Problem set 2

Due date: Feb 19

March 5, 2018

1. Suppose that T is a symmetric bounded operator. Then show that

$$||T|| = \sup\{|(Tf, f)|, ||f|| = 1\}.$$

Hint: You may assume the polarization identity

$$(Tf,g) = \frac{1}{4}[(T(f+g),f+g) - (T(f-g),f-g) + i(T(f+ig),f+ig) - i(T(f-ig),f-ig)]$$

Solution: Let $M = \sup\{\{|(Tf, f)|, \|f\| = 1\}$. Then clearly,

$$\begin{split} |(Tf,f)| &\leq \|Tf\| \cdot \|f\| \quad \text{(Cauchy Schwarz)} \\ &\leq \|T\| \cdot \|f\|^2 \quad \text{(Definition of operator norm)} \\ &\leq \|T\| \quad (\|f\| = 1) \, . \end{split}$$

Thus $M \leq ||T||$. To show the other direction, recall that

$$||T|| = \sup\{|(Tf, g)|, \quad ||f|| = 1, \quad ||g|| = 1\}.$$

Note that, when T is symmetric (Th, h) is real for an $h \in \mathcal{H}$, since

$$(Th, h) = (h, T^*h) = (h, Th) = \overline{(Th, h)}.$$

Combining this with the polarization identity, we get

$$\begin{split} |\text{Re}(Tf,g)| &= \left| \frac{1}{4} \left[(T(f+g),f+g) - (T(f-g),f-g) \right] \right| \\ &\leq \frac{1}{4} \left[|(T(f+g),f+g) + (T(f-g),f-g)| \right] \quad \text{(Triangle inequality)} \\ &\leq \frac{1}{4} \left[M \|f+g\|^2 + M \|f-g\|^2 \right] \quad (|(Th,h)| \leq M \|h\|^2) \\ &\leq \frac{M}{4} \left[\|f\|^2 + \|g\|^2 + \|f\|^2 + \|g\|^2 \right] \quad \text{(Triangle inequality)} \\ &< M \end{split}$$

A simple rotation calculation shows that

$$||T|| = \sup\{|(Tf, g)|, ||f|| = ||g|| = 1\} = \sup\{|\operatorname{Re}(Tf, g)|, ||f|| = ||g|| = 1\}$$

Thus, we conclude that $||T|| \leq M$, which completes the proof.

2. Suppose that G is a compact set in \mathbb{R}^n . Suppose that

$$T[f](x) = \int_G K(x, y) f(y) dy,$$

where $K: G \times G \to \mathbb{R}$ is a continuous function for all $x, y \in G$ except for x = y. Furthermore, suppose that K satisfies

$$|K(x,y)| \le \frac{C}{|x-y|^{\alpha}},$$

where $\alpha > 0$. Find the range of values of α for which the operator $T : \mathbb{L}^2(G) \to \mathbb{L}^2(G)$ is compact. Hint: Integral operators with continuous kernels are compact, and the norm limit of compact operators is compact.

Solution: Let

$$h(t) = \begin{cases} 1 & 1 \le t \\ 2t - 1 & 1/2 \le t < 1 \\ 0 & 0 \le t < 1/2 \end{cases}$$

Set

$$K_n(x,y) = K(x,y)h(m|x-y).$$

Let

$$T_m[f](x) = \int_G K_m(x, y) f(y) dy.$$

Then, T_m is compact since the kernel K_m is continuous and G is compact. We will now show that $T_m \to T$ in operator norm as long as $\alpha < n$.

$$|(T_m - T)[f](x)| = |\int_G (K_m(x, y) - K(x, y))f(y)dy|$$

$$\leq \int_G |K_m(x, y) - K(x, y)f(y)dy$$

$$\leq \int_G \frac{C}{\|x - y\|^{\alpha}} \chi_{|x - y| \leq \frac{1}{m}} |f(y)| dy.$$

Here χ_A is the indicator function of the set A Then by using Young's inequality,

$$\|(T_m - T)[f]\| \le \left\| \frac{1}{|x|^{\alpha}} \chi_{|x| \le \frac{1}{m}} \right\|_{\mathbb{L}^1(G)} \|f\|_{\mathbb{L}^2(G)},$$

which clearly converges to 0 as $m \to \infty$ if $\alpha < n$.

3. Consider the operator $T: \mathbb{L}^2([0,1]) \to \mathbb{L}^2([0,1])$ defined by

$$T[f](t) = t \cdot f(t)$$

(a) Prove that T is a bounded linear operator with $T = T^*$, but that T is not compact

(b) However, show that T has no eigenvectors

The multiplication operator defined above is shown to have a critical role in the design of quadratures (see , for example).

Solution:

Boundedness of T

$$||Tf||_{\mathbb{L}^2}^2 = \int_0^1 |t|^2 |f(t)|^2 dt \le \int_0^1 |f(t)|^2 \quad (|t| < 1)$$
$$= ||f||_{\mathbb{L}^2}^2.$$

Thus, $||T|| \leq 1$.

Adjointness of T

$$(Tf,g) = \int_0^1 tf(t) \cdot g(t)dt = \int_0^1 f(t) \cdot (tg(t)) = (f, T^*g).$$

Thus, $T^*g = t \cdot g(t)$.

Non-compactness of T Consider the sequence $f_n(t) = \sin(2\pi nt)$. Then $||f_n||^2 = \frac{1}{2}$ and

$$||Tf_n - Tf_m||_{\mathbb{L}^2}^2 = \int_0^\infty (t\sin(2\pi nt) - t\sin(2\pi mt))^2 dt$$

$$= \frac{1}{3} - \frac{1}{16\pi^2 n^2} - \frac{1}{16\pi^2 m^2} + \frac{1}{4\pi^2 (n+m)^2} - \frac{1}{4\pi^2 (n-m)^2} \not\to 0 \quad \text{as} \quad n, m \to \infty$$

T has no eigenvectors. Let $\lambda \in \mathbb{C}$, then

$$Tf - \lambda f = 0 \implies (t - \lambda) \cdot f(t) = 0.$$

Since $(t - \lambda) \neq 0$ almost everywhere, we conclude that f must be 0 almost everywhere and thus λ is not an eigenvalue.

4. Let \mathcal{H} be a Hilbert space with basis $\{e_k\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$T(e_k) = \frac{e_{k+1}}{k} \,,$$

is compact, but has no eigenvectors.

Solution: Compactness of T Let P_n be the projection operator onto the first n components and set $T_n = TP_n$. Clearly, T_n is a finite rank operator, since $\operatorname{Ran}(T_n) = \operatorname{span}\{e_1, e_2, \dots e_{n+1}\}$. Then for all $||f|| \leq 1$,

$$||(T - TP_n)f||^2 = \sum_{m=n+1}^{\infty} (f_{m+1}/m)^2 \le \sum_{m=n+1}^{\infty} \frac{1}{m^2}.$$

Thus,

$$||T - TP_n|| = \sup_{\|f\|=1} ||(T - TP_n)f|| \le \sqrt{\sum_{m=n+1}^{\infty} \frac{1}{m^2}} \to 0$$

as $n \to \infty$. Thus, T is the norm limit of finite rank operators and hence is compact. T has no eigenvectors. Suppose $\lambda in\mathbb{C} \neq 0$, then consider

$$Tf - \lambda f = (-\lambda f_1, -\lambda f_2 + f_1, \dots, -\lambda f_{n+1} + \frac{f_n}{n}, \dots).$$

If $Tf - \lambda f = 0$, then $f_{n+1} = f_n/n\lambda$ and $\lambda f_1 = 0$, from which we conclude that $f_n = 0$ for all n. If $\lambda = 0$, i.e. $Tf = (0, f_1, f_2/2, f_3/3, \ldots) = 0$, which implies again that f = 0. Thus T has no eigenvectors.

5. Let \mathcal{H} be a Hilbert space with basis $\{e_k\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$T(e_k) = \lambda_k e_k \,,$$

is compact if and only if $\lim_{k\to\infty} \lambda_k \to 0$.

Solution: Suppose T is compact, then λ_k are the eigenvalues of T and it follows from the spectral theorem that $\lambda_k \to 0$. Now suppose that $\lambda_k \to 0$. Then for any $\varepsilon > 0$, there exists N such that $|\lambda_n| \le \varepsilon$ for all $n \ge N$. Let P_n denote the projection operator on to the basis $\{e_1, e_2, \ldots, e_n\}$. Then TP_n is finite rank for any n, and for any n and n > N

$$||(T - TP_n)f||^2 = \sum_{n=N+1} |\lambda_n|^2 |f_n|^2 \le \varepsilon^2 ||f||^2.$$

Thus, for all n > N, we conclude that

$$||T - TP_n|| \le \varepsilon$$
,

from which we conclude that T is the norm limit of finite rank operators and hence T is compact.

6. Let $\sigma(T)$ denote the spectrum of a compact operator $T: \mathcal{H} \to \mathcal{H}$. Show that $\lambda \in \sigma(T)$ if and only if $\overline{\lambda} \in \sigma(T^*)$.

Solution: Follows from

$$\dim(\mathcal{N}(\lambda I - T)) = \dim(\mathcal{N}(\overline{\lambda}I - T^*)).$$

Thus, $\lambda \notin \sigma(T)$, if and only if $\mathcal{N}(\lambda I - T) = \{0\}$, if and only if, $\mathcal{N}(\overline{\lambda}I - T^*) = 0$, if and only if $\overline{\lambda} \notin \sigma(T^*)$.

7. Let K be a Hilbert-Schmidt kernel which is real and symmetric, i.e. $K:[0,1]\times[0,1]\to\mathbb{R}$ satisfies K(x,y)=K(y,x) and $K\in\mathbb{L}^2([0,1]\times[0,1])$. Let $T:\mathbb{L}^2([0,1])\to\mathbb{L}^2([0,1])$ be defined by

$$T[f](x) = \int_0^1 K(x, y) f(y) dy.$$

Let $\phi_k(x)$ be the eigenvectors (with eigenvalues λ_k) that diagonalize T. Then:

- (a) $\sum_{k} |\lambda_k|^2 < \infty$
- (b) $K(x,y) = \sum_{k=1}^{\infty} \lambda_k \phi_k(x) \phi_k(y)$
- (c) Suppose \tilde{T} is an operator which is compact and symmetric. Then \tilde{T} is of Hilbert-Schmidt type if and only if $\sum_{n} |\lambda_{n}|^{2} < \infty$, where $\{\lambda_{n}\}$ are the eigenvalues of \tilde{T} counted according to their multiplicities

Solution:

- (a) Follows from part b and the fact that K is of Hilbert-Schmidt type
- (b) Let ϕ_j , j = 1, 2, ... be an orthogonal basis for $\mathbb{L}^2([0, 1])$, then we know that $\phi_j(x) \cdot \phi_\ell(y)$, $j, \ell = 1, 2, ...$ forms an orthogonal basis for $\mathbb{L}^2[0, 1]$ and that

$$K(x,y) = \sum_{j,\ell=1}^{\infty} a_{j,\ell} \phi_j(x) \phi_\ell(y) ,$$

with

$$\sum_{j,\ell} |a_{j,\ell}|^2 < \infty.$$

Since ϕ_k is an eigenvalue of the operator T with eigenvalue λ_k , we have

$$\lambda_k \phi_k(x) = \int_0^1 K(x, y) \phi_k(y) \, dy$$

$$= \int_0^1 \sum_{j,\ell} a_{j,\ell} \phi_j(x) \phi_\ell(y) \cdot \phi_k(y) dy$$

$$= \sum_{j=1}^\infty a_{j,k} \phi_j(x) \quad \text{(Since } \phi_\ell(y) \perp \phi_j(y)\text{)}$$

Taking inner products with $\phi_{\ell}(x)$ and using the orthogonality of ϕ_j 's, we conclude that $a_{j,k} = 0$ is $j \neq k$ and $a_{j,k} = \lambda_k$ if j = k.

(c) For the third part define

$$K_n(x,y) = \sum_{\ell=1}^n \lambda_k \phi_k(x) \phi_k(y)$$
.

Here $\phi_k(x)$ are the eigenvectors associated with eigenvalue λ_k . Since, the $\lambda_k's$ are square summable, K_n is a Cauchy sequence in $\mathbb{L}^2[0,1] \times [0,1]$. Thus, $K_n \to K(x,y)$ in $\mathbb{L}^2[0,1] \times [0,1]$. Define $T_n = P_n \tilde{T}$, where P_n is the projection onto the first n eigenvectors. Then $T_n f = \int_0^1 K_n(x,y) f(y) \, dy$. Moreover, since $\lambda_k \to 0$, $T_n \to \tilde{T}$ in norm. Moreover, a simple application of Holder shows that

$$||T_n - \tilde{T}|| \le ||K_n - K||_{\mathbb{L}^2[0,1] \times [0,1]}$$
.

Thus, \tilde{T} is the integral operator with kernel K.

- 8. Let \mathcal{H} be a Hilbert space.
 - (a) If $T_1, T_2 : \mathcal{H} \to \mathcal{H}$ are compact symmetric operators which commute, i.e. $(T_1T_2 = T_2T_1)$, show that they can be diagonalized simultaneously. In other words, there exists an orthonormal basis for \mathcal{H} which consists of eigenvectors for both T_1 and T_2 .
 - (b) A linear operator on \mathcal{H} is normal if $TT^* = T^*T$. Prove that if T is normal and compact, then T can be diagonalized.
 - (c) If U is unitary, and $U = \lambda I T$, where T is compact, then U can be diagonalized.

Solution:

(a) Suppose λ_i are the collection of eigenvalues of T_1 and $E_{\lambda_i}(T_1)$ are the corresponding eigenspaces. Then we will show that an orthogonal collection in E_{λ_i} also are eigenvectors of T_2 . Suppose that $f_1, f_2, \ldots f_n$ forms a basis for E_{λ} , then

$$T_1 f_j = \lambda_1 f_j$$
.

Thus,

$$T_1T_2f_j = T_2T_1f_j = \lambda T_2f_j,$$

i.e., $T_2 f_j \in E_{\lambda}(T_1)$, i.e.

$$T_2 f_j = \sum_{i=1}^n \alpha_{i,j} f_i .$$

Thus, $T_2: E_{\lambda} \to E_{\lambda}$ can be represented as an $n \times n$ matrix with entries $\alpha_{i,j}$. From the symmetry of T_2 , it follows that $\alpha_{i,j} = \alpha_{j,i}$ and thus, the orthogonal matrix has a collection of orthogonal eigenvectors of the mapping T_2 . This, shows that every eigenvector of T_1 with eigenvalue not equal to 0 is also an eigenvector of T_2 . For $\lambda = 0$, a similar proof shows that $T_2: \mathcal{N}(T_1) \to \mathcal{N}(T_1)$ and it follows from the spectral theorem, that there exists an orthogonal basis of $\mathcal{N}(T_1)$ which are the eigenvectors of T_2 too.

(b) For normal matrices as well, it follows from the polarization identity that

$$||T|| = \sup\{ |(f, Tf)|, ||f|| = 1 \}.$$

- (c) Since U is unitary $UU^* = U^*U = I$, from which it follows that $TT^* = T^*T$. From the previous part, T is diagonalizable, and a simple calculation shows that eigenvectors v_i of T associated with eigenvalue λ_i are also eigenvectors of U with eigenvalue $\lambda \lambda_i$.
- 9. Fredholm theory for non-zero index operators. An operator R is called a regularizer of an operator K if R is bounded and $RK = I A_{\ell}$ and $KR = I A_{r}$, where A_{ℓ} , A_{r} are compact.

- (a) Suppose that $K: \mathcal{H} \to \mathcal{H}$, and R is a regularizer of K, then $\dim\{\mathcal{N}(K)\} < \infty$ and $\dim\{\mathcal{N}(R)\} < \infty$
- (b) If RK = I A, where A is compact, show that $\phi A\phi = Rf$ has a solution for every $f \in \mathcal{N}(K^*)^{\perp}$
- (c) Now further assume that $N(I-A)=\{0\}$. Suppose that $S=(I-A)^{-1}$. Show that $\operatorname{Ran}((I-KSR))\subset \mathcal{N}(R)$ and that $\operatorname{Ran}((I-KSR)^*)\subset \mathcal{N}(K^*)$. Combine the previous result and these results to show that $\phi=SRf$ also satisfies $K\phi=f$ as long as $f\in N(\mathcal{K}^*)^{\perp}$.
- (d) (optional, no extra credit) Show that $Ran(K) = \mathcal{N}(K^*)^{\perp}$ for any operator K which has a regularizer

Solution:

- (a) $\mathcal{N}(K) \subset \mathcal{N}(RK) = \mathcal{N}(I A_{\ell})$. dim $\mathcal{N}(I A_{\ell}) < \infty$ implies that dim $\mathcal{N}(K) < \infty$. We can think of K as a regularizer of R as well, and hence dim $\mathcal{N}(R)$ is also finite.
- (b) Suppose $g \in \mathcal{N}(K^*R^*)$, then

$$K^*R^*g = 0 \implies R^*g \in \mathcal{N}(K^*)$$
.

Thus, for every $f \in \mathcal{N}(K^*)^{\perp}$

$$(Rf,g) = (f, R^*g) = 0$$
.

Thus, $Rf \in \mathcal{N}(K^*R^*)^{\perp}$ and hence $Rf \in \text{Ran}(RK)$.

(c) Suppose $\phi \in \text{Ran}(I - KSR)$, then $\exists g \in \mathcal{H}$ such that

$$\phi = (I - KSR)g.$$

Then,

$$R\phi = Rg - RKSRg = Rg - (I - A) \cdot (I - A)^{-1}Rg = 0 \quad (RK = I - A \text{ and } S = (I - A)^{-1}).$$

Thus, $\phi \in \mathcal{N}(R)$ and that $\operatorname{Ran}(I - KSR) \subset \mathcal{N}(R)$. The other result follows in a similar manner. Since I - A is injective, I - A has a bounded inverse. Set $\phi = SRf$. Then,

$$f - K\phi = f - KSRf \in \text{Ran}(I - KSR) \implies f - KSRf \in \mathcal{N}(R)$$

. A similar argument shows that $\operatorname{Ran}(I-R^*S^*K^*)\subset \mathcal{N}(K^*)$. From the first part, $\dim(\mathcal{N}(R))<\infty$, and let $\phi_i,\ i=1,2,\ldots N$, be an orthogonal basis for $\mathcal{N}(R)$. Then

$$f - KSRf = \sum_{i=1}^{N} c_i \phi_i \,,$$

where

$$c_i = (f - KSRf, \phi_i) = (f, \phi_i - R^*S^*K^*\phi_i) = 0,$$

where the last equality follows from the fact that $\phi_i - R^*S^*K^* \in \text{Ran}(I - R^*S^*K^*) \subset \mathcal{N}(K^*)$ and $f \in \mathcal{N}(K^*)^{\perp}$.