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1. Suppose that `1(N) is the space of sequences which are absolutely summable, i.e.

{an} ∈ `1(N) if
∞∑
n=1

|an| <∞ .

Suppose that c0(N) is the space of sequences that converge to 0, i.e.

{an} ∈ c0(N) if lim
n→∞

an = 0 .

Show that c0(N)∗ = `1(N).
Solution: Since for every a ∈ `1, inner product with a is a continuous function on `∞,
and c0 ⊂ `∞, we conclude that a ∈ `1 is also a continuous function on `∞.

Now suppose ` ∈ (c0)
∗, and let ei denote the standard coordinate vectors. Let an =

`(en), for each n. If x is finitely supported, i.e. x =
∑N

n=1 xnen, where xn ∈ R, then
by linearity of `,

`(x) =
N∑
n=1

anxn .

Choose

xNk . =

{
|ak|
ak

1 ≤ k ≤ N

0 otherwise .

Then for each N , ‖xN‖`∞ = 1, and

`(xN) =
N∑
n=1

|an| .

However, ` is a bounded linear functional, so that

N∑
n=1

|an| = `(xN) ≤ ‖`‖‖xN‖ = ‖`‖ <∞ .

Since the result is true for all N , we conclude that

∞∑
n=1

|an| <∞ .
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Thus, every element in the dual can be identified as an inner product with a sequence
in `1.

2. Suppose that `∞(N) is the space of sequences which are bounded, i.e.

{an} ∈ `∞(N) if sup
n
|an| <∞ .

Show that `∞(N) is not separable.
Solution: Consider the binary representation of all real numbers and list it as a se-
quence in `∞. Then the `2 norm between any two distinct numbers is at least 1. Thus,
there exists an uncountable number of elements on the vector space which are linearly
independent and hence the space is not separable.

3. Suppose that c ⊂ `∞(N) is the space of sequences that converge, i.e.

{an} ∈ c if lim
n→∞

an exists .

Show that c is a closed subspace.
Solution: Suppose that an = {an,k}∞k=1 and that an → b = {bk}∞k=1, as n→∞. From
this it follows that an,k → bk as n → ∞ for each k. We now wish to show that the
sequence bk is Cauchy. Then, let ε > 0. Suppose that N is such that ‖an − b‖`∞ ≤ ε,
for all n ≥ N1, i.e. for all n ≥ N and all k |an,k − bk| < ε. Then,

|bn−bm| = |bn−aN1,n+aN1,m−aN1,m−bm| ≤ |bn−aN1,n|+|bm−aN1,m|+|aN1,n−aN1,m| ≤ 3ε

The first two terms are less than ε since, |an,k−bk| ≤ ε for all k and the last term is less
than ε since aN1 is a convergent sequence. Thus, b is a Cauchy sequence and converges.

4. (Optional) Recall that the dual of C[0, 1] is the space of Borel measures on the interval
[0, 1]. Construct a bounded linear functional in (C[0, 1])∗ which does not attain its
norm.

5. Let
`(f) = f(x0) ,

denote a linear functional in (C[0, 1])∗ where 0 < x0 < 1. Show that ` is a bounded
and find the norm of `.
Solution:

|`(f)| = |f(x0)| ≤ sup |f | .

Thus, ‖`‖ ≤ 1. In fact ‖`‖ = 1. To show that the norm is achieved, consider any
function which achieves its maximum absolute value at x0.
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6. Suppose that X = L2[−1, 1]. For each scalar α, let

Eα := {f ∈ C[−1, 1], f(0) = α} .

Show that

(a) Each Eα is convex and dense in X

(b) For α 6= β, Eα, Eβ are disjoint but there is no continuous functional on ` on X
such that

sup
f∈Eα

`(f) ≤ inf
f∈Eβ

`(f) .

Explain why geometric Hahn-Banach could not be employed.

a) Let f, g ∈ Eα, then ∀t ∈ [0, 1], tf+(1− t) g ∈ C [−1, 1] and tf (0)+(1− t) g (0) = α.
Thus tf + (1− t) g ∈ Eα. Hence Eα is convex.

Density: Let ε > 0, f ∈ L2 [−1, 1]. Continuous funcitons are dense in L2 [−1, 1]. Let
h ∈ C [−1, 1] be such that |h− f |L2[−1,1] <

ε
2
.

gδ (x) =


h (x) |x| > δ
α
δ

(x+ δ) + h (−δ) −δ ≤ x ≤ 0

−α
δ

(x− δ) + h (δ) 0 ≤ x ≤ δ

gδ (x) is a continuous function such that gδ (0) = α. Thus gδ ∈ Eα for each fixed δ. gδ
converges to h pointwise as δ ↓ 0. Moreover |gδ − h|2 is dominated by 4 max

(
sup[−1,1] |h| , |α|

)
=

M ∈ L2 [−1, 1]. By dominated convergence theorem gδ → h in L2 [−1, 1]. Thus ∃δ0
such that |gδ0 − h|L2[−1,1] <

ε
2
.

Thus |gδ0 − f |L2[−1,1] < ε. Hence Eα is dense in L2 [−1, 1]

b) Let fα ∈ Eα and fβ ∈ Eβ. wlog let α < β. By continuity of fα, ∃δα such

that |x| < δα =⇒ fα < α + (β−α)
4

. By continuity of fβ, ∃δβ such that |x| <
δβ =⇒ fβ > β − (β−α)

4
. Thus on |x| < min (δα, δβ), |fα − fβ| > |β−α|

4
. Hence

|fα − fβ|L2[−1,1] ≥
|β−α|

4

√
min (δα, δβ) > 0. Hence fα 6= fβ. Thus Eα ∩ Eβ = {φ}.

Let l be a non zero linear functional. Then ∃f ∈ L2 [−1, 1] such that l (f) = c > 0

We shall construct g ∈ Eα such that l (g) > M for any M . Consider (M + 1) f
c
∈

L2 [−1, 1]. Then by density of Eα, ∃h ∈ Eα such that
∣∣∣ (M+1)f

c
− h
∣∣∣
L2
≤ 1
‖l‖ . Then

l (h) = l
(

(M+1)f
c

)
+l
(

(M+1)f
c
− h
)

= M+1+l
(

(M+1)f
c
− h
)
≥M+1−‖l‖

∣∣∣ (M+1)f
c
− h
∣∣∣
L2[−1,1]

≥
M .

sup
g∈Eα

l (g) =∞ (1)

inf
g∈Eβ

l (g) ≤ l (β) ≤ |β| ‖l‖ (Since β ∈ Eβ) (2)
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From the above two relations, we see that ?? cannot hold for any non zero linear
functional l.

Geometric Hahn Banach cannot be applied for two reasons, firstly both the sets are
not closed and the intersection of their closures is everything since both sets are dense.
Secondly, neither Eα or Eβ have an internal point. Let h be the heavy side step func-
tion. Then for any f ∈ Eα, f + th 6∈ Eα for any t 6= 0. Hence Eα does not have any
interior point.

7. Suppose that P is the space of all polynomials in one variable with real coefficients.
Let the subset A consist of polynomials with negative leading coefficients, and let the
subset B consist of polynomails with all non-negative coefficients. Show that A and
B are disjoint convex subsets of P . Further, show that there does not exist a nonzero
linear functional ` on P such that

`(a) ≤ `(b) ∀a ∈ A , b ∈ B .

(Hint: assume that for some C ∈ R, one has `(a) ≤ C ≤ `(b), a ∈ A, b ∈ B;note that
0 ∈ B and that C ≤ 0 and consider monomials to show that C ≥ 0.
Solution: The fact that A and B are disjoint and convex is straight forward. Suppose
that there exists some C ∈ R such that `(a) ≤ C ≤ `(b) for all a ∈ A and b ∈ B.
Clearly b = 0 ∈ B, then C ≤ `(0) = 0. Thus, C ≤ 0. For each n, −xn ∈ A, thus
`(−xn) ≤ C ≤ 0 which implies that `(xn) ≥ 0. Moreover, since ` 6= 0, there exists some
n0 such that `(xn0) > 0. Now consider p = −xn0+1 + αxn0 where α > `(xn0+1)/`(xn0 .
Then p ∈ A and hence `(p) ≤ C. However,

C ≥ `(p) = `(−xn0+1 + αxn0) = −`(xn0+1) + α`(xn0) > 0 .

Thus, C > 0 which is a contradiction.

8. Construct two closed disjoint convex sets K1 and K2 in R2 that cannot be strictly
separated, i..e there does not exist a bounded linear functional ` such that

sup
x∈K1

`(x) < inf
y∈K2

`(y) .

Solution: K1 = {(x, y) : x ≤ 0} and K2 = {(x, y) : xy ≥ 1}.

9. (a) Suppose that T : X → Y and S : Y → Z are bounded, where X, Y, Z are Banach
spaces. Show that (ST )∗ = T ∗S∗

(b) Suppose that S, T : X → Y are bounded, where X, Y are Banach spaces and
suppose that a, b ∈ R. Show that (aS + bT )∗ = aS∗ + bT ∗.

(c) Suppose that T−1 : Y → X exists and is bounded. Show that (T−1)
∗

= (T ∗)−1.

Solution:
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(a) Suppose that ` ∈ Z∗ and x ∈ X, then

(ST ∗`, x) := (`, STx) = (S∗`, Tx) = (T ∗S∗`, x)

(b) Suppose ` ∈ Y ∗ and x ∈ X, then

((aS + bT )∗`, x) = (`, (aS + bT )x) = a (`, Sx)+b (`, Tx) = a (S∗`, x)+b (T ∗`, x) .

(c) Suffices to show that T ∗ (T−1)
∗

= (T−1)
∗
T ∗ = I which follows from the first part.
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