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Roughly speaking, Fredholm theory consists of the study of operators of the form I +A
where A is compact. From this point on, we will also refer to I +A as Fredholm operators.
These are typically the operators for which results from linear algebra naturally extend to
infinite dimensional spaces.

Just to recap, T : H → H is a compact operator if it is well-approximated by finite-rank
operators, i.e., it is the norm limit of finite rank operators, i.e., there exists Tn where Tn are
finite-rank, such that

‖Tn − T‖ → 0 as n→∞

An alternate definition of compact operators is that the image of the unit ball is pre-compact.
This implies that if fn is a bounded sequence and T is a compact operator, then there exists
a subsequence fnk

such that Tfnk
converges.

Remark 1. While these definitions are equivalent on Hilbert spaces, in certain Banach
spaces, the results are in fact not equivalent and the standard definition of compact operators
in that setup is the latter one, i.e., the image of unit ball is pre-compact.

Here are a few examples of compact operators.

1. Finite-rank operators: Since their range is finite dimensional, and bounded sets in
finite dimensions are precompact

2. Diagonal operators with eigenvalues decaying to 0, i.e.

Tek = λkek ,

where λk → 0 as k →∞.

3. Integral operators with a continuous kernel on compact sets:

T [f ](x) =

∫ 1

0

K(x, y)f(y)dy

where K(x, y) : [0, 1]× [0, 1]→ R is continuous. Here T : L2[0, 1]→ L2[0, 1] is compact
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4. Integral operators with weakly-singular kernels (often encountered in solution of partial
differential equations)

T [f ](x) =

∫
G

K(x, y)f(y)dy ,

where K(x, y) is continuous for x 6= y and in the vicinity of x = y, K satisfies

|K(x, y)| ≤ 1

|x− y|α
,

with α < n when G ⊂ Rn. Here, T : L2[G]→ L2[G] is also compact.

In finite dimensions, for any linear operator A, we know that

N (A) = Ran(T ∗)⊥ , Ran(A = N (A∗)⊥ ,

N (A∗) = Ran(A)⊥ , Ran(A∗) = N (A)⊥ .

Moreover
dim(N (A)) = dim(N (A∗)) <∞ .

The results on the right give a complete description for solutions of linear systems Ax = b.
It says that if N (A) = {0}, then there exists a unique solution x to the problem Ax = b
or every b. If dim(N (A)) = k > 0, then there exists a k dimensional family of solutions x
to the problem Ax = b for each b in the range of the operator A, and whether a vector b
is in the range of A or not can be determined by testing a finite number of conditions. If
y1, y2 . . . yk form a basis for N (A∗) and if b satisfies (b, yj) = 0, j = 1, 2, . . . k, then b is in the
range of A.

In infinite dimensions, for all linear operators we have that

N (A) = Ran(A∗)⊥ andN (A∗) = Ran(A)⊥ .

However, the range of operators need not be necessarily closed and hence

N (A)⊥ =
(
Ran(A∗)⊥

)⊥
= Ran(A∗) ,

and similarly

N (A∗)⊥ =
(
Ran(A)⊥

)⊥
= Ran(A) ,

Even if A is compact, it is not necessary that the operator have closed range. Consider the
diagonal operator T defined by T : `2(N) → `2(N) as Tek = ek

k2
, where ek are the standard

coordinate vectors in `2(N). Then a simple calculation shows that Ran(T ) is dense in `2(N),
but does not contain the whole space. The range is dense, since all finite linear combinations
of ek are contained in the range of T . However, the range does not contain the vector(

1,
1

2
,
1

3
, . . .

1

n
, . . .

)
6∈ Ran(T )

For the rest of the section, we set T = I + A where A is compact.
In the next theorem, we show that Fredholm operator of the form T = I +A have finite

dimensional null-spaces.
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Theorem 2. If T = I + A, where A : H → H is compact, then

dim(N (T )) <∞

Proof. Suppose not. Then there exists a collection of orthogonal vectors φk, k = 1, 2, . . ., of
norm one, i.e. (φk, φj) = 0 if j 6= k and ‖φk‖ = 1, such that Tφk = 0. Since φk is a bounded
collection of vectors and A is compact, there exists a subsequence φnk

such that

Aφnk
→ ψ ∈ H as k →∞ .

Then
φnk

= Tφnk
− Aφnk

= −Aφnk
.

Thus,
φnk
→ −ψ as k →∞ ,

which is a contradiction, since φnk
are orthogonal to each other. �

In the following theorem, we show that Fredholm operators of the form T = I + A have
a closed range.

Theorem 3. If T = I + A, where A : H → H is compact, then Ran(T ) is closed

Proof. Suppose fn ∈ Ran(T ), n = 1, 2, . . ., and that fn → f as n→∞. Since fn ∈ Ran(T ),
∃gn such that

Tgn = fn .

Since N (T ) is closed, H = N (T ) ⊕ N (T )⊥. Let gn = χn + φn, where χn ∈ N (T ) and
φn ∈ N (T )⊥. Thus,

fn = Tgn = T (χn + φn) = Tφn .

Claim: φn, n = 1, 2, . . ., is a bounded sequence. Suppose not, then there exists a
subsequence φnk

such that ‖φnk
‖ ≥ k. Let ψk = φnk

/‖φnk
‖ Then

Tψk = T
φnk

‖φnk
‖

=
fnk

‖φnk
‖

Since fn → f , fnk
, k = 1, 2, . . . is a bounded sequence. Thus,

lim
k→∞

Tψk = lim
k→∞

fnk

‖φnk
‖

= 0

Furthermore, since ψk is a bounded sequence and A is compact, there exists a further sub-
sequence ψnk

such that Aψnk,1
→ ψ. Moreover,

lim
k→∞

ψnk,1
= lim

k→∞

(
Tψnk,1

− Aψnk,1

)
= −ψ .

By the continuity of T , we further conclude that

Tψ = lim
k→∞

Tψnk,1
= 0 .
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Thus, ψ ∈ N (T ). Then,

‖ψnk,1
+ ψ‖2 =

∥∥∥∥∥ φnnk,1

‖φnnk,1
‖

+ ψ

∥∥∥∥∥
2

=
1

‖φnnk,1
‖2
∥∥∥φnnk,1

+ ‖φnnk,1
‖ψ
∥∥∥2

=
1

‖φnnk,1
‖2
(
‖φnnk,1

‖2(1 + ‖ψ2‖)
)

(since ψ ⊥ φn)

≥ 1 ,

which contradicts ψnk,1
→ −ψ. This proves the claim.

So what we have now is that
Tφn = fn ,

where φn is a bounded sequence, and fn → f . Since φn is a bounded sequence, and A is
compact, there exists a subsequence φnk

such that Aφnk
→ g as k →∞. Then,

lim
k→∞

φnk
= lim

k→∞
Tφnk

− Aφnk
= lim

k→∞
fnk
− Aφnk

= f − g

By the continuity of T then,

T (f − g) = lim
k→∞

Tφnk
= lim

k→∞
fnk

= f

Thus, f ∈ Ran(T ) and we conclude that Ran (T ) is closed. �
At this stage, we conclude that

N (T )⊥ =
(
Ran(T ∗)⊥

)⊥
= Ran(T ∗) = Ran (T ∗) ,

and that
N (T ∗)⊥ =

(
Ran(T )⊥

)⊥
= Ran(T ) = Ran (T ) ,

for all Fredholm operators of the form T = I + A.

Remark 4. In many references, compact operators are also referred to as first kind Fredholm
operators, and T = I + A, where A is compact are referred to as second kind Fredholm
operators.

We note that if T = I + A, then T n = I + An where An is also compact, since

T n = (I + A)n =
n∑
k=0

(
n

k

)
Ak = I +

n∑
k=1

(
n

k

)
Ak

since each of Ak, k = 1, 2, . . . n are compact, we conclude that T = I + An.
We note that if φ ∈ N (T k), then φ ∈ N (T k+1) for any k, since

T kφ = 0 =⇒ T k+1φ = T (T kφ) = 0 .
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Thus
{0} = N (T 0) ⊆ N (T ) ⊆ N (T 2) . . . ⊆ N (T k) ⊆ N (T k+1) . . .

Similarly, if φ ∈ Ran
(
T k
)
, then φ ∈ Ran

(
T k−1

)
for all k ≥ 1, since

φ ∈ Ran
(
T k
)

=⇒ ∃ψ such that φ = T kψ = T k−1(Tψ) =⇒ φ ∈ Ran
(
T k−1

)
.

Thus,
H = Ran

(
T 0
)
⊇ Ran (T ) ⊇ Ran

(
T 2
)
. . . ⊇ Ran

(
T k
)
⊇ Ran

(
T k+1

)
. . .

Another feature of Fredholm operators of the form T = I +A is that the null spaces and
ranges cannot go nesting indefinitely. The nesting stops at some point. In fact, the point
at which the nesting stops is the same, and the corresponding range and null space form a
direct decomposition of the whole space. Such a result is not necessarily true for compact
operators. For example, consider the right shift operator scaled appropriately.

Remark 5. A combination of right/left shift operators with diagonal scalings are often a
good place to start when hunting for counter-examples.

We prove the result for Fredholm operators of the form T = I + A in the following
theorem which is also referred to as Reisz’s theorem.

Theorem 6. There exists 0 < r <∞ such that

{0} = N (T 0) ( N (T ) ( N (T 2) . . .N (T r−1) ( N (T r) = N (T r+1) = N (T r+2) = . . . ,

and

H = Ran
(
T 0
)
) Ran (T ) ) Ran

(
T 2
)
. . .Ran

(
T r−1

)
) Ran (T r) = Ran

(
T r+1

)
= Ran

(
T r+2

)
. . .

Furthermore, H = N (T r)⊕ Ran (T r).

Proof. We will prove the results in four parts.

1. Claim: There exists 0 < p <∞ such that

{0} = N (T 0) ( N (T ) ( N (T 2) . . .N (T r−1) ( N (T p) = N (T p+1) = N (T p+2) = . . . ,
(1)

Suppose not. Suppose that

{0} = N (T 0) ( N (T ) ( N (T 2) . . .N (T r−1) ( N (T p) ( N (T p+1) ( . . .

Then, there exists φk ∈ N (T k+1), φk ⊥ N (T k) and ‖φk‖ = 1. If n > m, then

‖Aφn − Aφm‖2 = ‖Tφn − Tφm − (φn − φm)‖2

We note that Tφn − Tφm + φm ∈ N (T n). Thus φn ⊥ Tφn − Tφm + φm, and

‖Aφn − Aφm‖2 = ‖φn‖2 + ‖Tφn − Tφm + φm‖2 ≥ ‖φn‖2 = 1 .
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Thus, Aφn cannot have a convergent subsequence, which contradicts the compactness
of A

Therefore, there exists some p such that

N (T p) = N (T p+1) .

Subclaim: for any q ∈ N

N (T q) = N (T q+1) =⇒ N (T q+1) = N (T q+2)

It is clear that
N (T q+1) ⊂ N (T q+2) .

Suppose that φ ∈ N (T q+2), then Tφ ∈ N (T q+1). SinceN (T q+1) = N (T q), we conclude
that Tφ ∈ N (T q), and thus φ ∈ N (T q+1). This proves the subclaim and also the
result (1).

2. Claim: There exists 0 < r <∞ such that

H = Ran
(
T 0
)
) Ran (T ) ) Ran

(
T 2
)
. . .Ran

(
T r−1

)
) Ran (T r) = Ran

(
T r+1

)
= Ran

(
T r+2

)
. . .

(2)
Suppose not. Suppose that

H = Ran
(
T 0
)
) Ran (T ) ) Ran

(
T 2
)
. . .Ran

(
T r−1

)
) Ran (T r) ) Ran

(
T r+1

)
. . .

Then, there exists φk ∈ Ran
(
T k−1

)
, φk ⊥ Ran

(
T k
)

and ‖φk‖ = 1. If n > m, then

‖Aφn − Aφm‖2 = ‖Tφn − Tφm − (φn − φm)‖2

We note that Tφn − Tφm − φn ∈ Ran (Tm). Thus φm ⊥ Tφn − Tφm − φn, and

‖Aφn − Aφm‖2 = ‖φm‖2 + ‖Tφn − Tφm − φn‖2 ≥ ‖φm‖2 = 1 .

Thus, Aφn cannot have a convergent subsequence, which contradicts the compactness
of A

Therefore, there exists some r such that

Ran (T r) = Ran
(
T r+1

)
.

Subclaim: for any q ∈ N

Ran (T q) = Ran
(
T q+1

)
=⇒ Ran

(
T q+1

)
= Ran

(
T q+2

)
It is clear that

Ran
(
T q+1

)
⊃ Ran

(
T q+2

)
.

Suppose that φ ∈ Ran (T q+1), then ∃ g such that φ = T q+1g = TT qg. Since Ran (T q+1) =
Ran (T q), and T qg ∈ Ran (T q), we conclude that T qg ∈ Ran (T q+1), i.e. ∃ h, such that,
T qg = T q+1h. Thus,

φ = T · T qg = T · T q+1h = T q+2h ,

which shows that φ ∈ Ran (T q+2). This proves the subclaim and also the result (2).
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3. Claim: p = r. Suppose not. Suppose first that p > r. In this case, we will show that
p was not minimal i.e. the condition that

N (T p−1) ( N (T p) ,

is violated. Let φ ∈ N (T p). Then T pφ = T · T p−1φ = 0. Since p > r, Ran (T p−1) =
Ran (T p). Thus, ∃g such that T p−1φ = T pg. Then 0 = T · T p−1φ = T · T pg = T p+1g.
Thus, g ∈ N (T p+1). However, N (T p+1) = N (T p), thus g ∈ N (T p), which implies that

T p−1φ = T pg = 0 ,

Thus, φ ∈ N (T p−1) and we conclude that φ ∈ N (T p) =⇒ φ ∈ N (T p−1). Recall
that N (T p−1) ⊂ N (T p) and thus we conclude that N (T p−1) = N (T p) which is a
contradiction.

Suppose now that p < r. In this case, we will show that r was not minimal, i.e. the
condition that

Ran
(
T r−1

)
) Ran (T r) ,

is violated. Suppose that φ ∈ Ran (T r−1), i.e. ∃f such that φ = T r−1f Then Tφ ∈
Ran (T r). Since Ran (T r) = Ran (T r+1), we conclude that ∃g such that

Tφ = T rf = T r+1g .

Thus, T r(f − Tg) = 0 and f − Tg ∈ N (T r). Since p > r, N (T r) = N (T r−1), from
which it follows that

f − Tg ∈ N (T r−1) =⇒ T r−1(f − Tg) = 0 =⇒ φ = T r−1f = T rg .

Thus, φ ∈ Ran (T r−1) =⇒ φ ∈ Ran (T r). This combined with Ran (T r) ⊂ Ran (T r−1)
contradicts the minimality of r.

4. Finally, we now show that H = N (T r) ⊕ Ran (T r). We first show that if such a
decomposition exists, it must be unique. Suppose f ∈ N (T r)∩Ran (T r). Then T rf =
0, and there exists g such that f = T rg. Since T rf = 0, we note that T 2rg = T rf = 0,
i.e. g ∈ N (T 2r). However, N (T 2r) = N (T r) from which we conclude that T rg = 0
and thus f = T rg = 0.

As for existence, let φ ∈ H. Then T rφ ∈ Ran (T r). Moreover, since Ran (T r) =
Ran (T 2r), there exists f such that

T rφ = T 2rf .

Thus, φ−T rf ∈ N (T r), i.e. φ = T rf+g where g ∈ N (T r), and clearly T rf ∈ Ran (T r).

�

A key result for Fredholm operators is that injectivity implies surjectivity + bounded
inverse, which we prove in the theorem below.
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Theorem 7. Suppose that T = I+A where A is compact. If T is injective, then is surjective
and has a bounded inverse.

Proof. Since T is injective, N (T ) = {0}. Thus, N (T 0) = N (T 1) and thus the Reisz index of
the operator T , denoted by r in the previous theorem is r = 1. Thus, H = N (T )⊕Ran (T ).
Since N (T ) = {0}, we conclude that Ran (T ) = H and thus T is surjective.

We prove that T has a bounded inverse by contradiction. Suppose T−1 is not bounded,
then there exists a sequence fn, such that ‖fn‖ = 1 and ‖T−1fn‖ ≥ n. Let gn = T−1fn, then
‖gn‖ ≥ n. fn = Tgn and

fn
‖gn‖

= T

(
gn
‖gn‖

)
Since ‖fn‖ = 1 and ‖gn‖ ≥ n, we conclude that

lim
n→∞

fn
‖gn‖

= 0 .

Moroever, since gn/‖gn‖ is a bounded sequence and A is compact, there exists a convergent
subseqeunce

lim
k→∞

A
gnk

‖gnk
‖

= ψ ,

Then

lim
k→∞

gnk

‖gnk
‖

= lim
k→∞

T
gnk

‖gnk
‖
− A gnk

‖gnk
‖

= lim
k→∞

fnk

‖gnk
‖
− A gnk

‖gnk
‖

= 0− ψ

Moreover, by the continuity of T

Tψ = lim
k→∞

T
gnk

‖gnk
‖

= lim
k→∞

fnk

‖gnk
‖

= 0 ,

Since T is injective, we conclude that ψ = 0 which is a contradiction since a subsequence of
norm 1 vectors (gnk

/‖gnk
‖) is converging to 0. �

Another special feature of Fredholm operators of the form T = I+A is that the dimension
of the null spaces of T and T ∗ are the same.

Theorem 8. If T = I + A where A is compact, then

dim(N (T )) = dim(N (T ∗)) .

Proof. Suppose that m = dim(N (T )) and n = dim(N (T ∗)).
Case 1: Suppose that m = 0. Then dim(N (T )) = 0. From theorem 6, we note that

Ran (T ) = H. Moreover, N (T ∗) = Ran (T )⊥, thus, we conclude that N (T ∗) = {0} and that
n = 0.

Case 2: Suppose that n = 0. A similar argument shows that m = 0.
Case 3: m,n > 0. In this case, we will now construct a Fredholm operator of the form

T1 = I + A1 where A1 is compact, which has the following properties. dim(N (T1) = m− 1,
and dim(N (T ∗1 )) = n − 1. If we can construct such an operator, then using a recursive
argument, we can construct an operator Tn if m > n such that dimN (T ∗n) = 0, in which case
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we can appeal to case 2, or an operator Tm if m < n such that dimN (T ∗m) = 0, in which case
we can appeal to case 1 and we are done.

Construction of T1:
Suppose that f1, f2 . . . fm is an orthogonal basis for N (T ) and g1, g2, . . . gn is an orthogonal
basis for N (T ∗). Then define

T1 = T − (·, f1)g1 ,

i.e.
T1h = Th− (h, f1)g1 ∀h ∈ H

Suppose that h ∈ N (T1). Then,

T1h = Th− (h, f1)g1 = 0 =⇒ Th = (h, f1)g1

Since g1 ∈ N (T ∗) = Ran (T )⊥ and Th ∈ Ran (T ), we conclude that Th = 0 and (h, f1) = 0.
Since f1, f2, . . . fm form a basis for N (T ), there exists αj ∈ F such that h =

∑m
j=1 αjfj.

However, (h, f1) = 0 =⇒ α1 = 0 and thus, h =
∑m

j=2 αjfj.
Conversely, if h =

∑m
j=2 αjfj, then Th = 0 (since h ∈ N (T )) and (h, f1) = 0 (since

fj ⊥ f1 for j 6= 1). Thus if h =
∑m

j=2 αjfj, then h ∈ N (T1).
These two results imply that h ∈ N (T1) if and only if

h =
m∑
j=2

αjfj ,

which shows that dim(N (T1)) = m− 1.
The adjoint of T1 is given by

T ∗1 = T ∗ + (·, g1)f1 ,

and a similar calculation shows that dim(N (T ∗)) = n− 1 which concludes the proof. �

Remark 9. Fredholm operators are more generally defined to be operators which have a finite
dimensional null space, whose range is closed and the adjoints also have a finite dimensional
null space. In general, for Fredholm operators as well, the null spaces of T and T ∗ need not
be the same. The difference between the dimension of the null space of the operator and its
adjoint is referred to as the index of the operator. Thus, the statement above can be restated
as, if T is a Fredholm operator of the form I +A, then it has index 0. Classical examples of
Fredholm operators with non-zero index are the left and right shift operator (Verify this).

1 Extension of results to the case of Banach spaces

For the rest of this section, we will assume that X is a Banach space and that X∗ is the
dual of X. A key property that was used over and over again in the derivation of the above
results was that given U ⊂ V where V is a closed subspace of X and U is a closed linear
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subspace of V which satisfies V \ U 6= ∅, then there exists a φ ∈ V \ U such that ‖φ‖ = 1
and that φ ⊥ U . An alternate formulation of the condition φ ⊥ U is that for all g in U ,

‖φ− g‖2 = ‖φ‖2 − 2(φ, g) + ‖g‖2 ≥ 1 .

This also implies that there exists a φ with ‖φ‖ = 1 such that

d(φ, U) = inf
g∈U
‖φ− g‖ = 1

In Banach spaces, the above result does not hold in general. However, a slightly weaker
version of the above result is still true and is stated below.

Lemma 10. Suppose that V is a closed subspace of X and that U is a closed linear subspace
of V such that V \ U 6= ∅. Then, for any α < 1, there exists f ∈ V with ‖f‖ = 1 such that

d(f, U) = inf
g∈U
‖f − g‖ ≥ α .

Proof. Let ψ ∈ V \ U . Since U is a closed linear subspace of V , it follows that

d(ψ,U) = inf
g∈U
‖ψ − g‖ = β > 0 .

Note that β here cannot be zero. Moreover, since α < 1, there exists a ψ0 ∈ U such that

β ≤ ‖ψ − ψ0‖ ≤
β

α
. (3)

Then, f defined via

f =
ψ − ψ0

‖ψ − ψ0‖
,

satisfies the desired inequality. For any g ∈ U

‖f − g‖ =

∥∥∥∥ ψ − ψ0

‖ψ − ψ0‖
− g
∥∥∥∥

=
1

‖ψ − ψ0‖
‖ψ − (g‖ψ − ψ0‖+ ψ0)‖ .

Since g, ψ0 ∈ U and U is a linear subspace, g‖ψ − ψ0‖+ ψ0 ∈ U . By definition, d(ψ,U) ≥ β
which in particular implies that ‖ψ− (g‖ψ−ψ0‖+ψ0)‖ ≥ β. Moreover, from equation 3, it
follows that

1

‖ψ − ψ0‖
≥ α

β
.

Combining these estimates, we observe that

‖f − g‖ =
1

‖ψ − ψ0‖
‖ψ − (g‖ψ − ψ0‖+ ψ0)‖ ≥

α

β
· β = α .

�

In the next theorem, we show that Fredholm operator of the form T = I +A have finite
dimensional null-spaces.
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Theorem 11. If T = I + A, where A : X → X is compact, then

dim(N (T )) <∞

Proof. Suppose not. Then there exists a collection of vectors φk, k = 1, 2, . . ., of norm one
which satisfy

‖φk − φj‖ ≥
1

2
.

To see, that since the null space is infinite dimensional, there exists a sequence of linearly inde-
pendent vectors x1, x2, . . . xk, . . ., which satisfy Txi = 0 for all i. Let Ek = span(x1, x2, . . . xk).
Then each Ek is a closed linear subspace, with Ek ⊂ Ek+1, Ek+1 \ Ek 6= ∅, and Tf = 0 for
all f ∈ Ek for all k. Set φ1 = x1/‖x1‖. By the above lemma, we know that there exists
φk ∈ Ek+1 which satisfies ‖φk‖ = 1, and d(φk, Ek) ≥ 1

2
. In particular ‖φk − φj‖ ≥ 1

2
for all

j = 1, 2, . . . k− 1, since φj ∈ Ek for all j = 1, 2, . . . k− 1. Moreover, since φk ∈ Ek+1, we note
that Tφk = 0. This is our desired sequence of vectors φ. Since φk is a bounded collection of
vectors and A is compact, there exists a subsequence φnk

such that

Aφnk
→ ψ ∈ H as k →∞ .

Then
φnk

= Tφnk
− Aφnk

= −Aφnk
.

Thus,
φnk
→ −ψ as k →∞ ,

which is a contradiction, since φnk
are at least a distance 1/2 from each other. �

In the following theorem, we show that Fredholm operators of the form T = I + A have
a closed range.

Theorem 12. If T = I + A, where A : H → H is compact, then Ran(T ) is closed

Proof. Suppose fn ∈ Ran(T ), n = 1, 2, . . ., and that fn → f as n→∞. Since fn ∈ Ran(T ),
∃gn such that

Tgn = fn .

A critical step in the proof in the case of Hilbert space was to show that there exists
χn such that Tφn = Tgn = fn where φn = PN (T )⊥gn, and φn is a bounded sequence. Here
PN (T )⊥ denotes the orthogonal projection onto the subspace N (T )⊥.

Since, we do not have projection operators in Banach spaces, we will show that For each
gn, we find χn ∈ N (T ) which is the best approximation of gn in N (T ), i.e.

‖gn − χn‖ = inf
χ
‖gn − χ‖ ,

and show that φn = gn−χn is a bounded sequence. Firstly, there exists a closest element χn
in N (T ), even if X is not reflexive (note that we’ve shown in homework assignments, that
there exists a unique closest element to a closed linear subspace in reflexive Banach spaces).
The reason for this is that N (T ) is a finite dimensional closed linear subspace.
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Claim: φn, n = 1, 2, . . ., is a bounded sequence. Suppose not, then there exists a
subsequence φnk

such that ‖φnk
‖ ≥ k. Let ψk = φnk

/‖φnk
‖ Then

Tψk = T
φnk

‖φnk
‖

=
fnk

‖φnk
‖

Since fn → f , fnk
, k = 1, 2, . . . is a bounded sequence. Thus,

lim
k→∞

Tψk = lim
k→∞

fnk

‖φnk
‖

= 0

Furthermore, since ψk is a bounded sequence and A is compact, there exists a further sub-
sequence ψnk

such that Aψnk,1
→ ψ. Moreover,

lim
k→∞

ψnk,1
= lim

k→∞

(
Tψnk,1

− Aψnk,1

)
= −ψ .

By the continuity of T , we further conclude that

Tψ = lim
k→∞

Tψnk,1
= 0 .

Thus, ψ ∈ N (T ). Then,

‖ψnk,1
+ ψ‖ =

∥∥∥∥∥ φnnk,1

‖φnnk,1
‖

+ ψ

∥∥∥∥∥
=

1

‖φnnk,1
‖

∥∥∥φnnk,1
+ ‖φnnk,1

‖ψ
∥∥∥

=
1

‖φnnk,1
‖

∥∥∥gnnk,1
− χnnk,1

+ ‖φnnk,1
‖ψ
∥∥∥ (φ = g − χ)

=
1

‖φnnk,1
‖

inf
χ∈N (T )

‖gnnk,1
− χ‖ (since ψ‖φ‖+ χ ∈ N (T ))

=
1

‖φnnk,1
‖
‖gnnk,1

− χnnk,1
‖ =

1

‖φnnk,1
‖
· ‖φnnk,1

‖ = 1

which contradicts ψnk,1
→ −ψ. This proves the claim.

So what we have now is that
Tφn = fn ,

where φn is a bounded sequence, and fn → f . Since φn is a bounded sequence, and A is
compact, there exists a subsequence φnk

such that Aφnk
→ g as k →∞. Then,

lim
k→∞

φnk
= lim

k→∞
Tφnk

− Aφnk
= lim

k→∞
fnk
− Aφnk

= f − g

By the continuity of T then,

T (f − g) = lim
k→∞

Tφnk
= lim

k→∞
fnk

= f

Thus, f ∈ Ran(T ) and we conclude that Ran (T ) is closed. �

We remark a few things at this stage.
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• If T : X → X is a bounded linear operator, then T ∗ : X∗ → X∗ is also a bounded
linear operator.

• For any subspace U ⊂ X, we define U⊥ ⊂ X∗ as

f ∈ U⊥ ⊂ X∗ if f(x) = 0 ∀x ∈ U .

• Similarly, for any subspace V ⊂ X∗, we define ⊥V ⊂ X as

x ∈⊥ V ⊂ X if f(x) = 0 ∀f ∈ V .

• If U is a linear subspace of X, then ⊥U⊥ = U

• If V is a linear subspace of X∗, then ⊥V ⊥ = V

• From these definitions, for any bounded operator T , we can show that

N (T ) =⊥ Ran(T ∗) and N (T ∗) = Ran(T )⊥

• For second kind Fredholm operators T , we get to specialize the result further, and
conclude that

N (T )⊥ =
(⊥Ran(T ∗)

)⊥
= Ran(T ∗) = Ran (T ∗) ,

and that
⊥N (T ∗) =⊥

(
Ran(T )⊥

)
= Ran(T ) = Ran (T ) .

The proof of Reisz’s theorem (see Theorem 6), requires similar minor modifications to
accommodate for the fact that we do not have projections and can’t compute orthogonal
complements of subspaces. However, the slightly weaker statement of Lemma 10 is sufficient.
To see this in action, let us prove a part of Reisz’s theorem.

Lemma 13. There exists 0 < p <∞ such that

{0} = N (T 0) ( N (T ) ( N (T 2) . . .N (T r−1) ( N (T p) = N (T p+1) = N (T p+2) = . . . , (4)

Proof. Suppose not. Suppose that

{0} = N (T 0) ( N (T ) ( N (T 2) . . .N (T r−1) ( N (T p) ( N (T p+1) ( . . .

Then, by Lemma 10, there exists φk ∈ N (T k+1) and ‖φk‖ = 1, such that

inf
φ∈N (Tk)

‖φk − φ‖ ≥
1

2

If n > m, then

‖Aφn − Aφm‖ = ‖Tφn − Tφm − (φn − φm)‖

13



We note that Tφn − Tφm + φm ∈ N (T n). Thus

‖Aφn − Aφm‖ = ‖φn − (Tφn − Tφm + φm)‖ ≥ inf
φ∈N (Tn)

‖φn − φ‖ ≥
1

2
.

Thus, Aφn cannot have a convergent subsequence, which contradicts the compactness of A
Therefore, there exists some p such that

N (T p) = N (T p+1) .

�

Given, the proof of Reisz theorem for Banach spaces, we next proceed to show that a
Fredholm operator T is injective if and only if it is bijective, or alternately known as the
Fredholm alternative. We observe that the proof outlined for Hilbert spaces in Theorem 7
just carries forward.

Exercise: Show that dim(N (T )) = dim(N (T ∗)) if T ∈ L(X,X) = I + A where A is
compact.
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