Problem set 3

Due date: Mar 5

February 26, 2018

1. Suppose that $\ell^1(\mathbb{N})$ is the space of sequences which are absolutely summable, i.e.

$$\{a_n\} \in \ell^1(\mathbb{N}) \quad \text{if} \quad \sum_{n=1}^{\infty} |a_n| < \infty.$$

Suppose that $c_0(\mathbb{N})$ is the space of sequences that converge to 0, i.e.

$$\{a_n\} \in c_0(\mathbb{N}) \quad \text{if} \quad \lim_{n \to \infty} a_n = 0.$$

Show that $c_0(\mathbb{N})^* = \ell^1(\mathbb{N})$.

2. Suppose that $\ell^{\infty}(\mathbb{N})$ is the space of sequences which are bounded, i.e.

$$\{a_n\} \in \ell^{\infty}(\mathbb{N}) \quad \text{if} \quad \sup_n |a_n| < \infty.$$

Show that $\ell^{\infty}(\mathbb{N})$ is not separable.

3. Suppose that $c \subset \ell^{\infty}(\mathbb{N})$ is the space of sequences that converge, i.e.

$$\{a_n\} \in c \quad \text{if} \quad \lim_{n \to \infty} a_n \quad \text{exists}$$

Show that c is a closed subspace.

- 4. (Optional) Recall that the dual of C[0, 1] is the space of Borel measures on the interval [0, 1]. Construct a bounded linear functional in $(C[0, 1])^*$ which does not attain its norm.
- 5. Let

$$\ell(f) = f(x_0),$$

denote a linear functional in $(C[0,1])^*$ where $0 < x_0 < 1$. Show that ℓ is a bounded and find the norm of ℓ .

6. Suppose that $X = L^2[-1, 1]$. For each scalar α , let

$$E_{\alpha} := \{ f \in C[-1, 1], f(0) = \alpha \}.$$

Show that

- (a) Each E_{α} is convex and dense in X
- (b) For $\alpha \neq \beta$, E_{α} , E_{β} are disjoint but there is no continuous functional on ℓ on X such that

$$\sup_{f \in E_{\alpha}} \ell(f) \le \inf_{f \in E_{\beta}} \ell(f) \,.$$

Explain why geometric Hahn-Banach could not be employed

7. Suppose that \mathcal{P} is the space of all polynomials in one variable with real coefficients. Let the subset A consist of polynomials with negative leading coefficients, and let the subset B consist of polynomials with all non-negative coefficients. Show that A and B are disjoint convex subsets of \mathcal{P} . Further, show that there does not exist a nonzero linear functional ℓ on \mathcal{P} such that

$$\ell(a) \le \ell(b) \quad \forall a \in A, b \in B.$$

(Hint: assume that for some $C \in \mathbb{R}$, one has $\ell(a) \leq C \leq \ell(b)$, $a \in A$, $b \in B$;note that $0 \in B$ and that $C \leq 0$ and consider monomials to show that $C \geq 0$.

8. Construct two closed disjoint convex sets K_1 and K_2 in \mathbb{R}^2 that cannot be strictly separated, i.e. there does not exist a bounded linear functional ℓ such that

$$\sup_{x \in K_1} \ell(x) < \inf_{y \in K_2} \ell(y) \,.$$

- 9. (a) Suppose that $T: X \to Y$ and $S: Y \to Z$ are bounded, where X, Y, Z are Banach spaces. Show that $(ST)^* = T^*S^*$
 - (b) Suppose that $S, T : X \to Y$ are bounded, where X, Y are Banach spaces and suppose that $a, b \in \mathbb{R}$. Show that $(aS + bT)^* = aS^* + bT^*$.
 - (c) Suppose that $T^{-1}: Y \to X$ exists and is bounded. Show that $(T^{-1})^* = (T^*)^{-1}$.