Problem set 1

Due date: Feb 5

January 22, 2018

- 1. If $\{h_n\}$ is a sequence in a Hilbert space \mathcal{H} such that $\sum_n ||h_n|| < \infty$, then show that h_n converges.
- 2. Suppose that E is a linear subspace of a Hilbert space \mathcal{H} , then show that the closure of E is also a linear subspace
- 3. Suppose that E is a subspace of a Hilbert space \mathcal{H} , then show that $(E^{\perp})^{\perp}$ is the closure of the span of elements in E, i.e.

$$(E^{\perp})^{\perp} = \overline{\left\{\sum_{j=1}^{N} c_j f_j, \quad f_j \in E\right\}}$$

- 4. Suppose that $\mathcal{H} = \ell^2(\mathbb{N})$.
 - (a) Show that if $\{a_n\} \in \mathcal{H}$, then the power series $\sum_{n=1}^{\infty} a_n z^n$ has radius of convergence at least 1
 - (b) For $\lambda < 1$, show that $L(\{a_n\}) := \sum_{n=1}^{\infty} a_n \lambda^n$ is a bounded linear functional
 - (c) Find the element $h_0 \in \mathcal{H}$ such that $L(h) = (h, h_0)$ and find ||L||
- 5. Let $\mathcal{H}_1 = \mathbb{L}^2([-\pi, \pi])$ be the Hilbert space of functions $F(e^{i\theta})$ on the unit circle with the inner product

$$(F,G) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\theta}) \overline{G(e^{i\theta})} d\theta \,.$$

Let \mathcal{H}_2 be the space $\mathbb{L}^2(\mathbb{R})$. Using the mapping

$$x \to \frac{i-x}{i+x}$$

- of \mathbb{R} to the unit circle, show that:
- a) The correspondence $U: \mathcal{H}_1 \to \mathcal{H}_2$ given by

$$U[F] = \frac{1}{\pi^{1/2}(i+x)}F(\frac{i-x}{i+x})$$

is a unitary mapping.

b) As a result show that

$$\left\{\frac{1}{\pi^{1/2}(i+x)}\left(\frac{i-x}{i+x}\right)^n\right\}_{n=-\infty}^{\infty}$$

is an orthonormal basis of $\mathbb{L}^2(\mathbb{R})$.

6. Prove that the operator $T: \mathbb{L}^2[0,\infty] \to \mathbb{L}^2[0,\infty]$

$$T[f](x) = \frac{1}{\pi} \int_0^\infty \frac{f(y)}{x+y} \, dy$$

is bounded operator with norm $||T|| \leq 1$.

- 7. Suppose that the multiplication operator $A : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ is defined via $Ae_n = \alpha_n e_n$ where $\{e_i\}_{i=1}^{\infty}$ are the standard coordinate vectors and $\alpha_n \in \mathbb{R}$. Then show that A is bounded if and only if $\sup_n |\alpha_n| \leq M$.
- 8. Suppose that $\mathcal{K} : \mathbb{L}^2([0,1]) \to \mathbb{L}^2([0,1])$ is defined by

$$\mathcal{K}[f] = \int_0^1 k(x, y) f(y) \, dy \,,$$

where $k(x, y) \in \mathbb{L}^2([0, 1] \times [0, 1])$. Show that \mathcal{K} is a bounded linear operator.

- 9. Give two examples of linear subspaces of $\mathbb{L}^2(\mathbb{R})$ which are not closed and find their closure.
- 10. Suppose that P_1 and P_2 are orthogonal projections onto subspaces S_1 and S_2 . Show that P_2P_1 is an orthogonal projection if and only if P_1 and P_2 commute, i.e. $P_1P_2 = P_2P_1$ and in this case P_2P_1 projects onto $S_2 \cap S_1$. Give an example of two projection operators which do not commute.
- 11. Let $\mathcal{H} = \mathbb{L}^2(\mathbb{R})$. Let $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ be the Fourier transform

$$\mathcal{F}[f](x) = \int_{-\infty}^{\infty} e^{i2\pi xy} f(y) \, dx \, .$$

Then it is well known that \mathcal{F} is a unitary map with the inverse

$$\mathcal{F}^{-1}[f](x) = \int_{-\infty}^{\infty} e^{-i2\pi xy} f(y) \, dx \, .$$

Let f * g denote the convolution operator

$$f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy$$

Further, it is also known that

$$\mathcal{F}[fg](x) = \mathcal{F}[f] * \mathcal{F}[g] \,,$$

and

$$\mathcal{F}[f * g] = \mathcal{F}[f] \cdot \mathcal{F}[g]$$

(a) Let $\chi_A(x)$ denote the indicator function of the set A, i.e. $\chi_A(x) = 1$ if $x \in A$ and 0 otherwise. Suppose $k_0 > 0$. Show that

$$\mathcal{F}[\chi_{[-k_0,k_0]}] = \frac{\sin(2\pi k_0 x)}{\pi x}$$

(b) Let $K(x) = \mathcal{F}[\chi_{[-k_0,k_0]}](x)$. Show that

$$\int_{-\infty}^{\infty} K(x-z)K(z-y)\,dz = K(x-y)\,.$$

(c) Let $\mathcal{K}: \mathbb{L}^2(\mathbb{R}) \to \mathbb{L}^2(\mathbb{R})$ denote the operator defined by

$$\mathcal{K}[f](x) = \int_{-\infty}^{\infty} K(x-y)f(y) \, dy \, .$$

Show that \mathcal{K} is a bounded operator.

- (d) Use part (b) to show that \mathcal{K} is a projection operator in the following sense, $\mathcal{K}[\mathcal{K}[f]] = \mathcal{K}[f]$
- (e) Let $\mathcal{H}_0 \subset \mathcal{H}$ denote the subspace defined by:

$$f \in \mathcal{H}_0$$
 if $\mathcal{F}[f](x) = 0 \quad \forall |x| > k_0$.

Show that \mathcal{H}_0 is a closed linear subspace. \mathcal{H}_0 is the subspace of band-limited functions with band-limit k_0 .

(f) Show that \mathcal{K} is the projection operator onto \mathcal{H}_0 .