Problem set 2

Due date: Feb 19

February 13, 2018

1. Suppose that T is a symmetric bounded operator. Then show that

 $||T|| = \sup\{|(Tf, f)|, ||f|| = 1\}.$

Hint: You may assume the polarization identity

$$(Tf,g) = \frac{1}{4}[(T(f+g), f+g) - (T(f-g), f-g) + i(T(f+ig), f+ig) - i(T(f-ig), f-ig)]$$

2. Suppose that G is a compact set in \mathbb{R}^n . Suppose that

$$T[f](x) = \int_G K(x, y) f(y) dy \,,$$

where $K : G \times G \to \mathbb{R}$ is a continuous function for all $x, y \in G$ except for x = y. Furthermore, suppose that K satisfies

$$|K(x,y)| \le \frac{C}{|x-y|^{\alpha}},$$

where $\alpha > 0$. Find the range of values of α for which the operator $T : \mathbb{L}^2(G) \to \mathbb{L}^2(G)$ is compact. Hint: Integral operators with continuous kernels are compact, and the norm limit of compact operators is compact.

3. Consider the operator $T: \mathbb{L}^2([0,1]) \to \mathbb{L}^2([0,1])$ defined by

$$T[f](t) = t \cdot f(t)$$

- (a) Prove that T is a bounded linear operator with $T = T^*$, but that T is not compact
- (b) However, show that T has no eigenvectors

The multiplication operator defined above is shown to have a critical role in the design of quadratures (see , for example).

4. Let \mathcal{H} be a Hilbert space with basis $\{e_k\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$T(e_k) = \frac{e_{k+1}}{k} \,,$$

is compact, but has no eigenvectors

5. Let \mathcal{H} be a Hilbert space with basis $\{e_k\}_{k=1}^{\infty}$. Verify that the operator T defined by

$$T(e_k) = \lambda_k e_k \,,$$

is compact if and only if $\lim_{k\to\infty} \lambda_k \to 0$.

- 6. Let $\sigma(T)$ denote the spectrum of a compact operator $T : \mathcal{H} \to \mathcal{H}$. Show that $\lambda \in \sigma(T)$ if and only if $\overline{\lambda} \in \sigma(T^*)$
- 7. Let K be a Hilbert-Schmidt kernel which is real and symmetric, i.e. $K : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ satisfies K(x, y) = K(y, x) and $K \in \mathbb{L}^2([0, 1] \times [0, 1])$. Let $T : \mathbb{L}^2([0, 1]) \rightarrow \mathbb{L}^2([0, 1])$ be defined by

$$T[f](x) = \int_0^1 K(x, y) f(y) dy \,.$$

Let $\phi_k(x)$ be the eigenvectors (with eigenvalues λ_k) that diagonalize T. Then:

- (a) $\sum_k |\lambda_k|^2 < \infty$
- (b) $K(x,y) = \sum_{k=1}^{\infty} \lambda_k \phi_k(x) \phi_k(y)$
- (c) Suppose \tilde{T} is an operator which is compact and symmetric. Then \tilde{T} is of Hilbert-Schmidt type if and only if $\sum_{n} |\lambda_{n}|^{2} < \infty$, where $\{\lambda_{n}\}$ are the eigenvalues of \tilde{T} counted according to their multiplicities
- 8. Let \mathcal{H} be a Hilbert space.
 - (a) If $T_1, T_2 : \mathcal{H} \to \mathcal{H}$ are compact symmetric operators which commute, i.e. $(T_1T_2 = T_2T_1)$, show that they can be diagonalized simultaneously. In other words, there exists an orthonormal basis for \mathcal{H} which consists of eigenvectors for both T_1 and T_2 .
 - (b) A linear operator on \mathcal{H} is normal if $TT^* = T^*T$. Prove that if T is normal and compact, then T can be diagonalized.
 - (c) If U is unitary, and $U = \lambda I T$, where T is compact, then U can be diagonalized.
- 9. Fredholm theory for non-zero index operators. An operator R is called a regularizer of an operator K if R is bounded and $RK = I A_{\ell}$ and $KR = I A_r$, where A_{ℓ}, A_r are compact.
 - (a) Suppose that $K : \mathcal{H} \to \mathcal{H}$, and R is a regularizer of K, then dim $\{\mathcal{N}(K)\} < \infty$ and dim $\{\mathcal{N}(R)\} < \infty$
 - (b) If RK = I A, where A is compact, show that $\phi A\phi = Rf$ has a solution for every $f \in \mathcal{N}(K^*)^{\perp}$
 - (c) Now further assume that $N(I A) = \{0\}$. Suppose that $S = (I A)^{-1}$. Show that $\operatorname{Ran}((I KSR)) \subset \mathcal{N}(R)$ and that $\operatorname{Ran}((I KSR)^*) \subset \mathcal{N}(K^*)$. Combine the previous result and these results to show that $\phi = SRf$ also satisfies $K\phi = f$ as long as $f \in N(\mathcal{K}^*)^{\perp}$.
 - (d) (optional, no extra credit) Show that $\operatorname{Ran}(K) = \mathcal{N}(K^*)^{\perp}$ for any operator K which has a regularizer