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The story described in this paper has started with the *death or survival’ criterion,
which the author published in 1972-1974 and had obtained in 1968 while
investigating Kolmogorov’s hypothesis that the turbulent dissipation e(dx) in a box
is log-normally distributed. Using this criterion, the present paper discusses the
concrete significance of negative fractal dimensions. They arise in those random
multifractal measures, for which the Crameér function f(a) (the ‘spectrum of
singularities ) satisfies f(a) < 0 for certain values of «. It is shown that in that case
the strict ‘thermodynamical formalism ’ solely involves the form of f(«) in the range
where f(a) > 0, and concerns three aspects of such measures: (a) the fine-grained
multifractal properties, which are non-random and the same for (almost) all
realizations: (b) the properties obtained by using the *partition function’ formalism ;
and (c) the “typical’ coarse-grained multifractal properties. However, the f(«)s in the
range where f(a) > 0 say nothing about the variability of coarse-grained properties
between samples. A description of these fluctuations. hence a fuller multifractal
description of the measure, is shown to be provided by the values of f(«) in the range
where f(a) < 0. We prefer to reserve the term ‘thermodynamic’ for the fine-grained
and partition-functional properties, and to say that the coarse-grained properties go
bevond the thermodynamies, i.e. are not macroscopic but ‘mesoscopic .

Dedication

While the material in this paper is several stages removed from anything done by
Kolmogorov, it is appropriate that it should be dedicated to the memory of Andrei
Nikolaievitch. A token of his greatness is that his work spanned fields far removed
from one another. I vow special admiration for his several brief forays in highly
specialized fields where he could not be more than a transient visitor. His classic K41
theory is of course the oceasion of the present collection of papers. His second foray
into turbulence, close in content to what I propose to write about, occurred in 1962
and was extremely brief. Kolmogorov’s (1962) paper may even seem an expository
report on Obukhov (1962), but in fact puts forward a bold ‘third hypothesis of exact
log-normality. And careful reading by several authors has revealed profound flaws in
this hypothesis. When a giant stumbles, it is safe to expect subtle issues to be
involved. We must be grateful to Kolmogorov for having pointed out a path he did
not choose to follow himself very far, and for spurring much hard and rewarding work.
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80 B. B. Mandelbrot

1. Multifractal measures, Cramer renormalization, the geometric and
analytic forms of scaling, and the pitfalls of the partition function

(w) The distribution of coarse-grained multifractal measures, and the issue of how the
probability densities should be renormalized to ensure asymptotic collapse

The purpose of this paper is to tackle an issue much more general than log-
normality. Nevertheless, it is best to begin with the hypothesis of log-normality,
stated in the vocabulary that is today current among physicists, and to use it to
describe some subtle ‘anomalies’. Assuming translational invariance, we denote by
e(dx) the dissipation in a small spatial domain dx around a point x. The K41 theory
postulates that e(dx) = &, da, dz,. The K62 theory starts with the postulate that
¢(dx) is random. Being defined for domains dx, ¢(dx) is a random measure.

It is customary in the study of multifractals to write ¢(dx) = €|dx|*. This notation
is used in my book (Mandelbrot 1982, p. 372) and in hundreds of more recent
references; a(dx) is a coarse-grained version of the Hélder exponent.

To specify a random funection of time, one needs the probability distributions of its
increments over different time increments df. Similarly, the first things to know
about a measure e(dx) are the probability distributions for all |[dx| of the value of ¢
(or of «) when the domain dx is chosen at random. Because of translational
invariance, the probability density of a can be written as p(e,dx). Statistical
mechanics and the dimensional analysis that underlies all fractal considerations
suggest the following question. *Can the p(e, dx), corresponding to different values
of |dx| be renormalized so that they collapse into a single expression, at least for
|[dx| =07’

The key fact about multifractal measures is that such collapse occurs. The
collapsed expression, a function of ¢, is usually denoted by f(x). For reasons that will
become clear in §1d, we shall call it Cramér function. It describes the multifractal
properties of the measure e(dx).

The specific goal of this paper is to discuss cases where f(x) < 0 for some values of
a. This will complete a task T undertook many years ago.

(B) On self similarity, or geometric scaling, versus analylic scaling

Before we define f(a), it is useful to excerpt from the Manifesto in praise of explicit
and visualized geometry in Mandelbrot (1984). ‘A theme that runs increasingly
strongly in my work is that explicit and visualized geometry is important in science
and in mathematics. Blind analytic manipulation is never enough. Formalisms,
however effective in the short run, are never enough. Many quantities that have
originated in geometry eventually come to be used only in analytic relations: but to
forget geometry, and simply identify the fractal dimension ) with an analytic
quantity, is not enough.’

One may add that the multifractal formalisms, when used mechanically, neglecting
their geometric meaning, are not enough. The proof has been provided by the very
fact that two schools of thought define the notion of multifractal in profoundly
different ways.

We must therefore tackle the very distasteful topic of definitions. Informally,
‘fractal sets and multifractal measures are geometric objects such that each small
part is very much like a reduced size image of the whole’. Unfortunately, no single
formal definition fits, and I use the following realistic semi-formal description. ‘A
fractal is a random or non-random set that is geometrically scaling. A multifractal
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Negative dimensions and limitations of thermodynamics 81

is a random or non-random measure that is geometrically scaling. Either may be
linearly self similar or linearly self affine, or may perhaps fail to fulfil either condition
exactly, but come close enough to be handled with the help of the same mathematical
tools.”

For other authors, however, ‘fractals and multifractals are geometric objects that
satisfy diverse analytic scaling relations’.

In the case of fractals on which mass is distributed in fractally homogenous
fashion, the mass M(R) within a radius R satisfies M(R) ~ RP. There is competition
between a geometric description of fractal sets and an analytic description based on
the above M(R). But in practical terms, this has not mattered much.

In the case of multifractals, the situation has proven to be surprisingly different.
Since analytic scaling is not directly linked to specific implementations, one may
have expected it to be the more general notion. But in fact it has proven to be
narrower, and multifractal measures that are geometrically but not analytically
scaling prove to be needed to study two topics of fundamental character: turbulence
and fractal aggregates. This creates the need for a sharp distinction.

The broad multifractals will be defined as being geometrically scaling. The
simplest and best known are the multiplicatively generated multifractals, either non-
random (as studied by the school of A.S. Besicovitch at the University of
Cambridge) or random (as studied in my works listed in the References). These
measures are exactly renormalizable, by design. Diverse analytic scaling relations
hold in most cases, but other analytic scaling relations either fail to hold or are of
restricted validity.

The narrow multifractals will be defined as being analytically scaling in a strong
sense. Therefore, they exclude the broad multifractals for which analytic scaling
either fails or is weakened.

At one time, this distinction seemed to lack practical bite, but it is proving
increasingly important. In particular, the present paper is devoted to two results. (a)
The requirement of analytic scaling excludes the random multiplicative multifractals
with f(e) < 0. (b) Deep differences exist in the extent to which different multifractals
are represented by the ‘thermodynamical formalism .

(¢) The partition function and its pitfalls

The most widely used analytic scaling relation concerning multifractals involves
the partition function y(g, |dx|) = Ze?(|dx|). It concerns a measure € that was coarse-
grained by boxes of equal side |[dx|. Divided by a total number of boxes, y is a sample
gth moment of the coarse-grained measure e(dx).

Random or non-random measures constructed by a multiplicative cascade (see §2
below) resulting are geometrically scaling, and the expectation of y(¢, |dx|), if finite,
takes the analytically scaling form |dx|"? (Mandelbrot 1974 a, b). In the non-random
case, ‘expectation’ is of course to be replaced by actual value. When p > 0 for all
boxes and the |dx| are equal (as we shall suppose throughout), this y is finite. The
revival of interest in multifractals first limited to the non-random case. The function
7(g) was reintroduced in Hentschel & Procaccia (1983), and Halsey ef al. (1986) define
a (non-random) multifractal as a measure satisfying y(q, dx) = |dx|"?.

When physicists moved from non-random to random multifractals, it seemed
reasonable to use the same formalism, reasonable not to envision the possibility that
expectations can diverge, and reasonable to expect the sample y to follow the same
analytical scaling rule as its expectation. For these reasons, the analytic scaling of
the sample y is widely used to define the notion of multifractal.
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82 B. B. Mandelbrot

Unfortunately, those apparently reasonable pseudo-ergodic presuppositions were
ill-inspired. The sample and population expressions turn out to be very distinet
notions in the context of random multifractals. The function 7(¢) is finite in the non-
random case, and is necessarily an increasing function of g, for all gs. So is (let me
add) the ratio 7(¢)/q. In the random case, to the contrary, the function 7(g) based
upon expectations may only be defined in some restricted range, ¢, < ¢ < ¢ .. and
7(g) and 7(q)/q need not be increasing. This difference is a clue to why probabilistically
interesting results in Mandelbrot (1974 a, b) and Kahane & Peyriere (1986) show that
many ‘physically reasonable” anticipations fail in the case of multifractals. There are
many random cases of central importance such that analytical scaling holds for the
expectation {€?), where the expectation is carried over the whole ensemble or
population of es, but either fails for the sample partition function y, or holds in a
weakened form.

(d) Cramér renormalization in the log-normal case, and the Cramér limit
Sfunction C(x)
Kolmogorov’s hypothesis of log-normality makes no explicit reference to the
mechanism that generates the measure ¢(dx). It merely postulates that there is a
parameter g > 0, such that the probability density p(e,dx) is the gaussian

(k/emu)t exp {— k[a— (1 +Lu)]%/2u}.

The factor k in this expression stands for log,|dx|, where b is an integer called basis,
to be explained shortly.

It can be seen (Mandelbrot 1974a. b, 1989) that this hypothesis is untenable,
meaning that a measure having this p(e, dx) cannot be implemented. The nearest
thing conceptually is a multiplicative measure that is constructed using log-normal
multipliers, but does not itself involve log-normal e(dx). However, we shall find it
useful to list some strange and anomalous consequences of log-normality. Then we
proceed to a careful analysis that shows that one consequence is indeed irremediably
unacceptable, but another leads to a variety of interesting facts.

As mentioned in §1a. the basic issue concerning multifractals is that of data
collapse. The above expression for p(a, dx) can indeed be renormalized in such a way
that it ceases to depend as |dx|. This is shown directly but only in passing in
Mandelbrot (19745, p. 357) and in detail but only implicitly in Frisch & Parisi (1985)
and Halsey et al. (1986). The key is to perform. what I propose to call, Cramer
renormalization by considering the expression

C(a, |dx]) = In p(a, dx)/In |dx]|.
Under the hypothesis of log-normality,
lim g, o Cle, [dx]) = —[— (L+30)]*/2p = C(a),

by definition of C(«). Therefore, Crameér renormalization yields asymptotic collapse
for the log-normal probability distributions. This collapse might have been a
serendipitous consequence of log-normality. In the more general cases I have studied
and shall summarize in §2. ¢ is built by a recursive multiplicative cascade, and
Cramer collapse results from a theorem by Harold Cramér. In the approach in Halsey
et al. (1986), a result that is a special case of Cramer collapse comes out of a
mechanical manipulation of symbols. In any event, it remains in each case to deduce
C(x) from the rules governing e, and to draw consequences.
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2. Multiplicative multifractals and the ‘anomalies’ of the log-normal
() or f(a)
(a) Backgrownd : the binomial multifractals

The binomial measures depend upon a single real parameter m,, variously called
a multiplier or a mass. One assumes that 0 <m, < 1 and m, # 1, and one defines
m, = 1 —m,. The basic ‘ generating step ' spreads mass over the halves of every dyadic
interval, with the relative proportions m, and m, placed to the left and to the right.
Thus, the first stage yields the mass m, in [0,1] and the mass m, in [3,1]. After k
stages, let ¢, and ¢, denote the relative frequencies of Os and 1s in the binary
development of t = 0.4, /3, ... B, written in the counting base b = 2. With the binomial
measure, the dyadic interval [df] = [, ¢+ 2%] receives the mass u(dt) = m{#omi. It
follows that a = a(p,, @) = —@,log, my—g, log, m,.

As to the number of intervals leading to ¢, and @, it is Nk, @,. @) = k!/ (kpy)! (kp,)!
Hence, the similarity dimension of the set where this a is observed is

Ak, @y, 1) = —InN(k, o, 1)/ In (dt) = —In [k!/(kep,)!(ke,)!]/In(d?).

For large k, lim,__ ok, ¢q @) = —@,log, o, —¢; log,@,. Eliminating ¢, and g,
between o and 8, we obtain a function f(x) written in parametric form.

It is extremely important to restate f(x) in terms of rescaled doubly logarithmic
plots of probability densities. The binomial measures are, of course, not random, but
a random variable appears when a dyadic box of length 27 is picked at random
among the 2¥ boxes. Then the Hilder exponent become a random variable, to
be denoted by H. The probability of hitting a prescribed «, to be denoted by
Pr{H = a}, equals 27*N(k, ¢,.p,) and satisfies

Clk, @, ;) = —In Pr{lH = a}/Indt = —In2"*N(k, @,,¢,)/In dt.

Hence, the Cramer’s function is C(a) = lim,__, C(k,¢,.¢,) = fle)—1. More gen-
erally, if ¢ is built on a support other than the interval [0, 1], one has

fla) = C(a) +dimension of the measure’s support.

This relation is of broad validity, and allows us to evaluate f(a) via the Cramer
funetion ().
(b) Random mulliplicalive measwres

The salient feature of the Besicovitch measures in §2a is that each stage of
construction multiplies a mass by a non-random factor m, or m,. To generalize
(Mandelbrot 1974 a, b), we allow this multiplying factor to be random. For example,
consider the base b box of length &7 starting at ¢ = 0.6000.... To each g with
0 < f < b—1 corresponds a random multiplier M(/5).

By a repetition of this scheme, the b-adic box of length b7% starting at t =
0.8, B,... 5, 18 assigned the mass

pho(dty = M(B) M(By, o) ... M(By, ... Br,) = T M.

Here, the successive random multipliers M for given ¢ are independent and we shall
assume them to be identically distributed.

Plotting s(d?) in logarithmic scale and normalizing by dividing through log, df, and
writing —log, M = V, our box of base b yields

H = Inp(dt)/In (d2) = (1/k)][ —log, M(8,)—log, M(B,. B,)...1 = (1/k) T V.
Proc. RB. Soc. Lond. A (1991)



84 B. B. Mandelbrot

Thus, the random variable H is simply the average of k independent random
variables.

Strict and average conservation of mass

To fit the image of ‘mass’, it is natural to assume some form of conservation. In
a conservative construction, the point of coordinates M(f) is a random point in the
portion of b-dimensional space defined by M(f) = 0 and XM () = 1. This implies
M<1 and {(M>=>5b"' A variant construction, called canonical (Mandelbrot
1974 a,b), assumes that the M(f) are statistically independent, without the constraint
M < 1, and that mass is only conserved on the average, meaning that (M) =b"'.
These distinetions are important, but it has been shown (Durrett & Liggett 1983)
that the rules of dependence between the multipliers do not change the death or
survival criterion. The fact that they do not affect the multifractal formalism may
even be viewed as demonstrating that this formalism treats as being different
measures that may otherwise be important.

(¢) Standard limit theorems and the Cramer theorem

We denote by p(z) probability density of V and by p,(v) the probability density of
2 V. In general, the probability density kp,(kx) of H = (1/k)ZV is impossibly
complicated and its limit distribution for k— o0 is necessarily investigated using
limit theorems. The plural is needed, because convergence of random variables can
be defined in a variety of very different ways, hence there is a multiplicity of limit
theorems, all different and each true on its own terms.

The law of large numbers tells us that if (/) <oc then H converges to (), which
implies that C'(a) has its maximum for a, = (H). And the central limit theorem tells
us that if (H*» < oo then C(a) is parabolic in the immediate neighbourhood of «, =
{H>. In the multifractal context, these results are without interest, the reason being
that they give little weight to as far from a,. To determine C(x), one needs the very
different ‘large deviations theorem’ of Harold Crameér (see Chernoff 1952; Daniels
1954). The Cramer theory has been rather obscure until now, but it is likely to soon
become widely known and used. As k- o0, the ‘local Cramer theorem ™ asserts that
(1/k)log, (probability density of o) converges to a limit /().

The Legendre formalism

The Cramer theory also shows that f(a) = C(a)—1 and 7(q) = —1—log,{(M?) are
linked by the Legendre and inverse Legendre transforms. 1t is natural that the best
proof of Cramer’s result, in Daniels (1954), should use the steepest descent argument.

(d) Four anomalies of the log-normal f(a), and the key to their solution
The idea has spread that the graph of f(«) always has the (") shape characteristic
of the binomial, including the property that f(a) > 0. In fact, the () shape is only
encountered for multifractals that belong to a limited class I have called restricted
or narrow. By this standard, the parabolic graph in §1d presents numerous
‘anomalies’.

The o, <0 anomaly

This is in appearance the most absurd of all four. Its background is that the
function f(«) satisfies fla) < «, and that the equation f(a) = « has a single root a,,
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which for narrow multifractals is both the Holder exponent and the dimension of the
measure theoretical support of the measure g. In the log-normal case, however, one
finds that a; = 1 —Lu. It follows that o; < 0 when z > 2: how can a Holder exponent
be negative ? This feature is to be discussed in §3a.

The o < 0 anomaly

This is a second most absurd anomaly, and is encountered for all values of x,
even in cases when the first anomaly is absent. Log-normality predicts that (even if
1 < 2 so that @, > 0) a can take negative values. This feature implies that « need
not be a Holder exponent. It raises very interesting points that are beyond the scope
of this paper. Mandelbrot (1990¢) shows that the function C(x) obtained in §1d only
holds down to & = @,y = — 1 +4p; for & < &y, one must replace this expression by
Cla) = 2a/pp—1.

The flor) < 0 anomaly

It is next in apparent absurdity. The log-normal allows f(x) to be negative for
a>a¥ =14+1++/(8u) and a<akX, =1+3u—+/(8¢). This fact is observed
(without explanation or comment) in Frisch & Parisi (1985). Negative f(a)s also occur
in non-log-normal cases for which the ; < 0 and « <0 anomalies are both absent.
This feature is to be discussed in §35.

Key to the solution of the anomalies

I propose in this paper to explain the a; <0 and f(¢) < 0 anomalies, hence to
eliminate them as potential paradoxes. The argument consists in extending the
solution of the «; <0 anomaly as given in Mandelbrot (1974a,b). The key is a
surprising ‘death-or-survival (Dos) criterion’, namely in a mathematical theorem
that involves the following feature. When X = lim,, _ X, (with X, = 0), it may very
well happen that (X% < lim,,_ . (X2%. A physicist would have expected equality to
hold in all cases, and would have considered the known cases of inequality as being
‘pathological counter examples’. The standard counter example given in math-
ematics textbooks is indeed pathological. It occurs when X, = 0 with probability
L—1/n, and X, = n with probability n. Clearly, X = 0 and {X%) = 0 forall ¢ > 0, but
(X% = n?"; therefore (X% < lim{X2> for ¢ > 1. It so happens, however, that the
study of random multifractals is full of instances where the moment of a limit need
not be the limit of the moments. In particular, a sample average or sum (such as the
partition function) may very well behave differently from the corresponding
population expectation. When such anomalies are present, the average and the
expectation may obey entirely different scaling rules.

3. The death or survival criterion and thermodynamics

(a) The solution of the anomaly of o, < 0 involves the death or survival criterion

To restate this first anomaly. When g > 2. the quantity o, = 1—3u satisfies
a, < 0. How can it be?

The answer involves the fact that, irrespective of the value of y, there is no such
thing as a measure with a log-normal g(dx). The nearest thing is a measure obtained
by a multiplicative cascade whose multipliers are log-normal random variables.
When u < 2, this cascade does indeed generate a non-degenerate measure. This
measure is said to ‘survive .
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When g > 2, to the contrary, the limit measure generated by log-normal multiplier
is identically zero for all |dx|. It is said to ‘die” and o, is not a meaningful notion. The
calculation that yields &, < 0 is just a formal exercise that cannot be made rigorous.
Since it does not evaluate any meaningful quantity, the fact that its outcome is
negative means nothing.

In general random multiplicative multifractals, the pos criterion involves the
quantity o, = (Mlog, M». When «, > 0, the measure survives; when o, <0, the
measure dies. When the cascade preserves mass, it necessarily survives, because o, >
0 and Ze(dx). In all other cascades with &, > 0, the sum Xe(dx) converges to a limit

random variable (Mandelbrot 1974 a,b; Kahane & Peyriere 1976; Durrett & Liggett
1983). When the cascade starts with measure 1, the limit mass is currently denoted
(Mandelbrot 1990¢) by the letter Q.

(b) To solve the fla) < 0 anomaly, it suffices to apply the death or
survival eriterion to the multifractal €9, which is defined as being constructed with the
multipliers M9 = M9/b{M*y = M%b~™@

Indeed, taking |[dx| = 6%, the expression y(g.dx) = X e!(dx) is simply the product
by (b¥)"@ of the sample sum of the multifractal ¢ as defined in the title above is a
random variable and we know from §3a that its behaviour depends on the sign of the
quantity «{?, defined as the «, relative to the measure '@,

Before we pursue, let us point out that a{? > 0 when ¢ is in the range g%, <¢ <
q¥ .« which corresponds f(x) > U. hence to af,, <a < af, .: when f(a) <0, one has
a{? < 0. Indeed, define f@(x) as the function f(a) relative to €?. To obtain
ermetrlcall\ the graph of f “1’ . one takes the follov.lng steps. (¢) Expand o and
f( ) horlzontallv in the ratio g. obtammg a new variable &9 and a new function
f@(a). (b) Trace the tdngLnt of slope 1 of f‘“” . This is the expanded form of the
tangent of slope g of f(a). (¢) Reset the origin of a‘q’ at the point where the tangent
intersects the axis f = 0. Thlb will define the quantity «'?. We can now apply the death
or survival eriterion to M@,

When a!? < 0, the pos criterion tells us the measure constructed using the
multipliers M@, i.e. the sequence of the quantities ¢'?, converges to a non-degenerate
random limit, which is the variable Q@ corresponding to the new multiplier M@,
Therefore, in agreement with general expectation, the sample sum y(g, dx) can serve
to estimate the population expectation 6*{e?(dx)). In particular, the sample sum and
the population expectation follow precisely the same analytic scaling rule, namely
x(g. dx) = bF@Q@_Therefore, the sample 7(g) is identical to the population 7(g).

When a{? < 0, to the contrary, the sample sum of € converges to zero. The
unexpected consequence is that geometric scaling of x fails to imply that the sample
sum y(gq, dx) is analytically scaling. However, an elementary but lengthy argument,
for which we have no space, shows for ¢ < g%, the sample sum is asymptotically
scaling for dx —0, with the bcaling exponent 7(q) = g, while for ¢ > gX__. the
asymptotic scaling exponent is 7(g) = ga,.. The Legendre transform of this 7(g)
happens to be simply the portion of f(a) where f(«) > 0. The portion where f(e) <0
plays no role whatsoever in the a-sympt-otic study of y. However, this 7(g) is only
defined asymptotically for dx—0. This may explain the reports that f(a) <0 has
been obtained from the partition function, and could not be accounted for.

We have carried out extensive computations to test this prediction ; the results are
very striking. The reader is advised to test them again, for example using the
measures described in Mandelbrot (19896, 1990a).
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(¢) The notion of thermodynamic formalism and ils limitalions

In every approach to multifractals, the actual manipulations that link f(a) to 7(q)
are directly borrowed from thermodynamics. For example, the probabilists who
work with large deviations view the Cramer theory as being thermodynamical. Also,
when asked to introduce f(z) and 7(g) in the simplest context, 1 prefer to use the
Lagrange multipliers path towards the thermodynamics (Mandelbrot 1989a, §6). As
to the approach in Halsey ef al. (1986), it uses steepest descents, hence (without
saying so) uses the Darwin-Fowler approach of thermodynamics.

However, noticing analogies between formalisms is not enough. As we dig deeper,
we find ambiguities in the scope that should be given to the notion of thermodynamic
property.

One might have argued that it should cover everything that deals with
asyniptotics. In the present case, the relevant asymptotics is the Cramer theory.
With this definition, one would describe the whole function f(a) as thermodynamie,
including the part in which f(a) < 0. In my opinion, however, this view would be
inclusive to excess. Even though the values of fla) < 0 are obtained by a limit
theorem, the actual estimation of f(a) < 0 must rely upon methods that involve
preasymptotics; for example it can use the method based on actual histograms
within ‘supersamples’ (Mandelbrot 1989a, §4.3—4.5; 1990¢, §5.8).

I would more readily argue that the notion thermodynamic property should be
reserve to considerations that involve the partition function. This restricts f(a) to the
values f(o) > 0.

Furthermore, my earlier studies of f(a) < 0 (Mandelbrot 1989a, §4.3—4.5; 1990¢,
§5.8) show that the portion f(er) > 0 can serve to define the notion of ‘typical’
multifractal properties in the case when they are genuinely random, which happens
to occur when dx is small but positive.

The same studies can also be pushed (but we have no room here for this task) to
show that, as |[dx|— 0, the multifractal properties of ¢(dx) cease to be random, and
that they are fully determined by the portion f(a) > 0.

It remains to give a name to the properties that depend on the portion where f(c),
hence are not strictly thermodynamical. I propose to call them mesoscopic.

There is no room here to summarize the properties of multifractals with a left-sided
fla) (see, for example, Mandelbrot 199056). They also involve mesoscopic effects,
which are of very different kind and of equally great practical importance.

Many useful discussions with . J. G. Evertsz are acknowledged with pleasure.
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