
Problem set 1

Due date: Feb 5

February 14, 2018

1. If {hn} is a sequence in a Hilbert space H such that
∑

n ‖hn‖ <∞, then show that hn
converges.
Solution: Since

∑
n ‖hn‖ <∞, we conclude that ‖hn‖ → 0, and thus hn → 0.

2. Suppose that E is a linear subspace of a Hilbert space H, then show that the closure
of E is also a linear subspace

Solution: Suppose that x, y ∈ E, then there exist sequences {xn}∞n=1, {yn}∞n=1 ∈ E
such that xn → x and yn → y. For any c1, c2 ∈ F, then {c1xn + c2yn}∞n=1 ∈ E, since E
is a linear subspace. Moreover, c1xn + c2yn → c1x+ c2y. Thus, c1x+ c2y ∈ E.

3. Suppose that E is a subspace of a Hilbert space H, then show that (E⊥)⊥ is the closure
of the span of elements in E, i.e.

(E⊥)⊥ =

{
N∑
j=1

cjfj , fj ∈ E

}

Solution: Since E⊥ is closed for any subspace E, it suffices to show that finite linear
combinations of elements in E are in (E⊥)⊥. Suppose that fj ∈ E, j = 1, 2, . . . N , and

suppose cj ∈ F, j = 1, 2, . . . N . Then f =
∑N

j=1 cjfj ∈ (E⊥)⊥, since for any g ∈ E⊥,

(f, g) =

(
N∑
j=1

cjfj, g

)

=
N∑
j=1

cj(fj, g) (Linearity of inner product)

= 0 (Since g ∈ E⊥, fj ∈ E =⇒ (fj, g) = 0)
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4. Suppose that H = `2(N).

(a) Show that if {an} ∈ H, then the power series
∑∞

n=1 anz
n has radius of convergence

at least 1

(b) For λ < 1, show that L({an}) :=
∑∞

n=1 anλ
n is a bounded linear functional

(c) Find the element h0 ∈ H such that L(h) = (h, h0) and find ‖L‖

Solution: a) If {an} ∈ H, then an is a bounded sequence, i.e. |an| ≤ M . Thus, it
follows from the Weierstrass-M test that, for all |z| = ρ < 1,

∑∞
n=1 anz

n converges
since |anzn| ≤Mρn. Thus, radius of convergence is at least 1.
b) This follows from problem 7, with αn = λn

c) h0 = {λn}.

5. Let H1 = L2([−π, π]) be the Hilbert space of functions F (eiθ) on the unit circle with
the inner product

(F,G) =
1

2π

∫ π

−π
F (eiθ)G(eiθ)dθ .

Let H2 be the space L2(R). Using the mapping

x→ i− x
i+ x

of R to the unit circle, show that:
a) The correspondence U : H1 → H2 given by

U [F ] =
1

π1/2(i+ x)
F (
i− x
i+ x

)

is a unitary mapping.
b) As a result show that {

1

π1/2(i+ x)

(
i− x
i+ x

)n}∞
n=−∞

is an orthonormal basis of L2(R).

Solution: U (F ) = 1√
π

1
(i+x)

F
(
i−x
i+x

)
is a linear function in F . We will show that U (F )

is norm preserving
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|U (F )|2L2(R) =

∫ ∞
−∞

1

π

1

|i+ x|2

∣∣∣∣F (i− xi+ x

)∣∣∣∣2 dx
=

1

π

∫ ∞
−∞

1

1 + x2

∣∣∣∣F (i− xi+ x

)∣∣∣∣2 dx
=

1

2π

∫ π

−π

∣∣∣∣∣F
(
i− tan

(
s
2

)
i+ tan

(
s
2

))∣∣∣∣∣
2

ds
(
Making the change of variable x = tan

(
s
2

))
=

1

2π

∫ π

−π

∣∣∣∣∣F
(

cos
(
s
2

)
i− sin

(
s
2

)
i cos

(
s
2

)
+ sin

(
s
2

))∣∣∣∣∣
2

ds

=
1

2π

∫ π

−π

∣∣∣∣F ( iei
s
2

ie−i
s
2

)∣∣∣∣2 ds =
1

2π

∫ π

−π

∣∣F (eis)∣∣2 ds
= |F |2H1

Therefore U is norm preserving and hence 1− 1.

Consider the mapping U : H2 → H1 defined by Uf = f
(
tan
(
θ
2

)) (
i+ tan

(
θ
2

))√
π.

By a similar calculation as above, we can show that
∣∣Uf ∣∣H1

= |f |H2
.

Let f ∈ H2 and F ∈ H1

Claim: U ◦ U (F ) = F

Proof:

U ◦ U (F ) =
1√
π

1

i+ tan
(
θ
2

)F (i− tan
(
θ
2

)
i+ tan

(
θ
2

))(i+ tan

(
θ

2

))√
π

= F
(
eiθ
)

Similarly, we can show that U ◦ U (f) = f and hence U = U−1 and thus U must be
onto.

Combining all of these, we see that U is a unitary correspondence between H1 and H2

We know that {φn}∞−∞ where φn (x) = 1√
2π
einx is an orthogonal basis of L2 [−π, π].

This means that Fn
(
eiθ
)

= einθ is an orthonormal basis for H1. Then the claim is that

fn (x) = UFn = 1√
π

(
i+x
i−x

)n 1
i+x

forms an orthonormal basis for L2 (R)

|Fn|H1
= |UFn|H2

(Fn, Fm)H1
= (UFn, UFm)H2

Hence {fn} is orthonormal inH2. Let f ∈ H2. Then Uf ∈ H1. Suppose f is orthogonal
to all the basis vectors fn then (f, fn)H2

= 0 for all n.
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(f, fn)H2
=
(
Uf, Fn

)
H1

= 0

Hence Uf ≡ 0 since it is orthogonal to all basis elements Fn. ∴ U ◦Uf ≡ 0 and hence
f ≡ 0

6. Prove that the operator T : L2[0,∞]→ L2[0,∞]

T [f ](x) =
1

π

∫ ∞
0

f(y)

x+ y
dy

is bounded operator with norm ‖T‖ ≤ 1.

Solution: Use problem 4, practice problem set 1, with w(x) = 1√
x
.

7. Suppose that the multiplication operator A : `2(N)→ `2(N) is defined via Aen = αnen
where {ei}∞i=1 are the standard coordinate vectors and αn ∈ R. Then show that A is
bounded if and only if supn |αn| ≤M .

Solution: supn |αn| ≤M =⇒ A is bounded.
If f ∈ H, then f =

∑
n(f, en)en and Af =

∑
n αn(f, en)en. By Parseval,

‖f‖2 =
∞∑
n=1

|(f, en)|2 ,

and

‖Af‖2 =
∞∑
n=1

|αn(f, en)|2 ≤M2
∑
n

‖(f, en)‖2 = M2‖f‖2 .

Thus, A is bounded.
A is bounded =⇒ supn ‖αn‖ <∞.
Suppose not. Then there exists a subsequence nk, k = 1, 2, . . ., such that |αnk

| ≥ k. A
being bounded implies that there exists an M < ∞ such that ‖Af‖ ≤ M‖f‖ for any
f ∈ H. However ‖Aenk

‖ ≥ k‖enk
‖ holds for any k which is a contradiction.

8. Suppose that K : L2([0, 1])→ L2([0, 1]) is defined by

K[f ] =

∫ 1

0

k(x, y)f(y) dy ,
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where k(x, y) ∈ L2([0, 1]× [0, 1]). Show that K is a bounded linear operator.

Solution:

|K[f ](x)| = |
∫ 1

0

k(x, y)f(y)dy|

≤
∫ 1

0

|k(x, y)f(y)|dy

≤

√(∫ 1

0

|k(x, y)|2dy
)
· ‖f‖L2[0,1] (Hölder inequality)

∴
∫ 1

0

‖K[f ](x)‖2dx ≤
∫ 1

0

∫ 1

0

|k(x, y)|2dydx · ‖f‖2L2[0,1]

∴ ‖K[f ]‖L2[0,1] ≤

√(∫ 1

0

∫ 1

0

|k(x, y)|2dydx
)
· ‖f‖L2[0,1]

9. Give two examples of linear subspaces of L2(R) which are not closed and find their
closure.

Solution: There are many options here, for example, Ck functions, i.e. functions
which have k continuous derivatives, which are compactly supported are both linear
subspaces and dense in L2(R) for any k.

10. Suppose that P1 and P2 are orthogonal projections onto subspaces S1 and S2. Show that
P2P1 is an orthogonal projection if and only if P1 and P2 commute, i.e. P1P2 = P2P1

and in this case P2P1 projects onto S2∩S1. Give an example of two projection operators
which do not commute.

Solution: From exercise 1 in the practice problem set, it is clear that Pj = P ∗j
and P 2

j = Pj for j = 1, 2. Suppose that P1P2 is an orthogonal projection. Then
P1P2 = (P1P2)

∗ = P ∗2P
∗
1 = P2P1.

Now suppose that P1P2 = P2P1, then for all f ∈ H
(P1P2f, f − P1P2f) = (P2f, P

∗
1 f − P ∗1P1P2f)

= (P2f, P1f − P 2
1P2f)

= (P2f, P1f − P1P2f)

= (P2f, P1f − P2P1f)

= (P2f, (I − P2)P1f)

= 0 (since P2f ∈ S2 and (I − P2)P1f ∈ S⊥2 )
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11. Let H = L2(R). Let F : H → H be the Fourier transform

F [f ](x) =

∫ ∞
−∞

ei2πxyf(y) dy .

Then it is well known that F is a unitary map with the inverse

F−1[f ](x) =

∫ ∞
−∞

e−i2πxyf(y) dy .

Let f ∗ g denote the convolution operator

f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y) dy

Further, it is also known that

F [fg](x) = F [f ] ∗ F [g] ,

and
F [f ∗ g] = F [f ] · F [g] .

(a) Let χA(x) denote the indicator function of the set A, i.e. χA(x) = 1 if x ∈ A and
0 otherwise. Suppose k0 > 0. Show that

F [χ[−k0,k0]] =
sin(2πk0x)

πx

(b) Let K(x) = F [χ[−k0,k0]](x). Show that∫ ∞
−∞

K(x− z)K(z − y) dz = K(x− y) .

(c) Let K : L2(R)→ L2(R) denote the operator defined by

K[f ](x) =

∫ ∞
−∞

K(x− y)f(y) dy .

Show that K is a bounded operator.

(d) Use part (b) to show that K is a projection operator in the following sense,
K[K[f ]] = K[f ]

(e) Let H0 ⊂ H denote the subspace defined by:

f ∈ H0 if F [f ](x) = 0 ∀|x| > k0 .

Show that H0 is a closed linear subspace. H0 is the subspace of band-limited
functions with band-limit k0.

(f) Show that K is the projection operator onto H0.
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Solution: a)

F [χ[−k0,k0 ] =

∫ ∞
−∞

ei2πxyχ[−k0,k0](y)dy

=

∫ k0

−k0
ei2πxydy =

sin(2πk0x)

πx

b) A simple calculation shows that

(f, g) = (F−1[f ],F−1g) ,

F−1[K(x− z)](ξ) = e−2πiξxχ[−k0,k0](ξ) ,

and
F−1[K(z − y)](ξ) = e−2πiξyχ[−k0,k0](ξ) ,

Combining these three results, we get∫ ∞
−∞

K(x− z) ·K(z − y) =

∫ ∞
−∞

K(x− z) ·K(z − y)dz K is real

=

∫ ∞
−∞
F−1[K(x− z)](ξ) · F−1[K(z − y)](ξ)dξ

=

∫ ∞
−∞

e−2πiξ(x−y)χ[−k0,k0](ξ)dξ

= K(x− y)

c) We first note that

F [K[f ]] = F [K ∗ f ] = F [K] · F [f ] = χ−[k0,k0](x) · F [f ](x) . (1)

Since, the Fourier transform is an isometry, we have

‖K[f ]‖. = ‖F [K[f ]]‖ = ‖χ−[k0,k0](x) · F [f ](x)‖ ≤ ‖F [f ]‖ = ‖f‖ .

Thus K is a bounded operator with ‖K‖ ≤ 1.
d) Follows from part b.
e) Suppose fn → f in L2(R), then F [fn] → F [f ] in L2(R). Since F [fn](x) = 0 for all
n and all |x| > k0, we conclude that F [f ](x) = 0 for almost every x such that |x| > k0.
f) From equation 1, it follows that K[f ] ∈ H0 for all f ∈ H. Moreover

(K[f ], f −K[f ]) = (F [K[f ]],F [f −K[f ]]) =

∫ ∞
−∞

χ−[k0,k0]F [f ] · (1− χ[−k0,k0])F [f ] = 0
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