Problem set 2

Due date: Feb 19
March 5, 2018

1. Suppose that T is a symmetric bounded operator. Then show that

$$
\|T\|=\sup \{|(T f, f)|, \quad\|f\|=1\} .
$$

Hint: You may assume the polarization identity
$(T f, g)=\frac{1}{4}[(T(f+g), f+g)-(T(f-g), f-g)+i(T(f+i g), f+i g)-i(T(f-i g), f-i g)]$
Solution: Let $M .=\sup \{\{|(T f, f)|, \quad\|f\|=1\}$. Then clearly,

$$
\begin{aligned}
|(T f, f)| & \leq\|T f\| \cdot\|f\| \quad \text { (Cauchy Schwarz) } \\
& \leq\|T\| \cdot\|f\|^{2} \quad \text { (Definition of operator norm) } \\
& \leq\|T\| \quad(\|f\|=1) .
\end{aligned}
$$

Thus $M \leq\|T\|$. To show the other direction, recall that

$$
\|T\|=\sup \{|(T f, g)|, \quad\|f\|=1, \quad\|g\|=1\} .
$$

Note that, when T is symmetric ($T h, h$) is real for an $h \in \mathcal{H}$, since

$$
(T h, h)=\left(h, T^{*} h\right)=(h, T h)=\overline{(T h, h)} .
$$

Combining this with the polarization identity, we get

$$
\begin{aligned}
|\operatorname{Re}(T f, g)| & =\left|\frac{1}{4}[(T(f+g), f+g)-(T(f-g), f-g)]\right| \\
& \leq \frac{1}{4}[|(T(f+g), f+g)+(T(f-g), f-g)|] \quad \text { (Triangle inequality) } \\
& \leq \frac{1}{4}\left[M\|f+g\|^{2}+M\|f-g\|^{2}\right] \quad\left(|(T h, h)| \leq M\|h\|^{2}\right) \\
& \leq \frac{M}{4}\left[\|f\|^{2}+\|g\|^{2}+\|f\|^{2}+\|g\|^{2}\right] \quad \text { (Triangle inequality) } \\
& \leq M
\end{aligned}
$$

A simple rotation calculation shows that

$$
\|T\|=\sup \{|(T f, g)|,\|f\|=\|g\|=1\}=\sup \{|\operatorname{Re}(T f, g)|,\|f\|=\|g\|=1\}
$$

Thus, we conclude that $\|T\| \leq M$, which completes the proof.
2. Suppose that G is a compact set in \mathbb{R}^{n}. Suppose that

$$
T[f](x)=\int_{G} K(x, y) f(y) d y
$$

where $K: G \times G \rightarrow \mathbb{R}$ is a continuous function for all $x, y \in G$ except for $x=y$. Furthermore, suppose that K satisfies

$$
|K(x, y)| \leq \frac{C}{|x-y|^{\alpha}}
$$

where $\alpha>0$. Find the range of values of α for which the operator $T: \mathbb{L}^{2}(G) \rightarrow \mathbb{L}^{2}(G)$ is compact. Hint: Integral operators with continuous kernels are compact, and the norm limit of compact operators is compact.
Solution: Let

$$
h(t)= \begin{cases}1 & 1 \leq t \\ 2 t-1 & 1 / 2 \leq t<1 \\ 0 & 0 \leq t<1 / 2\end{cases}
$$

Set

$$
\left.K_{n}(x, y)=K(x, y) h(m \mid x-y)\right) .
$$

Let

$$
T_{m}[f](x)=\int_{G} K_{m}(x, y) f(y) d y
$$

Then, T_{m} is compact since the kernel K_{m} is continuous and G is compact. We will now show that $T_{m} \rightarrow T$ in operator norm as long as $\alpha<n$.

$$
\begin{aligned}
\left|\left(T_{m}-T\right)[f](x)\right| & =\left|\int_{G}\left(K_{m}(x, y)-K(x, y)\right) f(y) d y\right| \\
& \leq \int_{G} \mid K_{m}(x, y)-K(x, y) f(y) d y \\
& \leq \int_{G} \frac{C}{\|x-y\|^{\alpha}} \chi_{|x-y| \leq \frac{1}{m}}|f(y)| d y .
\end{aligned}
$$

Here χ_{A} is the indicator function of the set A Then by using Young's inequality,

$$
\left\|\left(T_{m}-T\right)[f]\right\| \leq\left\|\frac{1}{|x|^{\alpha}} \chi_{|x| \leq \frac{1}{m}}\right\|_{\mathbb{L}^{1}(G)}\|f\|_{\mathbb{L}^{2}(G)}
$$

which clearly converges to 0 as $m \rightarrow \infty$ if $\alpha<n$.
3. Consider the operator $T: \mathbb{L}^{2}([0,1]) \rightarrow \mathbb{L}^{2}([0,1])$ defined by

$$
T[f](t)=t \cdot f(t)
$$

(a) Prove that T is a bounded linear operator with $T=T^{*}$, but that T is not compact
(b) However, show that T has no eigenvectors

The multiplication operator defined above is shown to have a critical role in the design of quadratures (see, for example).

Solution:

Boundedness of T

$$
\begin{gathered}
\|T f\|_{\mathbb{L}^{2}}^{2}=\int_{0}^{1}|t|^{2}|f(t)|^{2} d t \leq \int_{0}^{1}|f(t)|^{2} \quad(|t|<1) \\
=\|f\|_{\mathbb{L}^{2}}^{2}
\end{gathered}
$$

Thus, $\|T\| \leq 1$.
Adjointness of T

$$
(T f, g)=\int_{0}^{1} t f(t) \cdot g(t) d t=\int_{0}^{1} f(t) \cdot(t g(t))=\left(f, T^{*} g\right)
$$

Thus, $T^{*} g=t \cdot g(t)$.
Non-compactness of T Consider the sequence $f_{n}(t)=\sin (2 \pi n t)$. Then $\left\|f_{n}\right\|^{2}=\frac{1}{2}$ and

$$
\begin{aligned}
\left\|T f_{n}-T f_{m}\right\|_{\mathbb{L}^{2}}^{2} & =\int_{0}(t \sin (2 \pi n t)-t \sin (2 \pi m t))^{2} d t \\
& =\frac{1}{3}-\frac{1}{16 \pi^{2} n^{2}}-\frac{1}{16 \pi^{2} m^{2}}+\frac{1}{4 \pi^{2}(n+m)^{2}}-\frac{1}{4 \pi^{2}(n-m)^{2}} \nrightarrow 0 \quad \text { as } \quad n, m \rightarrow \infty
\end{aligned}
$$

T has no eigenvectors. Let $\lambda \in \mathbb{C}$, then

$$
T f-\lambda f=0 \Longrightarrow(t-\lambda) \cdot f(t)=0
$$

Since $(t-\lambda) \neq 0$ almost everywhere, we conclude that f must be 0 almost everywhere and thus λ is not an eigenvalue.
4. Let \mathcal{H} be a Hilbert space with basis $\left\{e_{k}\right\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$
T\left(e_{k}\right)=\frac{e_{k+1}}{k}
$$

is compact, but has no eigenvectors.
Solution: Compactness of T Let P_{n} be the projection operator onto the first n components and set $T_{n}=T P_{n}$. Clearly, T_{n} is a finite rank operator, since $\operatorname{Ran}\left(T_{n}\right)=$ $\operatorname{span}\left\{e_{1}, e_{2}, \ldots e_{n+1}\right\}$. Then for all $\|f\| \leq 1$,

$$
\left\|\left(T-T P_{n}\right) f\right\|^{2}=\sum_{m=n+1}^{\infty}\left(f_{m+1} / m\right)^{2} \leq \sum_{m=n+1}^{\infty} \frac{1}{m^{2}}
$$

Thus,

$$
\left\|T-T P_{n}\right\|=\sup _{\|f\|=1}\left\|\left(T-T P_{n}\right) f\right\| \leq \sqrt{\sum_{m=n+1}^{\infty} \frac{1}{m^{2}}} \rightarrow 0
$$

as $n \rightarrow \infty$. Thus, T is the norm limit of finite rank operators and hence is compact. T has no eigenvectors. Suppose $\lambda i n \mathbb{C} \neq 0$, then consider

$$
T f-\lambda f=\left(-\lambda f_{1},-\lambda f_{2}+f_{1}, \ldots,-\lambda f_{n+1}+\frac{f_{n}}{n}, \ldots\right) .
$$

If $T f-\lambda f=0$, then $f_{n+1}=f_{n} / n \lambda$ and $\lambda f_{1}=0$, from which we conclude that $f_{n}=0$ for all n. If $\lambda=0$, i.e. $T f=\left(0, f_{1}, f_{2} / 2, f_{3} / 3, \ldots\right)=0$, which implies again that $f=0$. Thus T has no eigenvectors.
5. Let \mathcal{H} be a Hilbert space with basis $\left\{e_{k}\right\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$
T\left(e_{k}\right)=\lambda_{k} e_{k}
$$

is compact if and only if $\lim _{k \rightarrow \infty} \lambda_{k} \rightarrow 0$.
Solution: Suppose T is compact, then λ_{k} are the eigenvalues of T and it follows from the spectral theorem that $\lambda_{k} \rightarrow 0$. Now suppose that $\lambda_{k} \rightarrow 0$. Then for any $\varepsilon>0$, there exists N such that $\left|\lambda_{n}\right| \leq \varepsilon$ for all $n \geq N$. Let P_{n} denote the projection operator on to the basis $\left\{e_{1}, e_{2} \ldots, e_{n}\right\}$. Then $T P_{n}$ is finite rank for any n, and for any f and $n>N$

$$
\left\|\left(T-T P_{n}\right) f\right\|^{2}=\sum_{n=N+1}\left|\lambda_{n}\right|^{2}\left|f_{n}\right|^{2} \leq \varepsilon^{2}\|f\|^{2} .
$$

Thus, for all $n>N$, we conclude that

$$
\left\|T-T P_{n}\right\| \leq \varepsilon
$$

from which we conclude that T is the norm limit of finite rank operators and hence T is compact.
6. Let $\sigma(T)$ denote the spectrum of a compact operator $T: \mathcal{H} \rightarrow \mathcal{H}$. Show that $\lambda \in \sigma(T)$ if and only if $\bar{\lambda} \in \sigma\left(T^{*}\right)$.
Solution: Follows from

$$
\operatorname{dim}(\mathcal{N}(\lambda I-T))=\operatorname{dim}\left(\mathcal{N}\left(\bar{\lambda} I-T^{*}\right)\right)
$$

Thus, $\lambda \notin \sigma(T)$, if and only if $\mathcal{N}(\lambda I-T)=\{0\}$, if and only if, $\mathcal{N}\left(\bar{\lambda} I-T^{*}\right)=0$, if and only if $\bar{\lambda} \notin \sigma\left(T^{*}\right)$.
7. Let K be a Hilbert-Schmidt kernel which is real and symmetric, i.e. $K:[0,1] \times[0,1] \rightarrow$ \mathbb{R} satisfies $K(x, y)=K(y, x)$ and $K \in \mathbb{L}^{2}([0,1] \times[0,1])$. Let $T: \mathbb{L}^{2}([0,1]) \rightarrow \mathbb{L}^{2}([0,1])$ be defined by

$$
T[f](x)=\int_{0}^{1} K(x, y) f(y) d y
$$

Let $\phi_{k}(x)$ be the eigenvectors (with eigenvalues λ_{k}) that diagonalize T. Then:
(a) $\sum_{k}\left|\lambda_{k}\right|^{2}<\infty$
(b) $K(x, y)=\sum_{k=1}^{\infty} \lambda_{k} \phi_{k}(x) \phi_{k}(y)$
(c) Suppose \tilde{T} is an operator which is compact and symmetric. Then \tilde{T} is of HilbertSchmidt type if and only if $\sum_{n}\left|\lambda_{n}\right|^{2}<\infty$, where $\left\{\lambda_{n}\right\}$ are the eigenvalues of \tilde{T} counted according to their multiplicities

Solution:

(a) Follows from part b and the fact that K is of Hilbert-Schmidt type
(b) Let $\phi_{j}, j=1,2, \ldots$ be an orthogonal basis for $\mathbb{L}^{2}([0,1])$, then we know that $\phi_{j}(x) \cdot \phi_{\ell}(y), j, \ell=1,2, \ldots$ forms an orthogonal basis for $\mathbb{L}^{2}[0,1]$ and that

$$
K(x, y)=\sum_{j, \ell=1}^{\infty} a_{j, \ell} \phi_{j}(x) \phi_{\ell}(y)
$$

with

$$
\sum_{j, \ell}\left|a_{j, \ell}\right|^{2}<\infty
$$

Since ϕ_{k} is an eigenvalue of the operator T with eigenvalue λ_{k}, we have

$$
\begin{aligned}
\lambda_{k} \phi_{k}(x) & =\int_{0}^{1} K(x, y) \phi_{k}(y) d y \\
& =\int_{0}^{1} \sum_{j, \ell} a_{j, \ell} \phi_{j}(x) \phi_{\ell}(y) \cdot \phi_{k}(y) d y \\
& =\sum_{j=1}^{\infty} a_{j, k} \phi_{j}(x) \quad\left(\text { Since } \phi_{\ell}(y) \perp \phi_{j}(y)\right)
\end{aligned}
$$

Taking inner products with $\phi_{\ell}(x)$ and using the orthogonality of ϕ_{j} 's, we conclude that $a_{j, k}=0$ is $j \neq k$ and $a_{j, k}=\lambda_{k}$ if $j=k$.
(c) For the third part define

$$
K_{n}(x, y)=\sum_{\ell=1}^{n} \lambda_{k} \phi_{k}(x) \phi_{k}(y) .
$$

Here $\phi_{k}(x)$ are the eigenvectors associated with eigenvalue λ_{k}. Since, the $\lambda_{k}^{\prime} s$ are square summable, K_{n} is a Cauchy sequence in $\mathbb{L}^{2}[0,1] \times[0,1]$. Thus, $K_{n} \rightarrow K(x, y)$ in $\mathbb{L}^{2}[0,1] \times[0,1]$. Define $T_{n}=P_{n} \tilde{T}$, where P_{n} is the projection onto the first n eigenvectors. Then $T_{n} f=\int_{0}^{1} K_{n}(x, y) f(y) d y$. Moreover, since $\lambda_{k} \rightarrow 0, T_{n} \rightarrow \tilde{T}$ in norm. Moreover, a simple application of Holder shows that

$$
\left\|T_{n}-\tilde{T}\right\| \leq\left\|K_{n}-K\right\|_{\mathbb{L}^{2}[0,1] \times[0,1]} .
$$

Thus, \tilde{T} is the integral operator with kernel K.
8. Let \mathcal{H} be a Hilbert space.
(a) If $T_{1}, T_{2}: \mathcal{H} \rightarrow \mathcal{H}$ are compact symmetric operators which commute, i.e. $\left(T_{1} T_{2}=\right.$ $T_{2} T_{1}$), show that they can be diagonalized simultaneously. In other words, there exists an orthonormal basis for \mathcal{H} which consists of eigenvectors for both T_{1} and T_{2}.
(b) A linear operator on \mathcal{H} is normal if $T T^{*}=T^{*} T$. Prove that if T is normal and compact, then T can be diagonalized.
(c) If U is unitary, and $U=\lambda I-T$, where T is compact, then U can be diagonalized.

Solution:

(a) Suppose λ_{i} are the collection of eigenvalues of T_{1} and $E_{\lambda_{i}}\left(T_{1}\right)$ are the corresponding eigenspaces. Then we will show that an orthogonal collection in $E_{\lambda_{i}}$ also are eigenvectors of T_{2}. Suppose that $f_{1}, f_{2}, \ldots f_{n}$ forms a basis for E_{λ}, then

$$
T_{1} f_{j}=\lambda_{1} f_{j}
$$

Thus,

$$
T_{1} T_{2} f_{j}=T_{2} T_{1} f_{j}=\lambda T_{2} f_{j},
$$

i.e., $T_{2} f_{j} \in E_{\lambda}\left(T_{1}\right)$, i.e.

$$
T_{2} f_{j}=\sum_{i=1}^{n} \alpha_{i, j} f_{i}
$$

Thus, $T_{2}: E_{\lambda} \rightarrow E_{\lambda}$ can be represented as an $n \times n$ matrix with entries $\alpha_{i, j}$. From the symmetry of T_{2}, it follows that $\alpha_{i, j}=\alpha_{j, i}$ and thus, the orthogonal matrix has a collection of orthogonal eigenvectors of the mapping T_{2}. This, shows that every eigenvector of T_{1} with eigenvalue not equal to 0 is also an eigenvector of T_{2}. For $\lambda=0$, a similar proof shows that $T_{2}: \mathcal{N}\left(T_{1}\right) \rightarrow \mathcal{N}\left(T_{1}\right)$ and it follows from the spectral theorem, that there exists an orthogonal basis of $\mathcal{N}\left(T_{1}\right)$ which are the eigenvectors of T_{2} too.
(b) For normal matrices as well, it follows from the polarization identity that

$$
\|T\|=\sup \{|(f, T f)|, \quad\|f\|=1\}
$$

(c) Since U is unitary $U U^{*}=U^{*} U=I$, from which it follows that $T T^{*}=T^{*} T$. From the previous part, T is diagonalizable, and a simple calculation shows that eigenvectors v_{i} of T associated with eigenvalue λ_{i} are also eigenvectors of U with eigenvalue $\lambda-\lambda_{i}$.
9. Fredholm theory for non-zero index operators. An operator R is called a regularizer of an operator K if R is bounded and $R K=I-A_{\ell}$ and $K R=I-A_{r}$, where A_{ℓ}, A_{r} are compact.
(a) Suppose that $K: \mathcal{H} \rightarrow \mathcal{H}$, and R is a regularizer of K, then $\operatorname{dim}\{\mathcal{N}(K)\}<\infty$ and $\operatorname{dim}\{\mathcal{N}(R)\}<\infty$
(b) If $R K=I-A$, where A is compact, show that $\phi-A \phi=R f$ has a solution for every $f \in \mathcal{N}\left(K^{*}\right)^{\perp}$
(c) Now further assume that $N(I-A)=\{0\}$. Suppose that $S=(I-A)^{-1}$. Show that $\operatorname{Ran}((I-K S R)) \subset \mathcal{N}(R)$ and that $\operatorname{Ran}\left((I-K S R)^{*}\right) \subset \mathcal{N}\left(K^{*}\right)$. Combine the previous result and these results to show that $\phi=S R f$ also satisfies $K \phi=f$ as long as $f \in N\left(\mathcal{K}^{*}\right)^{\perp}$.
(d) (optional, no extra credit) Show that $\operatorname{Ran}(\mathrm{K})=\mathcal{N}\left(K^{*}\right)^{\perp}$ for any operator K which has a regularizer

Solution:

(a) $\mathcal{N}(K) \subset \mathcal{N}(R K)=\mathcal{N}\left(I-A_{\ell}\right)$. $\operatorname{dim} \mathcal{N}\left(I-A_{\ell}\right)<\infty$ implies that $\operatorname{dim} \mathcal{N}(K)<\infty$. We can think of K as a regularizer of R as well, and hence $\operatorname{dim} \mathcal{N}(R)$ is also finite.
(b) Suppose $g \in \mathcal{N}\left(K^{*} R^{*}\right)$, then

$$
K^{*} R^{*} g=0 \Longrightarrow R^{*} g \in \mathcal{N}\left(K^{*}\right)
$$

Thus, for every $f \in \mathcal{N}\left(K^{*}\right)^{\perp}$,

$$
(R f, g)=\left(f, R^{*} g\right)=0 .
$$

Thus, $R f \in \mathcal{N}\left(K^{*} R^{*}\right)^{\perp}$ and hence $R f \in \operatorname{Ran}(R K)$.
(c) Suppose $\phi \in \operatorname{Ran}(I-K S R)$, then $\exists g \in \mathcal{H}$ such that

$$
\phi=(I-K S R) g .
$$

Then,
$R \phi=R g-R K S R g=R g-(I-A) \cdot(I-A)^{-1} R g=0 \quad\left(R K=I-A \quad\right.$ and $\left.S=(I-A)^{-1}\right)$.
Thus, $\phi \in \mathcal{N}(R)$ and that $\operatorname{Ran}(I-K S R) \subset \mathcal{N}(R)$. The other result follows in a similar manner. Since $I-A$ is injective, $I-A$ has a bounded inverse. Set $\phi=S R f$. Then,

$$
f-K \phi=f-K S R f \in \operatorname{Ran}(I-K S R) \Longrightarrow f-K S R f \in \mathcal{N}(R)
$$

. A similar argument shows that $\operatorname{Ran}\left(I-R^{*} S^{*} K^{*}\right) \subset \mathcal{N}\left(K^{*}\right)$. From the first part, $\operatorname{dim}(\mathcal{N}(R))<\infty$, and let $\phi_{i}, i=1,2, \ldots N$, be an orthogonal basis for $\mathcal{N}(R)$. Then

$$
f-K S R f=\sum_{i=1}^{N} c_{i} \phi_{i}
$$

where

$$
c_{i}=\left(f-K S R f, \phi_{i}\right)=\left(f, \phi_{i}-R^{*} S^{*} K^{*} \phi_{i}\right)=0,
$$

where the last equality follows from the fact that $\phi_{i}-R^{*} S^{*} K^{*} \in \operatorname{Ran}(I-$ $\left.R^{*} S^{*} K^{*}\right) \subset \mathcal{N}\left(K^{*}\right)$ and $f \in \mathcal{N}\left(K^{*}\right)^{\perp}$.

