Problem set 4

Due date: Mar 26

March 25, 2018

- 1. Suppose that X, Y are Banach spaces. If A is a bounded linear operator and ran(A) is second category, then show that ran(A) is closed.
- 2. Suppose that $C^{1}[0, 1]$, the space of continuously differentiable functions on [0, 1] and C[0, 1] the space of continuous functions are both equipped with the supremum norm. Suppose that $A : C^{1}[0, 1] \to C[0, 1]$ be defined by Af = f', then show that A is unbounded.
- 3. Suppose X, Y are Banach spaces. Show that there is a constant c > 0 such that $||Ax|| \ge c||x||$ if and only if $\mathcal{N}(A) = \{0\}$ and $\operatorname{ran}(A)$ is closed.
- 4. If $1 and <math>\{x_n\} \in \ell^p$, then $\sum_{j=1}^{\infty} x_n^j y^j \to 0$ for every $y \in \ell^q$, 1/p + 1/q = 1, if and only if $\sup_n \|x_n\|_{\ell^p} < \infty$ and $x_n^j \to 0$ as $n \to \infty$ for all j.
- 5. If $\{x_n\} \in \ell^1$, then $\sum_{j=1}^{\infty} x_n^j y^j \to 0$ for every $y \in c_0$, if and only if $\sup_n ||x_n||_{\ell^1} < \infty$ and $x_n^j \to 0$ as $n \to \infty$ for all j.
- 6. Suppose \mathcal{H} is a separable Hilbert space with basis e_i . Show that a sequence $h_n \in \mathcal{H}$ satisfies $(h_n, h) \to 0$ for every $h \in \mathcal{H}$ if and only if $\sup_n ||h_n|| < \infty$ and $(h_n, e_j) \to 0$ as $n \to \infty$ for each j.
- 7. Suppose that X and Y are Banach spaces, and let $A_n : X \to Y$ are pointwise convergent with limit $A : X \to Y$, i.e.

$$A_n f \to A f \quad \forall f \in X$$
.

Then the convergence is uniform on compact subsets U of X, that is,

$$\sup_{f \in U} \|A_n \phi - A \phi\| \to 0 \quad n \to \infty.$$

8. A family of bounded operators $\mathcal{A} = \{A : X \to Y\}$ of linear operators, where X, Y are banach spaces are called collectively compact, if for each bounded set $U \subset X$, the image set $\mathcal{A}(U) = \{Af : f \in U, A \in \mathcal{A}\}$ is relatively compact in Y. Suppose X, Y, and Z are banach spaces. Let $L_n : Y \to Z$ converge pointwise with the limit operator $L : Y \to Z$ (see definition above for pointwise convergence), and let \mathcal{A} be a collection of collectively compact operators. Then

$$\sup_{A \in \mathcal{A}} \|(L_n - L)A\| \to 0 \quad n \to \infty.$$

9. Suppose that A_n is a collection of collectively compact operators which converge pointwise to A. Suppose further that A is a compact operator. Assume that I-A is injective. Then for all sufficiently large n, for all n with

$$||(I-A)^{-1}(A_n-A)A_n|| < 1,$$

the operators $I - A_n$ are invertible and uniformly bounded by

$$||(I - A_n)^{-1}|| \le \frac{1 + ||(I - A)^{-1}A_n||}{1 - ||(I - A)^{-1}(A_n - A)A_n||},$$

For the solutions of the equations

$$\phi - A\phi = f$$
 and $\phi_n - A_n\phi_n f$,

there holds the error estimate

$$\|\phi_n - \phi\| \le \|(I - A)^{-1}\| \frac{\|(A_n - A)f\| + \|(A_n - A)A_n\phi\|}{1 - \|(I - A)^{-1}(A_n - A)A_n\|}$$