Problem set 4

Due date: Mar 26

April 17, 2018

1. Suppose that X, Y are Banach spaces. If A is a bounded linear operator and ran(A) is second category, then show that ran(A) is closed. Solution:

The proof is exactly the same as that of open mapping theorem.

$$\operatorname{Ran}(A) = \bigcup_{n=1}^{\infty} nA(B_1(0)) \,.$$

Since $\operatorname{Ran}(A)$ is second category, we conclude that $\overline{A(B_1(0))}$ has a non-empty interior (Since $nA(B_1(0))$) is homeomorphic to $A(B_1(0))$. Following the proof of the open mapping theorem, we conclude that $B_{\varepsilon}(0) \subset A(B_1(0))$ for some $\varepsilon > 0$. From which we conclude that $\operatorname{Ran}(A) = Y$ and hence $\operatorname{Ran}(A)$ is closed.

2. Suppose that $C^{1}[0,1]$, the space of continuously differentiable functions on [0,1] and C[0,1] the space of continuous functions are both equipped with the supremum norm. Suppose that $A : C^{1}[0,1] \to C[0,1]$ be defined by Af = f', then show that A is unbounded.

Solution:

Consider the sequence $f_n(x) = e^{inx}$, then $\sup_{[0,1]} |f_n| = 1$, however,

$$\sup_{[0,1]} |Af_n| = \sup_{[0,1]} |f'_n| = \sup_{[0,1]} |ne^{inx}| = n \,.$$

3. Suppose X, Y are Banach spaces. Show that there is a constant c > 0 such that $||Ax|| \ge c||x||$ if and only if $\mathcal{N}(A) = \{0\}$ and $\operatorname{ran}(A)$ is closed.

Solution:

Suppose $||Ax|| \ge c||x||$ for some c > 0. Then

$$Ax = 0 \implies c \|x\| \le 0 \implies x = 0.$$

Thus, $\mathcal{N}(A) = \{0\}$. Now suppose $Af_n \to g$ for some $g \in Y$. Furthermore, the sequence Af_n is Cauchy.

 $c \|f_n - f_m\| \le \|Af_n - Af_m\| \le \varepsilon$ for n,m sufficiently large.

Thus, the sequence f_n is Cauchy. Since X is a Banach space, $f_n \to h$ for some $h \in X$. By the continuity of A, we then conclude that

$$g = \lim_{n} Af_n = A\lim_{n} f_n = Ah$$

, from which we conclude that g is in the range of A and hence the range of A is closed.

Now suppose $\mathcal{N}(A) = \{0\}$ and that the range of A is closed. Since closed subspaces of Banach spaces are themselves, Banach spaces, we conclude that $\operatorname{ran}(A)$ is a Banach space. Then $A : X \to \operatorname{ran}(A)$ is a surjective operator between Banach spaces and hence by the inverse mapping theorem is an invertible operator. Thus, for all $f \in X$,

$$||A^{-1}(Af)|| \le ||A^{-1}|| ||Af|| \implies \frac{1}{||A^{-1}||} ||f|| \le ||Af||.$$

where $0 < ||A^{-1}|| < \infty$ which completes the proof.

4. If $1 and <math>\{x_n\} \in \ell^p$, then $\sum_{j=1}^{\infty} x_n^j y^j \to 0$ for every $y \in \ell^q$, 1/p + 1/q = 1, if and only if $\sup_n \|x_n\|_{\ell^p} < \infty$ and $x_n^j \to 0$ as $n \to \infty$ for all j. Solution:

Suppose that $\sum_{j=1}^{\infty} x_n^j y_j \to 0$ for every $y \in \ell^q$. Then consider the sequence of operators $\ell_n \in (\ell^q)^*$ defined via

$$\ell_n(y) = (x_n, y) = \sum_{j=1}^{\infty} x_n^j y_j.$$

Since each $x_n \in \ell^p$, from Holder's inequality it follows that each of ℓ_n are indeed bounded linear operators. Moreover,

$$\|\ell_n\| = \|x_n\|_{\ell^p}$$

Since ℓ_n are pointwise convergent, and hence pointwise bounded, we conclude from the uniform boundedness principle that $\sup_n ||x_n||_{\ell^p} < \infty$. To show that $x_n^j \to 0$ as $n \to \infty$, set $y = e_k$, where e_k are the standard coordinate vectors. Then

$$\sum_{j=1}^{\infty} x_n^j y^j = x_n^k \to 0 \quad \text{as} \quad n \to \infty \,.$$

Now suppose that $\sup_n ||x_n|| = M < \infty$ and that $x_n^j \to 0$ as $n \to \infty$ for each j. For a fixed y, choose N large enough so that

$$\left(\sum_{j=N+1}^{\infty} |y_j|^q\right)^{1/q} \le \varepsilon/M$$

. Then,

$$\begin{split} |\sum_{j=1}^{\infty} x_{n}^{j} y^{j}| &= |\sum_{j=1}^{N} x_{n}^{j} y^{j} + \sum_{N+1}^{\infty} x_{n}^{j} y^{j}| \\ &\leq |\sum_{j=1}^{N} x_{n}^{j} y_{j}| + \sum_{N+1}^{\infty} |x_{n}^{j} y^{j}| \\ &\leq |\sum_{j=1}^{N} x_{n}^{j} y_{j}| + \|x_{n}\|_{\ell^{p}} \left(\sum_{j=N+1}^{\infty} |y_{j}|^{q}\right)^{1/q} \\ &\leq |\sum_{j=1}^{N} x_{n}^{j} y_{j}| + \varepsilon \\ &\leq 2\varepsilon \,, \end{split}$$

where the first sum goes to zero as $n \to \infty$ since for each $n \in \mathbb{N}$ and $j = 1, 2, \ldots N$, $x_n^j \to 0$ and y^j are bounded.

Remark 1. The proofs of problems 5 and 6 are similar.

- 5. If $\{x_n\} \in \ell^1$, then $\sum_{j=1}^{\infty} x_n^j y^j \to 0$ for every $y \in c_0$, if and only if $\sup_n ||x_n||_{\ell^1} < \infty$ and $x_n^j \to 0$ as $n \to \infty$ for all j.
- 6. Suppose \mathcal{H} is a separable Hilbert space with basis e_i . Show that a sequence $h_n \in \mathcal{H}$ satisfies $(h_n, h) \to 0$ for every $h \in \mathcal{H}$ if and only if $\sup_n ||h_n|| < \infty$ and $(h_n, e_j) \to 0$ as $n \to \infty$ for each j.
- 7. Suppose that X and Y are Banach spaces, and let $A_n : X \to Y$ are pointwise convergent with limit $A : X \to Y$, i.e.

$$A_n f \to A f \quad \forall f \in X .$$

Then the convergence is uniform on compact subsets U of X, that is,

$$\sup_{f \in U} \|A_n \phi - A \phi\| \to 0 \quad n \to \infty.$$

Solution:

From Banach Steinhaus, it follows that $\sup_n ||A_n|| \leq M$ and $||A|| \leq M$. For $\varepsilon > 0$, consider the open balls $B(\phi, r) = \{\psi \in X : ||\psi - \phi|| < r\}$, with center $\phi \in X$ and radius $r = \varepsilon/(3M)$. Then,

$$U \subset \bigcup_{\phi \in U} B(\phi, r) \,,$$

forms an open covering of U. Since U is compact, there exists a finite cover, i.e.

$$U \subset \bigcup_{j=1}^{m} B(\phi_j, r)$$

Since the operators A_n are pointwise convergent to A, there exists $N(\varepsilon)$ such that $n > N(\varepsilon)$ implies

$$||A_n\phi_j - A\phi|| \le \frac{\varepsilon}{3}$$
 for all $j = 1, 2, \dots m$.

Then for any $\phi \in U$, ϕ is contained in some ball $B(\phi_j, r)$, i.e., $\|\phi_j - \phi\| < r$. For all $n > N(\varepsilon)$, we then have that

$$\begin{split} \|A_n\phi - A\phi\| &\leq \|A_n\phi - A_n\phi_j\| + \|(A_n - A)\phi_j\| + \|A(\phi_j - \phi)\| \\ &\leq \|A_n\| \|\phi_j - \phi\| + \|A\| \|\phi_j - \phi\| + \|(A - A_n)\phi_j\| \\ &\leq M \cdot \frac{\varepsilon}{3M} + M \cdot \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} = \varepsilon \,. \end{split}$$

8. A family of bounded operators $\mathcal{A} = \{A : X \to Y\}$ of linear operators, where X, Y are banach spaces are called collectively compact, if for each bounded set $U \subset X$, the image set $\mathcal{A}(U) = \{Af : f \in U, A \in \mathcal{A}\}$ is relatively compact in Y. Suppose X, Y, and Z are banach spaces. Let $L_n : Y \to Z$ converge pointwise with the limit operator $L : Y \to Z$ (see definition above for pointwise convergence), and let \mathcal{A} be a collection of collectively compact operators. Then

$$\sup_{A \in \mathcal{A}} \|(L_n - L)A\| \to 0 \quad n \to \infty.$$

Solution:

Set $U = \{A\phi : \|\phi\| \le 1 \quad A \in \mathcal{A}\}$. Then by assumption, U is relatively compact. By the previous result, the convergence $L_n \phi \to L \phi$ is uniform on U. Thus, for every $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that

$$\|(L_n - L)A\phi\| < \varepsilon$$

for all $n \ge N(\varepsilon)$, all ϕ with $\|\phi\| \le 1$, and all $A \in \mathcal{A}$. This also implies that

 $\|(L_n-L)A\| \le \varepsilon\,,$

for all $n > N(\varepsilon)$ and all $A \in \mathcal{A}$.

9. Suppose that A_n is a collection of collectively compact operators which converge pointwise to A. Suppose further that A is a compact operator. Assume that I-A is injective. Then for all sufficiently large n, for all n with

$$||(I-A)^{-1}(A_n - A)A_n|| < 1,$$

the operators $I - A_n$ are invertible and uniformly bounded by

$$||(I - A_n)^{-1}|| \le \frac{1 + ||(I - A)^{-1}A_n||}{1 - ||(I - A)^{-1}(A_n - A)A_n||},$$

For the solutions of the equations

$$\phi - A\phi = f$$
 and $\phi_n - A_n\phi_n f$,

there holds the error estimate

$$\|\phi_n - \phi\| \le \|(I - A)^{-1}\| \frac{\|(A_n - A)f\| + \|(A_n - A)A_n\phi\|}{1 - \|(I - A)^{-1}(A_n - A)A_n\|}$$

Solution:

By the Fredholm alternative, $||(I - A)^{-1}|| < \infty$. We note that

$$(I + (I - A)^{-1}A_n)(I - A_n) = I - (I - A)^{-1}(A_n - A)A_n = I - S_n.$$

From the pervious theorem, $||(A_n - A)A_n|| \to 0$ as $n \to \infty$. Thus, for sufficiently large n, $||(I - A)^{-1}(A_n - A)A_n|| = ||S_n|| < 1$, since $(I - A)^{-1}$ is a bounded operator. It then follows from the Neumann series that $I - S_n$ is invertible and that

$$\|I - S_n\| \le \frac{1}{1 - \|S_n\|}$$

Now, we note that

$$\mathcal{N}(I-A_n) \subset \mathcal{N}((I+(I-A)^{-1}A_n)(I-A_n)) = \mathcal{N}(I-S_n) \subset \{0\}.$$

Thus, $I - A_n$ is injective. It then follows from the Fredholm alternative that $I - A_n$ is surjective and has a bounded inverse. Moreover,

$$(I - A_n)^{-1} = (I - S_n)^{-1}(I + (I - A)^{-1}A_n).$$

A simple calculation, then shows that

$$(I - A_n)^{-1} - (I - A)^{-1} = (I - S_n)^{-1} (I + (I - A)^{-1} A_n - (I - S_n) (I - A)^{-1})$$

= $(I - S_n)^{-1} ((I - A)^{-1} (I - A + A_n - I) + S_n (I - A)^{-1})$
= $(I - S_n)^{-1} ((I - A)^{-1} (A_n - A) + S_n (I - A)^{-1}),$

from which the result follows.