
Problem set 2

Due date: Feb 19

March 5, 2018

1. Suppose that T is a symmetric bounded operator. Then show that

‖T‖ = sup{|(Tf, f)|, ‖f‖ = 1} .

Hint: You may assume the polarization identity

(Tf, g) =
1

4
[(T (f+g), f+g)−(T (f−g), f−g)+i(T (f+ig), f+ig)−i(T (f−ig), f−ig)]

Solution: Let M. = sup{{|(Tf, f)|, ‖f‖ = 1}. Then clearly,

|(Tf, f)| ≤ ‖Tf‖ · ‖f‖ (Cauchy Schwarz)

≤ ‖T‖ · ‖f‖2 (Definition of operator norm)

≤ ‖T‖ (‖f‖ = 1) .

Thus M ≤ ‖T‖. To show the other direction, recall that

‖T‖ = sup{|(Tf, g)|, ‖f‖ = 1 , ‖g‖ = 1} .

Note that, when T is symmetric (Th, h) is real for an h ∈ H, since

(Th, h) = (h, T ∗h) = (h, Th) = (Th, h) .

Combining this with the polarization identity, we get

|Re(Tf, g)| =
∣∣∣∣14 [(T (f + g), f + g)− (T (f − g), f − g)]

∣∣∣∣
≤ 1

4
[|(T (f + g), f + g) + (T (f − g), f − g)|] (Triangle inequality)

≤ 1

4

[
M‖f + g‖2 +M‖f − g‖2

]
(|(Th, h)| ≤M‖h‖2)

≤ M

4

[
‖f‖2 + ‖g‖2 + ‖f‖2 + ‖g‖2

]
(Triangle inequality)

≤M

A simple rotation calculation shows that

‖T‖ = sup{|(Tf, g)| , ‖f‖ = ‖g‖ = 1} = sup{|Re(Tf, g)| , ‖f‖ = ‖g‖ = 1}

Thus, we conclude that ‖T‖ ≤M , which completes the proof.
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2. Suppose that G is a compact set in Rn. Suppose that

T [f ](x) =

∫
G

K(x, y)f(y)dy ,

where K : G × G → R is a continuous function for all x, y ∈ G except for x = y.
Furthermore, suppose that K satisfies

|K(x, y)| ≤ C

|x− y|α
,

where α > 0. Find the range of values of α for which the operator T : L2(G)→ L2(G)
is compact. Hint: Integral operators with continuous kernels are compact, and the
norm limit of compact operators is compact.
Solution: Let

h(t) =


1 1 ≤ t

2t− 1 1/2 ≤ t < 1

0 0 ≤ t < 1/2

.

Set
Kn(x, y) = K(x, y)h(m|x− y)) .

Let

Tm[f ](x) =

∫
G

Km(x, y)f(y) dy .

Then, Tm is compact since the kernel Km is continuous and G is compact. We will
now show that Tm → T in operator norm as long as α < n.

| (Tm − T ) [f ](x)| = |
∫
G

(Km(x, y)−K(x, y))f(y)dy|

≤
∫
G

|Km(x, y)−K(x, y)f(y)dy

≤
∫
G

C

‖x− y‖α
χ|x−y|≤ 1

m
|f(y)| dy .

Here χA is the indicator function of the set A Then by using Young’s inequality,

‖(Tm − T )[f ]‖ ≤
∥∥∥∥ 1

|x|α
χ|x|≤ 1

m

∥∥∥∥
L1(G)

‖f‖L2(G) ,

which clearly converges to 0 as m→∞ if α < n.

3. Consider the operator T : L2([0, 1])→ L2([0, 1]) defined by

T [f ](t) = t · f(t)

(a) Prove that T is a bounded linear operator with T = T ∗, but that T is not compact
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(b) However, show that T has no eigenvectors

The multiplication operator defined above is shown to have a critical role in the design
of quadratures (see , for example).
Solution:
Boundedness of T

‖Tf‖2L2 =

∫ 1

0

|t|2|f(t)|2dt ≤
∫ 1

0

|f(t)|2 (|t| < 1)

= ‖f‖2L2 .

Thus, ‖T‖ ≤ 1.
Adjointness of T

(Tf, g) =

∫ 1

0

tf(t) · g(t)dt =

∫ 1

0

f(t) · (tg(t)) = (f, T ∗g) .

Thus, T ∗g = t · g(t).
Non-compactness of T Consider the sequence fn(t) = sin(2πnt). Then ‖fn‖2 = 1

2
and

‖Tfn − Tfm‖2L2 =

∫
0

(t sin(2πnt)− t sin(2πmt))2 dt

=
1

3
− 1

16π2n2
− 1

16π2m2
+

1

4π2(n+m)2
− 1

4π2(n−m)2
6→ 0 as n,m→∞

T has no eigenvectors. Let λ ∈ C, then

Tf − λf = 0 =⇒ (t− λ) · f(t) = 0 .

Since (t−λ) 6= 0 almost everywhere, we conclude that f must be 0 almost everywhere
and thus λ is not an eigenvalue.

4. Let H be a Hilbert space with basis {ek}∞k=1. Verify that the operator T defined by

T (ek) =
ek+1

k
,

is compact, but has no eigenvectors.
Solution: Compactness of T Let Pn be the projection operator onto the first n com-
ponents and set Tn = TPn. Clearly, Tn is a finite rank operator, since Ran(Tn) =
span{e1, e2, . . . en+1}. Then for all ‖f‖ ≤ 1,

‖(T − TPn)f‖2 =
∞∑

m=n+1

(fm+1/m)2 ≤
∞∑

m=n+1

1

m2
.

Thus,

‖T − TPn‖ = sup
‖f‖=1

‖(T − TPn)f‖ ≤

√√√√ ∞∑
m=n+1

1

m2
→ 0
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as n→∞. Thus, T is the norm limit of finite rank operators and hence is compact.
T has no eigenvectors. Suppose λinC 6= 0, then consider

Tf − λf = (−λf1,−λf2 + f1, . . . ,−λfn+1 +
fn
n
, . . .) .

If Tf − λf = 0, then fn+1 = fn/nλ and λf1 = 0, from which we conclude that fn = 0
for all n. If λ = 0, i.e. Tf = (0, f1, f2/2, f3/3, . . .) = 0, which implies again that f = 0.
Thus T has no eigenvectors.

5. Let H be a Hilbert space with basis {ek}∞k=1. Verify that the operator T defined by

T (ek) = λkek ,

is compact if and only if limk→∞ λk → 0.
Solution: Suppose T is compact, then λk are the eigenvalues of T and it follows from
the spectral theorem that λk → 0. Now suppose that λk → 0. Then for any ε > 0,
there exists N such that |λn| ≤ ε for all n ≥ N . Let Pn denote the projection operator
on to the basis {e1, e2 . . . , en}. Then TPn is finite rank for any n, and for any f and
n > N

‖(T − TPn)f‖2 =
∑

n=N+1

|λn|2|fn|2 ≤ ε2‖f‖2 .

Thus, for all n > N , we conclude that

‖T − TPn‖ ≤ ε ,

from which we conclude that T is the norm limit of finite rank operators and hence T
is compact.

6. Let σ(T ) denote the spectrum of a compact operator T : H → H. Show that λ ∈ σ(T )
if and only if λ ∈ σ(T ∗).
Solution: Follows from

dim(N (λI − T )) = dim(N (λI − T ∗)) .

Thus, λ 6∈ σ(T ), if and only if N (λI −T ) = {0}, if and only if, N (λI −T ∗) = 0, if and
only if λ 6∈ σ(T ∗).

7. Let K be a Hilbert-Schmidt kernel which is real and symmetric, i.e. K : [0, 1]× [0, 1]→
R satisfies K(x, y) = K(y, x) and K ∈ L2([0, 1]× [0, 1]). Let T : L2([0, 1])→ L2([0, 1])
be defined by

T [f ](x) =

∫ 1

0

K(x, y)f(y)dy .

Let φk(x) be the eigenvectors (with eigenvalues λk) that diagonalize T . Then:
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(a)
∑

k |λk|2 <∞
(b) K(x, y) =

∑∞
k=1 λkφk(x)φk(y)

(c) Suppose T̃ is an operator which is compact and symmetric. Then T̃ is of Hilbert-
Schmidt type if and only if

∑
n |λn|2 < ∞, where {λn} are the eigenvalues of T̃

counted according to their multiplicities

Solution:

(a) Follows from part b and the fact that K is of Hilbert-Schmidt type

(b) Let φj, j = 1, 2, . . . be an orthogonal basis for L2([0, 1]), then we know that
φj(x) · φ`(y), j, ` = 1, 2, . . . forms an orthogonal basis for L2[0, 1] and that

K(x, y) =
∞∑

j,`=1

aj,`φj(x)φ`(y) ,

with ∑
j,`

|aj,`|2 <∞ .

Since φk is an eigenvalue of the operator T with eigenvalue λk, we have

λkφk(x) =

∫ 1

0

K(x, y)φk(y) dy

=

∫ 1

0

∑
j,`

aj,`φj(x)φ`(y) · φk(y)dy

=
∞∑
j=1

aj,kφj(x) (Since φ`(y) ⊥ φj(y))

Taking inner products with φ`(x) and using the orthogonality of φj’s, we conclude
that aj,k = 0 is j 6= k and aj,k = λk if j = k.

(c) For the third part define

Kn(x, y) =
n∑
`=1

λkφk(x)φk(y) .

Here φk(x) are the eigenvectors associated with eigenvalue λk. Since, the λ′ks are
square summable, Kn is a Cauchy sequence in L2[0, 1]×[0, 1]. Thus, Kn → K(x, y)
in L2[0, 1] × [0, 1]. Define Tn = PnT̃ , where Pn is the projection onto the first n

eigenvectors. Then Tnf =
∫ 1

0
Kn(x, y)f(y) dy. Moreover, since λk → 0, Tn → T̃

in norm. Moreover, a simple application of Holder shows that

‖Tn − T̃‖ ≤ ‖Kn −K‖L2[0,1]×[0,1] .

Thus, T̃ is the integral operator with kernel K.
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8. Let H be a Hilbert space.

(a) If T1, T2 : H → H are compact symmetric operators which commute, i.e. (T1T2 =
T2T1), show that they can be diagonalized simultaneously. In other words, there
exists an orthonormal basis for H which consists of eigenvectors for both T1 and
T2.

(b) A linear operator on H is normal if TT ∗ = T ∗T . Prove that if T is normal and
compact, then T can be diagonalized.

(c) If U is unitary, and U = λI−T , where T is compact, then U can be diagonalized.

Solution:

(a) Suppose λi are the collection of eigenvalues of T1 and Eλi(T1) are the correspond-
ing eigenspaces. Then we will show that an orthogonal collection in Eλi also are
eigenvectors of T2. Suppose that f1, f2, . . . fn forms a basis for Eλ, then

T1fj = λ1fj .

Thus,
T1T2fj = T2T1fj = λT2fj ,

i.e., T2fj ∈ Eλ(T1), i.e.

T2fj =
n∑
i=1

αi,jfi .

Thus, T2 : Eλ → Eλ can be represented as an n×n matrix with entries αi,j. From
the symmetry of T2, it follows that αi,j = αj,i and thus, the orthogonal matrix
has a collection of orthogonal eigenvectors of the mapping T2. This, shows that
every eigenvector of T1 with eigenvalue not equal to 0 is also an eigenvector of T2.
For λ = 0, a similar proof shows that T2 : N (T1) → N (T1) and it follows from
the spectral theorem, that there exists an orthogonal basis of N (T1) which are
the eigenvectors of T2 too.

(b) For normal matrices as well, it follows from the polarization identity that

‖T‖ = sup{ |(f, Tf)|, ‖f‖ = 1} .

(c) Since U is unitary UU∗ = U∗U = I, from which it follows that TT ∗ = T ∗T .
From the previous part, T is diagonalizable, and a simple calculation shows that
eigenvectors vi of T associated with eigenvalue λi are also eigenvectors of U with
eigenvalue λ− λi.

9. Fredholm theory for non-zero index operators. An operator R is called a regularizer of
an operator K if R is bounded and RK = I −A` and KR = I −Ar, where A`, Ar are
compact.
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(a) Suppose that K : H → H, and R is a regularizer of K, then dim{N (K)} < ∞
and dim{N (R)} <∞

(b) If RK = I − A, where A is compact, show that φ − Aφ = Rf has a solution for
every f ∈ N (K∗)⊥

(c) Now further assume that N(I − A) = {0}. Suppose that S = (I − A)−1. Show
that Ran ((I −KSR)) ⊂ N (R) and that Ran ((I −KSR)∗) ⊂ N (K∗). Combine
the previous result and these results to show that φ = SRf also satisfies Kφ = f
as long as f ∈ N(K∗)⊥.

(d) (optional, no extra credit) Show that Ran(K) = N (K∗)⊥ for any operator K
which has a regularizer

Solution:

(a) N (K) ⊂ N (RK) = N (I−A`). dimN (I − A`) <∞ implies that dimN (K) <∞.
We can think of K as a regularizer of R as well, and hence dimN (R) is also finite.

(b) Suppose g ∈ N (K∗R∗), then

K∗R∗g = 0 =⇒ R∗g ∈ N (K∗) .

Thus, for every f ∈ N (K∗)⊥,

(Rf, g) = (f,R∗g) = 0 .

Thus, Rf ∈ N (K∗R∗)⊥ and hence Rf ∈ Ran(RK).

(c) Suppose φ ∈ Ran(I −KSR), then ∃g ∈ H such that

φ = (I −KSR)g .

Then,

Rφ = Rg−RKSRg = Rg−(I−A)·(I−A)−1Rg = 0 (RK = I−A andS = (I−A)−1) .

Thus, φ ∈ N (R) and that Ran(I −KSR) ⊂ N (R). The other result follows in
a similar manner. Since I − A is injective, I − A has a bounded inverse. Set
φ = SRf . Then,

f −Kφ = f −KSRf ∈ Ran(I −KSR) =⇒ f −KSRf ∈ N (R)

. A similar argument shows that Ran(I−R∗S∗K∗) ⊂ N (K∗). From the first part,
dim(N (R)) < ∞, and let φi, i = 1, 2, . . . N , be an orthogonal basis for N (R).
Then

f −KSRf =
N∑
i=1

ciφi ,

where
ci = (f −KSRf, φi) = (f, φi −R∗S∗K∗φi) = 0 ,

where the last equality follows from the fact that φi − R∗S∗K∗ ∈ Ran(I −
R∗S∗K∗) ⊂ N (K∗) and f ∈ N (K∗)⊥.
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