Problem set 5

Due date: Apr 9

April 2, 2018

If needed you may assume that the topology on vector spaces is generated by a family of seminorms if that helps.

- 1. Suppose that \mathcal{X} is a topological vector space (TVS), and let \mathcal{U} be the collection of all open sets containing the origin. PRove the following.
 - a) If $U \in \mathcal{U}$, then there is a $V \in \mathcal{U}$ such that $V + V \subset U$.
 - b) If $U \in \mathcal{U}$, then there is a V in \mathcal{U} such that $V \subset U$ and $\alpha V \subset V$ for all $|\alpha| \leq 1$.
- 2. Suppose that \mathcal{X} is a vector space whose topology is defined by a family of seminorms \mathcal{P} , i.e., every open neighborhood of x_0 is of the form

$$U_{x_0} = \bigcap_{j=1}^n \{ x \in \mathcal{X} : p_j(x - x_0) < \varepsilon_j \},$$

where the seminorms further satisfy

$$\cap_{p \in \mathcal{P}} \{x : p(x) = 0\} = (0).$$

Then show that \mathcal{X} is a topological vector space with this topology.

- 3. Let \mathcal{X} be a TVS. Show: a) if $x_0 \in \mathcal{X}$, then the mapping $x \to x + x_0$ is a homeomorphism, i.e., a continuous function and continuous inverse; b) if $\alpha \in \mathcal{F}$, and $\alpha \neq .0$, the map $x \to \alpha x$ is a homeomorphism.
- 4. Show that the weak topology is the smallest topology on \mathcal{X} such that each $x^* \in \mathcal{X}^*$ is continuous.
- 5. Show that the weak-* topology is the smallest topology on \mathcal{X}^* such that each $x \in \mathcal{X}$, $x^* \to x^*(x)$ is continuous.
- 6. If \mathcal{H} is a Hilbert space and $\{h_n\}$ is a sequence in \mathcal{H} such that $h_n \to h$ weakly, i.e. $(h_n, f) \to (h, f)$ as $n \to \infty$ for each $f \in \mathcal{H}$. Suppose further that $||h_n|| \to ||h||$, then show that $||h_n h|| \to 0$.
- 7. Suppose that \mathcal{X} is an infinite-dimensional normed space. If $\mathcal{S} = \{x \in \mathcal{X} : ||x|| = 1\}$, then the weak closure of S is $\{x : ||x|| \leq 1\}$.
- 8. In an infinite dimensional vector space, show that a bounded set cannot be open in the weak topology.