X \times X$ given by $U_{x_{1}, y_{1}, \varepsilon^{\prime} / 2}$, i.e.

$$
U_{x_{1}, y_{1}, \varepsilon^{\prime} / 2}=\left\{(x, y) \in \mathcal{X} \times \mathcal{X}:\left|p_{j}\left(x-x_{1}\right)\right|<\varepsilon^{\prime} / 2 \quad \text { and } \quad\left|p_{j}\left(y-y_{1}\right)\right|<\varepsilon^{\prime} / 2\right\} .
$$

Clearly, $\left(x_{1}, y_{1}\right) \in U_{x_{1}, y_{1}, \varepsilon^{\prime} / 2}$. Moreover, for all $(x, y) \in U_{x_{1}, y_{1}, \varepsilon^{\prime} / 2}$,

$$
\begin{aligned}
\left|p_{j}\left(f(x, y)-x_{0}\right)\right| & =\left|p_{j}\left(x+y-x_{0}\right)\right| \\
& \leq \mid p_{j}\left(x-x_{1}\left|+\left|p_{j}\left(y-y_{1}\right)\right|+\left|p_{j}\left(x_{1}+y_{1}-x_{0}\right)\right|\right.\right. \\
& \leq \varepsilon^{\prime} / 2+\varepsilon^{\prime} / 2+c_{0}<\varepsilon .
\end{aligned}
$$

Thus for all $(x, y) \in U_{x_{1}, y_{1}, \varepsilon^{\prime} / 2}, f(x, y) \in A$, and thus $U \subset f^{-1}(A)$. Thus B is an open neighborhood of $X \times X$ and addition is a continuous function.
A similar proof holds for multiplication.
3. Let \mathcal{X} be a TVS. Show: a) if $x_{0} \in \mathcal{X}$, then the mapping $x \rightarrow x+x_{0}$ is a homeomorphism, i.e., a continuous function and continuous inverse; b) if $\alpha \in \mathcal{F}$, and $\alpha \neq .0$, the map $x \rightarrow \alpha x$ is a homeomorphism.
Solution: Let $f(x)=x+x_{0}$. Let τ be the topology on X generated by a collection of semi-norms. Then let A be an open set of the form

$$
A=\left\{x:\left|p_{j}\left(x-x_{1}\right)\right|<\varepsilon\right\} .
$$

and let $B=f^{-1}(A)$. Suppose that $x_{2} \in B$, then

$$
\left|p_{j}\left(x_{2}+x_{0}-x_{1}\right)\right|=c_{0}<\varepsilon .
$$

Let ε^{\prime} such that $c_{0}+\varepsilon^{\prime}<\varepsilon$. Then consider the open set V centered containing x_{2} given by

$$
V=\left\{x:\left|p_{j}\left(x-x_{2}\right)\right|<\varepsilon^{\prime}\right\},
$$

Then

$$
\begin{aligned}
f(V) & =\left\{x+x_{0}: \mid p_{j}\left(x-x_{2} \mid<\varepsilon^{\prime}\right\}\right. \\
& =\left\{x:\left|p_{j}\left(x-x_{0}-x_{2}\right)\right|<\varepsilon^{\prime}\right\} \\
& =\left\{x:\left|p_{j}\left(x-x_{1}+x_{1}-x_{0}-x_{2}\right)\right|<\varepsilon^{\prime}\right\}
\end{aligned}
$$

We note that

$$
\begin{aligned}
\left|p_{j}\left(x-x_{0}-x_{2}\right)\right|<\varepsilon^{\prime} \Longrightarrow\left|p_{j}\left(x-x_{1}\right)\right| & =\left|p_{j}\left(x-x_{0}-x_{2}+x_{0}+x_{2}-x_{1}\right)\right| \\
& \leq\left|p_{j}\left(x-x_{0}-x_{2}\right)\right|+\left|p_{j}\left(x_{0}+x_{2}-x_{1}\right)\right| \\
& \leq c_{0}+\varepsilon^{\prime}<\varepsilon .
\end{aligned}
$$

Thus, $f(V) \subset A$ or $V \subset f^{-1}(A)$. Thus, B is open since every point in B contains an open neighborhood. This shows the continuity of f. Clearly, f has an inverse defined by $f^{-1}(x)=x-x_{0}$ which is continuous by the same argument.
The proof for $x \rightarrow \alpha x$ being a homeomorphism follows in a similar manner.
4. Show that the weak topology is the smallest topology on \mathcal{X} such that each $x^{*} \in \mathcal{X}^{*}$ is continuous.
Solution: First let us show that x^{*} are continuous in the weak topology. Consider any open set $(a, b) \in \mathbb{R}$. Let $U=\left(x^{*}\right)^{-1}(a, b)$. Suppose that $x_{0} \in U$. Let $x^{*}\left(x_{0}\right)=\alpha_{0} \in$ (a, b). Let $\varepsilon>0$ such that $\left(\alpha_{0}-\varepsilon, \alpha_{0}+\varepsilon\right) \in(a, b)$. Then $U_{x_{0}, \varepsilon}=\left\{x:\left|x^{*}\left(x-x_{0}\right)\right|<\varepsilon\right\}$ is an open set contained in U, since for all $x \in U, x^{*}\left(x_{0}\right)-\varepsilon \leq x^{*}(x) \leq x^{*}\left(x_{0}\right)+\varepsilon$. Thus, every $x_{0} \in U$, contains a weakly open neighborhood around x_{0}. Thus U is weakly open and hence x^{*} is continuous in the weak topology.
Now suppose that τ is a topology in which all x^{*} are continuous. Fix an $x^{*} \in x$, then Then

$$
U_{x_{0}, \varepsilon}:=\left\{x:\left|x^{*}\left(x-x_{0}\right)\right|<\varepsilon\right\} \in \tau,
$$

since it is the inverse image of an open set of a continuous function. This is precisely the generator sets for the weak topology.

Remark 1. The proof of problem 5 is similar.
5. Show that the weak $-*$ topology is the smallest topology on \mathcal{X}^{*} such that each $x \in \mathcal{X}$, $x^{*} \rightarrow x^{*}(x)$ is continuous.
6. If \mathcal{H} is a Hilbert space and $\left\{h_{n}\right\}$ is a sequence in \mathcal{H} such that $h_{n} \rightarrow h$ weakly, i.e. $\left(h_{n}, f\right) \rightarrow(h, f)$ as $n \rightarrow \infty$ for each $f \in \mathcal{H}$. Suppose further that $\left\|h_{n}\right\| \rightarrow\|h\|$, then show that $\left\|h_{n}-h\right\| \rightarrow 0$.

Solution:

$$
\left\|h_{n}-h\right\|^{2}=\left\|h_{n}\right\|^{2}+\left\|h^{2}\right\|-2\left(h_{n}, h\right) \rightarrow 0
$$

since $\left(h_{n}, h\right) \rightarrow(h, h)$ and $\left\|h_{n}\right\|^{2} \rightarrow\|h\|^{2}$.
7. Suppose that \mathcal{X} is an infinite-dimensional normed space. If $\mathcal{S}=\{x \in \mathcal{X}:\|x\|=1\}$, then the weak closure of S is $\{x:\|x\| \leq 1\}$.
Solution: Let $\overline{\mathcal{S}}$ denote the weak closure of \mathcal{S}. First suppose that x_{0} is such that $\left\|x_{0}\right\|>1$. Then by the Hahn-Banach there exists an ℓ such that

$$
\left|\ell\left(x-x_{0}\right)\right|>\varepsilon, \quad \text { for all } x \text { such that }\|x\| \leq 1
$$

Thus, there exists an open neighborhood U of x_{0} given by

$$
U:=\left\{x:\left|\ell\left(x-x_{0}\right)\right|<\varepsilon\right\},
$$

such that $U \cap \mathcal{S}=\emptyset$. Hence, if $\left\|x_{0}\right\|>1$, then x_{0} is not in the weak closure of \mathcal{S}.
This shows that $\overline{\mathcal{S}} \subset\{x:\|x\| \leq 1\}$. Now suppose that x_{0} is such that $\left\|x_{0}\right\|<1$, and suppose that $x_{0} \in \overline{\mathcal{S}}^{c}$. Since $\overline{\mathcal{S}}^{c}$ is weakly open, there must exist an open neighborhood of x_{0}, U, such that $U \subset \overline{\mathcal{S}}^{c}$. However, consider any open neighborhood of x_{0} which takes the form

$$
U=: \cap_{j=1}^{n} x:\left|x_{j}^{*}\left(x-x_{0}\right)\right|<\varepsilon .
$$

Claim, there exists $y \in \mathcal{S}$ such that $y \in U$. Since X is infinite dimensional, suppose that $x_{1}, x_{2}, \ldots x_{n+1}$ are linearly independent elements of X. Now, consider the collection of vectors $\sum_{j=1}^{n+1} c_{j} x_{j}$, and consider the linear system formed by

$$
\boldsymbol{x}_{j}^{a s t}\left(\sum_{k=1}^{n+1} c_{k} x_{k}\right)=0
$$

This is a linear mapping from $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ for the coefficients c_{j}. By the rank-nullity theorem, there exists a vector $\left\{d_{j}\right\}_{j=1}^{n}$ in the null space of the mapping, i.e.

$$
x_{j}^{*}\left(\sum_{k}^{n+1} d_{k} x_{k}\right)=0
$$

Thus, $y=\sum_{j=1}^{n+1} d_{j} x_{j} \in U$. By the same argument $y /\|y\| \in U$ is the element in \mathcal{S} we are looking for. Thus, every open neighborhood of x_{0} intersects with \mathcal{S} and hence x_{0} cannot be in $\overline{\mathcal{S}}^{c}$.
8. In an infinite dimensional vector space, show that a bounded set cannot be open in the weak topology.
Solution: We shall show the contrapositive, that every open set in the weak topology is unbounded. Consider a point x, the neighborhood basis in the weak topology which contain x are sets of the form $V_{f_{1}, f_{2} \ldots f_{n}, \epsilon}(x)=\left\{y \in X,\left|f_{i}(y)-f_{i}(x)\right|<\epsilon \quad \forall i=1,2, \ldots n\right\}$ where $f_{i} \in X^{*}$ and $n \in \mathbb{N}$. So without loss of generality, we can assume $x=0$ since
$V_{f_{1}, f_{2} \ldots \ldots . f_{n}, \epsilon}(x)=\left\{y+x \in X ;\left|f_{i}(y)\right|<\epsilon\right\}=\left\{y+x ; y \in V_{f_{1}, f_{2} \ldots f_{n}, \epsilon}(0)\right\}=V_{f_{1}, f_{2} \ldots f_{n}, \epsilon}(0)+x$
Since we are in an infinite dimensional vector space, then $\exists x_{i}$, such that, $\left\|x_{i}\right\|=1$ and $d\left(x_{i}, \operatorname{span}\left(x_{1}, x_{2} \ldots x_{i-1}\right)\right) \geq \frac{1}{2}, \quad \forall i=1,2, \ldots n+1$. Let $x \in \operatorname{span}\left\{x_{1}, x_{2} \ldots x_{n+1}\right\}$. Then $x=\sum_{j=1}^{n+1} c_{j} x_{j}$.

$$
\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{n-1}(x) \\
f_{n}(x)
\end{array}\right]=\left[\begin{array}{ccccc}
f_{1}\left(x_{1}\right) & f_{1}\left(x_{2}\right) & \ldots & f_{1}\left(x_{n}\right) & f_{1}\left(x_{n+1}\right) \\
f_{2}\left(x_{1}\right) & f_{2}\left(x_{2}\right) & \ldots & f_{2}\left(x_{n}\right) & f_{2}\left(x_{n+1}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
f_{n}\left(x_{1}\right) & f_{n}\left(x_{2}\right) & \ldots & f_{n}\left(x_{n}\right) & f_{n}\left(x_{n+1}\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n} \\
c_{n+1}
\end{array}\right]
$$

Thus the mapping of $\left[c_{1}, c_{2} \ldots c_{n+1}\right] \rightarrow\left[f_{1}(x), f_{2}(x) \ldots f_{n}(x)\right]$ is a linear map from $\mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$. Hence by the rank nullity theorem, $\exists c \neq 0$ such that $f_{i}(x)=0$, $\forall i=1,2, \ldots n$. That is $f_{i}\left(\sum_{j=1}^{n+1} c_{j} x_{j}\right)=0$ for all $i=1,2, \ldots n$. The claim is that $\sum_{j=1}^{n+1} c_{j} x_{j} \neq 0$. Suppose not. Then let $j_{m}=\max _{j=1,2, \ldots n+1}\left\{c_{j} \neq 0\right\}$. $j_{m}>0$ since $c \neq$ 0 . If $j_{m}>1$, then $x_{j_{m}}=\sum_{j=1}^{j_{m-1}} \bar{c}_{j} x_{j}$ contradicting the fact that $d\left(x_{j_{m}}, \operatorname{span}\left(x_{1}, x_{2} \ldots x_{j_{m}-1}\right)\right) \geq$
$\frac{1}{2}$. If $j_{m}=1$, then $c_{1} x_{1}=0$, contradicting the fact that $\left\|x_{1}\right\|=1$. Hence $x=$ $\sum_{j=1}^{n+1} c_{j} x_{j} \in \cap_{i=1}^{n} \operatorname{Ker}\left(f_{i}\right)$ and $K=\cap_{i=1}^{n} \operatorname{Ker}\left\{f_{i}\right\}$ is a linear subspace of $V_{f_{1}, f_{2} \ldots f_{n}, \epsilon}(0)$. Hence if $x \in K, \alpha x \in K$ for all $\alpha \in \mathcal{F}$. Since we have shown that K is non trivial, that is there $\exists x \neq 0$ and $x \in K$, we conclude that $V_{f_{1}, f_{2}, \ldots f_{n}, \epsilon}(0)$ is unbounded for any $n \in \mathbb{N}$ and for all $\epsilon>0$. Every open set (open in the weak topology) which contains 0 , is the union of such sets. Hence every open set containing 0 , must be unbounded which implies that every weakly open set containing a point is unbounded. Hence a bounded set cannot be weakly open.

