Problem set 2

Due date: Feb 19
March 5, 2018

1. Suppose that T is a symmetric bounded operator. Then show that
17| = sup{[(T'f, I, NIfIl =1}

Hint: You may assume the polarization identity

(Tf,g) = i[(T(erg), f+9)—(T(f—9), [—g)+i(T(f+ig), f+ig)—i(T(f—ig), f—ig)]

Solution: Let M. = sup{{|(Tf, f)|, |f]l =1}. Then clearly,

((TLNOI<ITA- NI (Cauchy Schwarz)
<|ITI|l-IIf> (Definition of operator norm)
<7 (Al =1)-

Thus M < ||T'||. To show the other direction, recall that
1T = sup{[(Tf,9)l,  [[fII=1, llgll =1}
Note that, when T is symmetric (T'h, h) is real for an h € H, since

(Th,h) = (b, T*h) = (h,Th) = (T, h).

Combining this with the polarization identity, we get
Re(Tf,9)l = |7 (T(f+9).f+9)— (T(f—9),f—9)

<

—

(T(f+9), f+9) +(T(f—g),f—g)l] (Triangle inequality)

< < [MIF+gl” + MIIf—gl”]  ((Th,h)| < M]|A|I*)

N N = —

< — [P+ llgl* + 1F1I* + llgll*] ~ (Triangle inequality)

A
SEES

A simple rotation calculation shows that

1T} = sup{[(T'f; )|, 1 £1l = llgll = 1} = sup{[Re(T f, 9)[, [l /Il = llgll = 1}
Thus, we conclude that ||T|| < M, which completes the proof.




2. Suppose that G is a compact set in R™. Suppose that

T(f)(x) = /G K (e 9)f (y)dy.

where K : G x G — R is a continuous function for all z,y € G except for z = y.
Furthermore, suppose that K satisfies

(K (z,y)] < ——
|z =yl

where o > 0. Find the range of values of « for which the operator T : L*(G) — L*(G)
is compact. Hint: Integral operators with continuous kernels are compact, and the

norm limit of compact operators is compact.
Solution: Let

1 1<t
h(t)y=<¢2t—1 1/2<t<1.
0 0<t<1/2
Set
Kn(z,y) = K(z,y)h(m|z —y)).
Let

T f)(x) = / Ko, 9)f () dy

Then, T, is compact since the kernel K, is continuous and G is compact. We will
now show that 7,, — T in operator norm as long as o < n.

(T —T) [f)(2)| = | / (o2, y) — K(2,9))f(4)dy]
< /G Koz, y) — K(2,9)F(y)dy
S/Gﬁxxmgélf(y)!dy-

Here x4 is the indicator function of the set A Then by using Young’s inequality,

1
1T =D < |y | o,
LY(G)

which clearly converges to 0 as m — oo if a < n.

3. Consider the operator T': L2([0,1]) — L2([0, 1]) defined by
Tf]E) =t- f(t)

(a) Prove that T'is a bounded linear operator with 7' = 7%, but that 7" is not compact
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(b) However, show that 7" has no eigenvectors

The multiplication operator defined above is shown to have a critical role in the design
of quadratures (see , for example).

Solution:

Boundedness of T

1 1
ITfI2 = / 2L (1) Pt < / FOP (<)
s
Thus, |7 < 1.
Adjointness of T'

(Tf,g) = / L () - g(t)dt = / £(t) - (tg(t)) = (/.T"g).

Thus, T*g =t - g(t).
Non-compactness of T' Consider the sequence f,(t) = sin(2wnt). Then || f,||* = 3 and

T fn —Tfmlliz = /(t sin(27nt) — tsin(27rmt))2 dt
0

1 1 1 n 1 1 50 .
== — — — as  n,m — 0o
3 16m2n?  1672m?2  4Ar2(n+m)?  4r?(n —m)? ’

T has no eigenvectors. Let A € C, then
Tf—Af=0 = (t—X)-f(t)=0.

Since (t — A) # 0 almost everywhere, we conclude that f must be 0 almost everywhere
and thus A is not an eigenvalue.

. Let H be a Hilbert space with basis {e;}7,. Verify that the operator 7" defined by

€k+1
Tlew) ==
is compact, but has no eigenvectors.
Solution: Compactness of T' Let P, be the projection operator onto the first n com-
ponents and set T,, = T'F,. Clearly, T,, is a finite rank operator, since Ran(T,,) =
span{ey, e, ...e,11}. Then for all || f]| <1,

[T =TP)fP = S G/l < >
m=n-+1 m=n-+1

Thus,

|T —TP,| = \S}nlp (T —=TP,)f|| <
=1




as n — o0o. Thus, T is the norm limit of finite rank operators and hence is compact.
T has no eigenvectors. Suppose AinC # 0, then consider

Tf - )\f - (—)\fl, —>\f2 + fl, ey _)\fn-i-l + %, .. ) .

IHTf—Af=0,then f,.1 = f,/nA and A\f; = 0, from which we conclude that f,, =0
foralln. If A =0,1ie. Tf = (0, f1, f2/2, f3/3,...) = 0, which implies again that f = 0.

Thus T has no eigenvectors.

. Let H be a Hilbert space with basis {e;}?2,. Verify that the operator T defined by
T(@k) = )\kek s

is compact if and only if limy_,, A\ — 0.
Solution: Suppose T is compact, then A, are the eigenvalues of T" and it follows from
the spectral theorem that Ay — 0. Now suppose that A\, — 0. Then for any ¢ > 0,
there exists N such that |\,| < e for all n > N. Let P, denote the projection operator
on to the basis {e1,es...,e,}. Then TP, is finite rank for any n, and for any f and
n>N

T =TE)FIP= > LI <2117

n=N+1
Thus, for all n > N, we conclude that

T —TP,| <e,

from which we conclude that 7" is the norm limit of finite rank operators and hence T’
is compact.

. Let o(T') denote the spectrum of a compact operator T': H — H. Show that A € o(T)
if and only if A € o(T™).
Solution: Follows from

dim(N (M —T)) = dim(N (M —T%)).

Thus, A ¢ o(T), if and only if N(A\I —T') = {0}, if and only if, N —T*) =0, if and
only if A & o(T™).

. Let K be a Hilbert-Schmidt kernel which is real and symmetric, i.e. K : [0,1]x[0,1] —
R satisfies K(z,y) = K(y,z) and K € L?([0,1] x [0,1]). Let T : L?([0,1]) — L*([0, 1])
be defined by

TIf)(x) = / K (e, ) f(y)dy

Let ¢(x) be the eigenvectors (with eigenvalues )y) that diagonalize T'. Then:
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(a) 224 [Akl? < o0
(b) K(z,y) = 22521 Medu () dr(y)
(¢) Suppose T is an operator which is compact and symmetric. Then T is of Hilbert-

Schmidt type if and only if 3" |\,|? < oo, where {),} are the eigenvalues of T
counted according to their multiplicities

Solution:

(a) Follows from part b and the fact that K is of Hilbert-Schmidt type

(b) Let ¢;, j = 1,2,... be an orthogonal basis for L?([0,1]), then we know that
d;(x) - de(y), 4, £ =1,2,... forms an orthogonal basis for L?[0, 1] and that

K(z,y) = Z ajedi(@)0e(y) ,

=1

Z |la;|* < 0o
il

Since ¢y is an eigenvalue of the operator T with eigenvalue A\, we have

with

Medel) = /0 K(z,y)éu(y) dy

_ / S a5005(@)ely) - S (y)dy
0 Py
= Z a;pd;(z)  (Since ¢o(y) L ¢;(y))

Taking inner products with ¢,(z) and using the orthogonality of ¢;’s, we conclude
that a;r, =01is j # k and a;, = A\ if j = k.

(c) For the third part define

Ko(z,y) = > Meow(@)dn(y)
/=1

Here ¢ () are the eigenvectors associated with eigenvalue A;. Since, the \;.s are
square summable, K, is a Cauchy sequence in [0, 1] x [0, 1]. Thus, K,, — K(z,y)
in IL2[0,1] x [0,1]. Define T}, = P,T, where P, is the projection onto the first n
eigenvectors. Then T, f = fol K, (z,y)f(y) dy. Moreover, since A\, — 0, T,, = T
in norm. Moreover, a simple application of Holder shows that

1T, — TNl < || K — K le2p0,ux0,1 -
Thus, T is the integral operator with kernel K.
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8. Let H be a Hilbert space.

(a)

(b)
()

If 77, Ty : H — H are compact symmetric operators which commute, i.e. (1775 =
T5T}), show that they can be diagonalized simultaneously. In other words, there
exists an orthonormal basis for H which consists of eigenvectors for both 77 and
T5.

A linear operator on H is normal if TT* = T*T. Prove that if T" is normal and
compact, then T can be diagonalized.

If U is unitary, and U = A\I — T, where T is compact, then U can be diagonalized.

Solution:

(a)

Suppose \; are the collection of eigenvalues of 77 and E),(7}) are the correspond-
ing eigenspaces. Then we will show that an orthogonal collection in Ej, also are
eigenvectors of Ty. Suppose that fi, fo, ... f, forms a basis for F), then

Tifj = Mf;.

Thus,
NIhf; =TT f; = NTaf;,

ie., Tgfj < E)\(T1>, i.e.
Iaf; = Zai,jfi-
i=1

Thus, T, : £\ — E) can be represented as an n x n matrix with entries ¢; ;. From
the symmetry of T5, it follows that o;; = «;; and thus, the orthogonal matrix
has a collection of orthogonal eigenvectors of the mapping 75. This, shows that
every eigenvector of T} with eigenvalue not equal to 0 is also an eigenvector of T5.
For A = 0, a similar proof shows that Ty : N (T7) — N (T1) and it follows from
the spectral theorem, that there exists an orthogonal basis of N'(T7) which are
the eigenvectors of T; too.

For normal matrices as well, it follows from the polarization identity that

1T = sup{ |(f,TH]  IFI =1}

Since U is unitary UU* = U*U = I, from which it follows that T7T™* = T*T.
From the previous part, T is diagonalizable, and a simple calculation shows that
eigenvectors v; of T associated with eigenvalue \; are also eigenvectors of U with
eigenvalue A — \;.

9. Fredholm theory for non-zero index operators. An operator R is called a regularizer of
an operator K if R is bounded and RK =1 — A, and KR =1 — A,, where A;, A, are
compact.



(a) Suppose that K : H — H, and R is a regularizer of K, then dim{N(K)} < oo
and dim{N(R)} < o0

(b) If RK =1 — A, where A is compact, show that ¢ — Ap = Rf has a solution for
every f € N(K*)*t

(c) Now further assume that N(I — A) = {0}. Suppose that S = (I — A)~!. Show
that Ran ((I — KSR)) C N(R) and that Ran ((I — KSR)*) C N(K*). Combine
the previous result and these results to show that ¢ = SRf also satisfies K¢ = f
as long as f € N(K*)*.

(d) (optional, no extra credit) Show that Ran(K) = N(K*)* for any operator K
which has a regularizer

Solution:

(a) N(K) C N(RK) =N({I-A). dim N (I — A;) < oo implies that dim N (K) < oc.
We can think of K as a regularizer of R as well, and hence dim A/(R) is also finite.

(b) Suppose g € N(K*R*), then
K'R'g=0 = R'ge N(K").
Thus, for every f € N(K*)*,
(Rf,g)=(f,R"g)=0.

Thus, Rf € N(K*R*)* and hence Rf € Ran(RK).
(¢) Suppose ¢ € Ran(I — KSR), then dg € ‘H such that

¢=(I—-KSR)g.
Then,

Rp = Rg—RKSRg = Rg—(I-A)-(I-A)"'Rg=0 (RK=I1-A andS=(I-A)"").

Thus, ¢ € N(R) and that Ran(I — KSR) C N(R). The other result follows in
a similar manner. Since I — A is injective, I — A has a bounded inverse. Set
¢ = SRf. Then,

f—K¢=f—KSRf € Ran(I — KSR) = f— KSRf € N(R)

. A similar argument shows that Ran(I — R*S*K*) C N (K*). From the first part,
dim(N(R)) < oo, and let ¢;, i = 1,2,... N, be an orthogonal basis for N'(R).
Then

N
f—KSRf = ZQ@,
i=1
where
ci=(f—KSRf,¢;) = (f,¢i — R*"S"K"¢;) =0,

where the last equality follows from the fact that ¢; — R*S*K* € Ran(/ —
R*S*K*) C N(K*) and f € N(K*)*.




