Problem set 1

Due date: Feb 5

February 14, 2018

1. If $\left\{h_{n}\right\}$ is a sequence in a Hilbert space \mathcal{H} such that $\sum_{n}\left\|h_{n}\right\|<\infty$, then show that h_{n} converges.
Solution: Since $\sum_{n}\left\|h_{n}\right\|<\infty$, we conclude that $\left\|h_{n}\right\| \rightarrow 0$, and thus $h_{n} \rightarrow 0$.
2. Suppose that E is a linear subspace of a Hilbert space \mathcal{H}, then show that the closure of E is also a linear subspace

Solution: Suppose that $x, y \in \bar{E}$, then there exist sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty} \in E$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. For any $c_{1}, c_{2} \in \mathbb{F}$, then $\left\{c_{1} x_{n}+c_{2} y_{n}\right\}_{n=1}^{\infty} \in E$, since E is a linear subspace. Moreover, $c_{1} x_{n}+c_{2} y_{n} \rightarrow c_{1} x+c_{2} y$. Thus, $c_{1} x+c_{2} y \in \bar{E}$.
3. Suppose that E is a subspace of a Hilbert space \mathcal{H}, then show that $\left(E^{\perp}\right)^{\perp}$ is the closure of the span of elements in E, i.e.

$$
\left(E^{\perp}\right)^{\perp}=\overline{\left\{\sum_{j=1}^{N} c_{j} f_{j}, \quad f_{j} \in E\right\}}
$$

Solution: Since E^{\perp} is closed for any subspace E, it suffices to show that finite linear combinations of elements in E are in $\left(E^{\perp}\right)^{\perp}$. Suppose that $f_{j} \in E, j=1,2, \ldots N$, and suppose $c_{j} \in \mathbb{F}, j=1,2, \ldots N$. Then $f=\sum_{j=1}^{N} c_{j} f_{j} \in\left(E^{\perp}\right)^{\perp}$, since for any $g \in E^{\perp}$,

$$
\begin{aligned}
(f, g) & =\left(\sum_{j=1}^{N} c_{j} f_{j}, g\right) \\
& =\sum_{j=1}^{N} c_{j}\left(f_{j}, g\right) \quad \text { (Linearity of inner product) } \\
& =0 \quad\left(\text { Since } g \in E^{\perp}, f_{j} \in E \Longrightarrow \quad\left(f_{j}, g\right)=0\right)
\end{aligned}
$$

4. Suppose that $\mathcal{H}=\ell^{2}(\mathbb{N})$.
(a) Show that if $\left\{a_{n}\right\} \in \mathcal{H}$, then the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ has radius of convergence at least 1
(b) For $\lambda<1$, show that $L\left(\left\{a_{n}\right\}\right):=\sum_{n=1}^{\infty} a_{n} \lambda^{n}$ is a bounded linear functional
(c) Find the element $h_{0} \in \mathcal{H}$ such that $L(h)=\left(h, h_{0}\right)$ and find $\|L\|$

Solution: a) If $\left\{a_{n}\right\} \in \mathcal{H}$, then a_{n} is a bounded sequence, i.e. $\left|a_{n}\right| \leq M$. Thus, it follows from the Weierstrass-M test that, for all $|z|=\rho<1, \sum_{n=1}^{\infty} a_{n} z^{n}$ converges since $\left|a_{n} z^{n}\right| \leq M \rho^{n}$. Thus, radius of convergence is at least 1 .
b) This follows from problem 7 , with $\alpha_{n}=\lambda^{n}$
c) $h_{0}=\left\{\lambda^{n}\right\}$.
5. Let $\mathcal{H}_{1}=\mathbb{L}^{2}([-\pi, \pi])$ be the Hilbert space of functions $F\left(e^{i \theta}\right)$ on the unit circle with the inner product

$$
(F, G)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F\left(e^{i \theta}\right) \overline{G\left(e^{i \theta}\right)} d \theta
$$

Let \mathcal{H}_{2} be the space $\mathbb{L}^{2}(\mathbb{R})$. Using the mapping

$$
x \rightarrow \frac{i-x}{i+x}
$$

of \mathbb{R} to the unit circle, show that:
a) The correspondence $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ given by

$$
U[F]=\frac{1}{\pi^{1 / 2}(i+x)} F\left(\frac{i-x}{i+x}\right)
$$

is a unitary mapping.
b) As a result show that

$$
\left\{\frac{1}{\pi^{1 / 2}(i+x)}\left(\frac{i-x}{i+x}\right)^{n}\right\}_{n=-\infty}^{\infty}
$$

is an orthonormal basis of $\mathbb{L}^{2}(\mathbb{R})$.
Solution: $U(F)=\frac{1}{\sqrt{\pi}} \frac{1}{i+x)} F\left(\frac{i-x}{i+x}\right)$ is a linear function in F. We will show that $U(F)$ is norm preserving

$$
\begin{aligned}
|U(F)|_{\mathbb{L}^{2}(\mathbf{R})}^{2} & =\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{|i+x|^{2}}\left|F\left(\frac{i-x}{i+x}\right)\right|^{2} d x \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}}\left|F\left(\frac{i-x}{i+x}\right)\right|^{2} d x \\
& \left.=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(\frac{i-\tan \left(\frac{s}{2}\right)}{i+\tan \left(\frac{s}{2}\right)}\right)\right|^{2} d s \quad \text { (Making the change of variable } x=\tan \left(\frac{s}{2}\right)\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(\frac{\cos \left(\frac{s}{2}\right) i-\sin \left(\frac{s}{2}\right)}{i \cos \left(\frac{s}{2}\right)+\sin \left(\frac{s}{2}\right)}\right)\right|^{2} d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(\frac{i e^{i \frac{s}{2}}}{i e^{-i \frac{s}{2}}}\right)\right|^{2} d s=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(e^{i s}\right)\right|^{2} d s \\
& =|F|_{\mathcal{H}_{1}}^{2}
\end{aligned}
$$

Therefore U is norm preserving and hence $1-1$.
Consider the mapping $\bar{U}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ defined by $\bar{U} f=f\left(\tan \left(\frac{\theta}{2}\right)\right)\left(i+\tan \left(\frac{\theta}{2}\right)\right) \sqrt{\pi}$.
By a similar calculation as above, we can show that $|\bar{U} f|_{\mathcal{H}_{1}}=|f|_{\mathcal{H}_{2}}$.
Let $f \in \mathcal{H}_{2}$ and $F \in \mathcal{H}_{1}$
Claim: $\bar{U} \circ U(F)=F$
Proof:

$$
\begin{aligned}
\bar{U} \circ U(F) & =\frac{1}{\sqrt{\pi}} \frac{1}{i+\tan \left(\frac{\theta}{2}\right)} F\left(\frac{i-\tan \left(\frac{\theta}{2}\right)}{i+\tan \left(\frac{\theta}{2}\right)}\right)\left(i+\tan \left(\frac{\theta}{2}\right)\right) \sqrt{\pi} \\
& =F\left(e^{i \theta}\right)
\end{aligned}
$$

Similarly, we can show that $U \circ \bar{U}(f)=f$ and hence $\bar{U}=U^{-1}$ and thus U must be onto.
Combining all of these, we see that U is a unitary correspondence between \mathcal{H}_{1} and \mathcal{H}_{2} We know that $\left\{\phi_{n}\right\}_{-\infty}^{\infty}$ where $\phi_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$ is an orthogonal basis of $\mathbb{L}^{2}[-\pi, \pi]$. This means that $F_{n}\left(e^{i \theta}\right)=e^{i n \theta}$ is an orthonormal basis for \mathcal{H}_{1}. Then the claim is that $f_{n}(x)=U F_{n}=\frac{1}{\sqrt{\pi}}\left(\frac{i+x}{i-x}\right)^{n} \frac{1}{i+x}$ forms an orthonormal basis for $\mathbb{L}^{2}(\mathbf{R})$

$$
\left|F_{n}\right|_{\mathcal{H}_{1}}=\left|U F_{n}\right|_{\mathcal{H}_{2}} \quad\left(F_{n}, F_{m}\right)_{\mathcal{H}_{1}}=\left(U F_{n}, U F_{m}\right)_{\mathcal{H}_{2}}
$$

Hence $\left\{f_{n}\right\}$ is orthonormal in \mathcal{H}_{2}. Let $f \in \mathcal{H}_{2}$. Then $\bar{U} f \in \mathcal{H}_{1}$. Suppose f is orthogonal to all the basis vectors f_{n} then $\left(f, f_{n}\right)_{\mathcal{H}_{2}}=0$ for all n.

$$
\left(f, f_{n}\right)_{\mathcal{H}_{2}}=\left(\bar{U} f, F_{n}\right)_{\mathcal{H}_{1}}=0
$$

Hence $\bar{U} f \equiv 0$ since it is orthogonal to all basis elements $F_{n} . \therefore U \circ \bar{U} f \equiv 0$ and hence $f \equiv 0$
6. Prove that the operator $T: \mathbb{L}^{2}[0, \infty] \rightarrow \mathbb{L}^{2}[0, \infty]$

$$
T[f](x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{f(y)}{x+y} d y
$$

is bounded operator with norm $\|T\| \leq 1$.
Solution: Use problem 4, practice problem set 1, with $w(x)=\frac{1}{\sqrt{x}}$.
7. Suppose that the multiplication operator $A: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ is defined via $A e_{n}=\alpha_{n} e_{n}$ where $\left\{e_{i}\right\}_{i=1}^{\infty}$ are the standard coordinate vectors and $\alpha_{n} \in \mathbb{R}$. Then show that A is bounded if and only if $\sup _{n}\left|\alpha_{n}\right| \leq M$.

Solution: $\sup _{n}\left|\alpha_{n}\right| \leq M \Longrightarrow A$ is bounded.
If $f \in \mathcal{H}$, then $f=\sum_{n}\left(f, e_{n}\right) e_{n}$ and $A f=\sum_{n} \alpha_{n}\left(f, e_{n}\right) e_{n}$. By Parseval,

$$
\|f\|^{2}=\sum_{n=1}^{\infty}\left|\left(f, e_{n}\right)\right|^{2}
$$

and

$$
\|A f\|^{2}=\sum_{n=1}^{\infty}\left|\alpha_{n}\left(f, e_{n}\right)\right|^{2} \leq M^{2} \sum_{n}\left\|\left(f, e_{n}\right)\right\|^{2}=M^{2}\|f\|^{2}
$$

Thus, A is bounded.
A is bounded $\Longrightarrow \sup _{n}\left\|\alpha_{n}\right\|<\infty$.
Suppose not. Then there exists a subsequence $n_{k}, k=1,2, \ldots$, such that $\left|\alpha_{n_{k}}\right| \geq k$. A being bounded implies that there exists an $M<\infty$ such that $\|A f\| \leq M\|f\|$ for any $f \in \mathcal{H}$. However $\left\|A e_{n_{k}}\right\| \geq k\left\|e_{n_{k}}\right\|$ holds for any k which is a contradiction.
8. Suppose that $\mathcal{K}: \mathbb{L}^{2}([0,1]) \rightarrow \mathbb{L}^{2}([0,1])$ is defined by

$$
\mathcal{K}[f]=\int_{0}^{1} k(x, y) f(y) d y
$$

where $k(x, y) \in \mathbb{L}^{2}([0,1] \times[0,1])$. Show that \mathcal{K} is a bounded linear operator.

Solution:

$$
\begin{aligned}
|\mathcal{K}[f](x)| & =\left|\int_{0}^{1} k(x, y) f(y) d y\right| \\
& \leq \int_{0}^{1}|k(x, y) f(y)| d y \\
& \leq \sqrt{\left(\int_{0}^{1}|k(x, y)|^{2} d y\right)} \cdot\|f\|_{\mathbb{L}^{2}[0,1]} \quad \text { (Hölder inequality) } \\
\therefore \int_{0}^{1}\|\mathcal{K}[f](x)\|^{2} d x & \leq \int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d y d x \cdot\|f\|_{\mathbb{L}^{2}[0,1]}^{2} \\
\therefore\|\mathcal{K}[f]\|_{\mathbb{L}^{2}[0,1]} & \leq \sqrt{\left(\int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d y d x\right)} \cdot\|f\|_{\mathbb{L}^{2}[0,1]}
\end{aligned}
$$

9. Give two examples of linear subspaces of $\mathbb{L}^{2}(\mathbb{R})$ which are not closed and find their closure.

Solution: There are many options here, for example, C^{k} functions, i.e. functions which have k continuous derivatives, which are compactly supported are both linear subspaces and dense in $\mathbb{L}^{2}(\mathbb{R})$ for any k.
10. Suppose that P_{1} and P_{2} are orthogonal projections onto subspaces S_{1} and S_{2}. Show that $P_{2} P_{1}$ is an orthogonal projection if and only if P_{1} and P_{2} commute, i.e. $P_{1} P_{2}=P_{2} P_{1}$ and in this case $P_{2} P_{1}$ projects onto $S_{2} \cap S_{1}$. Give an example of two projection operators which do not commute.

Solution: From exercise 1 in the practice problem set, it is clear that $P_{j}=P_{j}^{*}$ and $P_{j}^{2}=P_{j}$ for $j=1,2$. Suppose that $P_{1} P_{2}$ is an orthogonal projection. Then $P_{1} P_{2}=\left(P_{1} P_{2}\right)^{*}=P_{2}^{*} P_{1}^{*}=P_{2} P_{1}$.
Now suppose that $P_{1} P_{2}=P_{2} P_{1}$, then for all $f \in \mathcal{H}$

$$
\begin{aligned}
\left(P_{1} P_{2} f, f-P_{1} P_{2} f\right) & =\left(P_{2} f, P_{1}^{*} f-P_{1}^{*} P_{1} P_{2} f\right) \\
& =\left(P_{2} f, P_{1} f-P_{1}^{2} P_{2} f\right) \\
& =\left(P_{2} f, P_{1} f-P_{1} P_{2} f\right) \\
& =\left(P_{2} f, P_{1} f-P_{2} P_{1} f\right) \\
& =\left(P_{2} f,\left(I-P_{2}\right) P_{1} f\right) \\
& =0 \quad\left(\text { since } P_{2} f \in S_{2} \text { and }\left(I-P_{2}\right) P_{1} f \in S_{2}^{\perp}\right)
\end{aligned}
$$

11. Let $\mathcal{H}=\mathbb{L}^{2}(\mathbb{R})$. Let $\mathcal{F}: \mathcal{H} \rightarrow \mathcal{H}$ be the Fourier transform

$$
\mathcal{F}[f](x)=\int_{-\infty}^{\infty} e^{i 2 \pi x y} f(y) d y
$$

Then it is well known that \mathcal{F} is a unitary map with the inverse

$$
\mathcal{F}^{-1}[f](x)=\int_{-\infty}^{\infty} e^{-i 2 \pi x y} f(y) d y
$$

Let $f * g$ denote the convolution operator

$$
f * g(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Further, it is also known that

$$
\mathcal{F}[f g](x)=\mathcal{F}[f] * \mathcal{F}[g],
$$

and

$$
\mathcal{F}[f * g]=\mathcal{F}[f] \cdot \mathcal{F}[g]
$$

(a) Let $\chi_{A}(x)$ denote the indicator function of the set A, i.e. $\chi_{A}(x)=1$ if $x \in A$ and 0 otherwise. Suppose $k_{0}>0$. Show that

$$
\mathcal{F}\left[\chi_{\left[-k_{0}, k_{0}\right]}\right]=\frac{\sin \left(2 \pi k_{0} x\right)}{\pi x}
$$

(b) Let $K(x)=\mathcal{F}\left[\chi_{\left[-k_{0}, k_{0}\right]}\right](x)$. Show that

$$
\int_{-\infty}^{\infty} K(x-z) K(z-y) d z=K(x-y)
$$

(c) Let $\mathcal{K}: \mathbb{L}^{2}(\mathbb{R}) \rightarrow \mathbb{L}^{2}(\mathbb{R})$ denote the operator defined by

$$
\mathcal{K}[f](x)=\int_{-\infty}^{\infty} K(x-y) f(y) d y
$$

Show that \mathcal{K} is a bounded operator.
(d) Use part (b) to show that \mathcal{K} is a projection operator in the following sense, $\mathcal{K}[\mathcal{K}[f]]=\mathcal{K}[f]$
(e) Let $\mathcal{H}_{0} \subset \mathcal{H}$ denote the subspace defined by:

$$
f \in \mathcal{H}_{0} \quad \text { if } \quad \mathcal{F}[f](x)=0 \quad \forall|x|>k_{0} .
$$

Show that \mathcal{H}_{0} is a closed linear subspace. \mathcal{H}_{0} is the subspace of band-limited functions with band-limit k_{0}.
(f) Show that \mathcal{K} is the projection operator onto \mathcal{H}_{0}.

Solution: a)

$$
\begin{aligned}
\mathcal{F}\left[\chi_{\left[-k_{0}, k_{0}\right.}\right] & =\int_{-\infty}^{\infty} e^{i 2 \pi x y} \chi_{\left[-k_{0}, k_{0}\right]}(y) d y \\
& =\int_{-k_{0}}^{k_{0}} e^{i 2 \pi x y} d y=\frac{\sin \left(2 \pi k_{0} x\right)}{\pi x}
\end{aligned}
$$

b) A simple calculation shows that

$$
\begin{gathered}
(f, g)=\left(\mathcal{F}^{-1}[f], \mathcal{F}^{-1} g\right), \\
\mathcal{F}^{-1}[K(x-z)](\xi)=e^{-2 \pi i \xi x} \chi_{\left[-k_{0}, k_{0}\right]}(\xi),
\end{gathered}
$$

and

$$
\mathcal{F}^{-1}[K(z-y)](\xi)=e^{-2 \pi i \xi y} \chi_{\left[-k_{0}, k_{0}\right]}(\xi),
$$

Combining these three results, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} K(x-z) \cdot K(z-y) & =\int_{-\infty}^{\infty} K(x-z) \cdot \overline{K(z-y)} d z \quad \text { K is real } \\
& =\int_{-\infty}^{\infty} \mathcal{F}^{-1}[K(x-z)](\xi) \cdot \overline{\mathcal{F}^{-1}[K(z-y)](\xi)} d \xi \\
& =\int_{-\infty}^{\infty} e^{-2 \pi i \xi(x-y)} \chi_{\left[-k_{0}, k_{0}\right]}(\xi) d \xi \\
& =K(x-y)
\end{aligned}
$$

c) We first note that

$$
\begin{equation*}
\mathcal{F}[\mathcal{K}[f]]=\mathcal{F}[K * f]=\mathcal{F}[K] \cdot \mathcal{F}[f]=\chi_{-\left[k_{0}, k_{0}\right]}(x) \cdot \mathcal{F}[f](x) . \tag{1}
\end{equation*}
$$

Since, the Fourier transform is an isometry, we have

$$
\|\mathcal{K}[f]\| .=\|\mathcal{F}[\mathcal{K}[f]]\|=\left\|\chi_{-\left[k_{0}, k_{0}\right]}(x) \cdot \mathcal{F}[f](x)\right\| \leq\|\mathcal{F}[f]\|=\|f\| .
$$

Thus \mathcal{K} is a bounded operator with $\|\mathcal{K}\| \leq 1$.
d) Follows from part b.
e) Suppose $f_{n} \rightarrow f$ in $\mathbb{L}^{2}(\mathbb{R})$, then $\mathcal{F}\left[f_{n}\right] \rightarrow \mathcal{F}[f]$ in $\mathbb{L}^{2}(\mathbb{R})$. Since $\mathcal{F}\left[f_{n}\right](x)=0$ for all n and all $|x|>k_{0}$, we conclude that $\mathcal{F}[f](x)=0$ for almost every x such that $|x|>k_{0}$.
f) From equation 1 , it follows that $\mathcal{K}[f] \in \mathcal{H}_{0}$ for all $f \in \mathcal{H}$. Moreover

$$
(\mathcal{K}[f], f-\mathcal{K}[f])=(\mathcal{F}[\mathcal{K}[f]], \mathcal{F}[f-\mathcal{K}[f]])=\int_{-\infty}^{\infty} \chi_{-\left[k_{0}, k_{0}\right]} \mathcal{F}[f] \cdot\left(1-\chi_{\left[-k_{0}, k_{0}\right]}\right) \mathcal{F}[f]=0
$$

