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A new notion of fractal dimension is defined. When it is positive, it effectively falls back on
known definitions. But its motivating virtue is that it can take negative values, which measure
usefully the degree of emptiness of empty sets. The main use concerns random multifractals
for which f(e) <0 for some a’s. The positive f(a) are shown to define a “typical” distribution
of the measure, while the negative f(a) rule the sampling variability. Negative dimensions are
best investigated using “supersamples.” Applications are to turbulence and to DLA.

1. Introduction

It is a pleasure to attend this fifth consecutive Stat Phys meeting. The topic
of multifractals was already prominent in our previous Invited Lectures [1,2].
And negative fractal dimensions is briefly announced in [2], as one of two
separate aspects of dimension, that are latent (= hidden, but present). Lately,
many authors have added much to the topic of multifractals, and it has greatly
changed (though our early papers may not yet be exhausted). Despite these
advances, however, even the most basic aspects of multifractality continue to
present features that deserve further research.

The link between the two topics in the title came to focus recently, and it is
elementary, that is, should be widely used. First, we develop negative dimen-
sion as a new notion, and introduce those physicists who have already become
used to life in fractional dimension to the charms of negative dimension, and to
its inevitability. Secondly, we study some random multifractal measures, for
which f(a)<0 for some a’s. In broad outline, positive fla)'s define and
describe a typical distribution of a random fractal measure, and negative fla)'s
describe the fluctuations one may expect in a finite size sample.

A look back. Our first survey of multifractals for the physicist, in [1], came
out before its time, but after a 1975 survey for the general reader [3], and of
course our original papers (e.g., [4]) had tackled turbulence using multifractals
(without the word); see also [5, 6]. We would like to quote from the 1977 text
[1] using current notation: [The physics of] “critical points [involves many]|
exponents . . .. [The same holds for] intermittent turbulence . ... Scaling is
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compatible with inequality between exponents, while equality demands an
especially strong form of scaling . .. [and occurs] when the graph of 7(g)
reduces to a straight line . ... Geometrically speaking, a special and unique
virtue of a straight 7(q) [is that| dissipation [is] homogeneous over a closed
subset of space to which it is restricted . . .. Every other 7(g) implies that the
bulk of dissipation is homogeneous over a small set, but [there is] one
remainder spread around everywhere else and another remainder concentrated
in sharp peaks . ... Different moments of the dissipation turn out to be very
much affected by one or by the other remainder.”

2. A generalized ‘‘latent’’ fractal dimension can be negative. Examples

First, we restate the familiar “intersection rule” for dimensions, and its
equally familiar exception. Then we restate a suggestion made in [2], and
buttress it by new arguments and concrete illustrations.

Generic intersection rule [5]. Take two sets S, and S, (either Euclidean or
fractal) in a Euclidean space of ordinary (embedding) dimension E. Denote
their codimensions by £ — dim(S,) and £ — dim(S,). “Generically,” the rule is
that the intersection § of 5, and §, has the codimension

E —dim(S) = E — dim(S,) + E — dim(S,) .

Major exception to the rule. When E — dim(S,) + E — dim(8,) > I, its value
does not matter: the intersection S is generically empty.

A way to redefine dimension, which avoids this exception, and simplifies bui
enriches the intersection rule. The example of points, lines, planes and the like.
Compare the intersection of two lines and the intersection of a line by a plane.
Both sets are “generically” of dimension 0, in agreement with the intersection
rule and its exception. Yet, one would like to discriminate more finely between
these various ways of being of dimension 0, by expressing numerically the idea
that the intersection of two lines is “‘emptier” than the intersection of a line by
a plane. If one could get rid of the exception to the intersection rule, one may
perhaps be allowed to say that these two sets have the dimensions —1 and 0.

This loose idea of “latency” can indeed be given precise and down-to-earth
meanings. The root of the explanation is that one cannot observe an un-
bounded space, with strict points, lines or planes, only a bounded *“window” of
space, with small blobs, thin sticks and thin shells.

A generalized box dimension that is —1. A set of (Euclidean or fractal)
dimension Dy requires N(b)~ b"”® boxes of side r=b""' to be covered. The
familiar box dimension Dy, simply measures the rate of increase of N(b) with b.
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One should be able to generalize Dy, as describing the rate of either increase or
decrease of “something that is like N(b).” This something could not be a
number of boxes, which is an integer. But let us show that it could be {N).

To simplify the algebra, focus on a point and a line in the plane. Start with a
square window of side L that includes a point-like blob of side 1/b and a
line-like strip of width 1/b. When the strip intersects the blob, N =1;
otherwise, N = (). Intersection occurs when the distance between the point and
the line is <b, which happens with probability ~b/L. Thus, (N) ~ L/b, and
for large L/b we obtain the value

D, =log(1/b)/logh=—1.

A generalized sausage codimension that is 3 in the plane. The familiar
sausage of § is the set of points which lie within a distance & of a point in §.
The sausage of the union of §, and S,, is therefore the union of the sausages of
S, and S,. But what about the intersection? When S, and S, intersect, the
intersection of the sausage and the sausage of the intersection scale in the same
way as e — (. When the sets S, and §, fail to intersect, only the intersection of
the sausages continues to be defined. In the present example of a point and a
line in the plane, its area is ~&  with a probability ~e/L, and 0 otherwise.
Hence the expected area of the intersection is ~&”/L. The exponent is a
generalized sausage codimension. Its value is Dg = 3, which confirms D = —1.

Randomness is central to allowing this generalized dimension to become
negative. The above expressions for Dy and Dy avoid the fact that N is an
integer, by not referring to a single well defined construction, rather to a
random ensemble or population of constructions. When D generalized in this
way is <0, D says nothing about any specific set, but it describes and classifies
a generic reason why a set happens to be empty.

In the past, we had felt that attempts to define a dimension for population
were confusing. More important, they fulfilled no need, but we shall see that
now a need has been created by the multifractals.

The preceding reasoning extends to fractal sets. The example of the birth-and-
death cascades on the interval [0, 1]. The kth cascade stage begins with dyadic
cells of length 2% Each cell is subdivided into 2 dyadic halves, and each
dyadic half either “lives,” with the probability p <1, or ‘“dies,” with the
probability 1 — p. One defines a “birth and death process™ [5, chapter 23] by
thinking of mother cells as dying and giving birth to N daughter cells. Here
N =0 with the probability (1 — p)°, N =1 with the probability 2p(1 — p), and
N =2 with the probability p°. Thus, {N) =2p.

When (N) > 1, hence D =log,(N) >0, it is known that this process has a
positive probability of generating a non-empty set one can call a birth and
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death fractal dust. D is the value of all useful forms of fractal dimensicn. But it
is also known that the “bloodline” can die out, with probability one when
D <0, and with probability between 0 and 1 when D = 0. We now propose to
say that D =log,(N) in all cases, even if D <0.

Imbedding a “‘dead™ birth and death fractal set as a one dimensional cut
through a proper “‘living” birth and death set. Start with the E-dimensional
cube [0,1]", and apply the same birth and death process to each its 2" sub
cubes. Now, (N, ) =2"p. Therefore, however small the value of p, one can
choose E to be large enough to insure 2"p >1, hence D, > 0. Every birth and
death set on the line can be interpreted as a cut.

Limitations of the Hausdorff—Besicovitch dimension Dyy. The proposed
generalizations add to the notion of fractal dimension. Complication increases
because one tries to tame yet another facet of reality, using geometric
information that is available but otherwise discarded. To extend Dy to
negative values would be impossible and randomness is totally foreign to Dyy.
In the case of random sets, Dy, applies to samples and not to ensembles or
populations. But we know that, as the intuitive contents of fractal dimension
expands, it becomes increasingly clear that physics requires more than Dy.
Hausdorff and Besicovitch have provided us with a nearly ready-made notion
that could be made into a useful tool of physics. But now this tool has proven
to lack versatility and to be hard to use, and it keeps being thoroughly modified
and diversified.

3. Scaling requirements that define a self-similar multifractal

The remainder of this paper shows how negative dimensions help understand
the self-similar fractal measures called multifractals. When a measure wp(dr) is
carried by [0, 1], it is widely thought that it is self-similar when it satisfies two
requirements. A) There exists an exponent «, function of ¢, such that w(dz) is
of the order of (df)®. B) The set of values of r where « takes a certain value is a
fractal. That is, N(d¢), defined as the number of intervals characterized by «, is
of the order of (d) ™.

Refs. [7, 8] obtain f(a) as the Legendre transform of ¥ u’(df). However,
their conceptual framework fails to generalize to random multifractals. To
handle randomness, we restate requirement B) in terms of the quantity

N(dr)
(1/dr)

=dt N(dt) = (dr) ™" = ()", with p(a)=fla)—1.

This is the relative frequency, among 1/dt intervals of length d¢, of those
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intervals in which a certain value of « is observed. Thinking of this frequency
as a probability, the requirement N(d¢) ~ (df) "** translates into

log(probability of @) . ;
FRrT is a function p(«) .

The last expression can be said to involve a plot of the probability distribu-
tion of the random measure w(dr) in renormalized doubly logarithmic coordi-
nates. First, u(di) is replaced by log u(df) and renormalized by logds, to
obtain an abscissa that is a random variable A. The use of the upper case
Greek A (capital alpha) follows the custom of the probabilists: A denotes a
random variable whose values are denoted by . Second, we work on the
probability density p(a) of A; we replace it by log p(a) and again (to
renormalize) we divide it by log dz.

A definition of generalized self-similar multifractals. We shall say that a
measure pu(ds) on [0, 1] is a self-similar multifractal if, as dt— 0, the trans-
formed and renormalized density log p(a)/log dt has a limit pla).

The function f(e) is then defined starting from p(a), as f(a) = pla)+ 1.

4. A multiplicative cascade, and a simple *‘trio’> multifractal

Construction. Let a cascade begin with mass equal to 1, uniformly spread
over [0, 1], and let the kth cascade stage share the mass in a cell of length 27%
between two halves of length 277" in either of the following 3 ways: half and
half; in the ratios m, and m, =1 — m, with m, = !, or in the ratios m, and my,,.
This multiplies the mass in either half by a random variable M that is T, = OF
m; =1—m,, with the respective probabilities

PriM=m,}=3%, Pr{M=4%1}=%, and PriM=m}=1.

By a repetition of this scheme, the dyadic cell [df] of length df=2"* that
starts at t=0-n,m, - - -, determines k identically distributed and independent
random multiplier variables M, and one has

pi(dt) = M(n ) M(n, m,) - - - My, ...,
A, =log p,(dt)/logdr = —(1/k)[log, M(n,) + log, M(n,m,)---].
To know p,(dr) is to know for all k the probability density p,(a) of A,.

The main finding is suggested by an argument in section 3: the expression
pe(a) = (1/k)log, p,(a) converges for large k to
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p(a) = —1+ the Legendre transform of 7(g) = —log, (M) — 1.

The proof (which cannot be given here) uses a remarkable old (1937) theorem
by Harald Cramér, which has led to what probabilists call the theory of large
deviations [9], and must not remain unknown to physicists.

The novelty that f,(a) <0 is traced to our having defined 7(g) through the
expectation {M“), instead of the non-averaged “partition function” 7% (dt)

The resulting p(a) is drawn on fig. 1. First remark: « ranges from O

—log, m, to a,,,, = —log, m,, which is a familiar feature in binomial medsurcs.
Second feature: f,(«) ranges from —2 to 1, which brings in the striking novelty
that f,(a) is negative for a, < @< a,,, and «,,, <« < a*, . This can never
happen in the Frisch-Parisi context, and destroys their “stecpest descents”
justification of the Legendre transform.

Imbedding the trio measure as a one dimensional cut through a *“convention-
al” multinomial measure in 3d space. Now consider the following cascade on a
cube subdivided into 2° = 8 cubes. Each cascade stage begins with the mass m;

‘f.'; Lp fl | O min 2) A min Cl‘rnm: a‘mux(z) <
3 0 1 a

2 -1 0 oy R

0 1 2 5
1 -1 \
0
-3 -2 a3
0 1 Crmin 3 Xmax 3
:“‘mln(s) =a mux(3)

Fig. 1. The p(a), f,(«) and f,(«) functions of the mcasures of w,(ds) and p,(de) in the text, with
my = 0.2. To make it possible for a single * ogive” (bold curve) to represent all three functions,
three distinct sets of coordinate axes are drawn (bold lines), for f;, p, and f,. The additional curves
to the right (resp., to the left) of the ogive relate to the approximate distributions of Am“(Z) and

Ayex(3) (resp., of A (2) and A_, (3)), as defined in the text. The value of & is a gross
underestimate of «

max

max *
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the share of a randomly picked “hot™ cube is mm,/8, the share of a randomly
picked “cold” cube is mm, /8 and the share of each of the 6 remaining cubes is
m/8. This construction leads to a spatial multifractal u,(dx) largely due to
Besicovitch and called multinomial [10, 11]. The Legendre formalism enters (in
the familiar Frisch—Parisi interpretation [7,8]) to yield fi(a)=p(a)—3=
fi(e) +2.

That is, p(a) = fz(«) — E is the same for £ =1 and E =3, and ranges from
—3 to 0. Furthermore, « itself depends on E, but « — E does not.

The conventional interpretation of f,(a). It is known that f;(«) is the fractal
dimension of the 3d set where the Holder exponent of u;(dx) is a. Applying
the intersection rule with its exception (section 2) to multifractals, the positive
values of f;(«) — 2 are the dimensions of the sets where the Holder « of w,(df)
is a@. The negative f;(«)—2 simply “saturate” to 0. We claim that this is a
waste of valuable information.

5. Typical behavior and variability of u,(df): samples and supersamples

Let us indeed show the following. Even when there are latent «’s, a
“typical” first approximation is deﬁned and determined by the positive f(«)’s,
and A, ~a. and A_ _~a] . But the sampling distributions of A_, and

A, are mostly ruled by the latent portions of f(«).

Though b =2, the sequel is written in terms of arbitrary b.

The “typical” range [A ;.» Al When some «'s are latent. A single sample
with dr=5b" yields b* values of wu,(df). We know that they fail to be
statistically independent, but it is useful to first suppose that they are. An
heuristic argument then suggests that one can estimate the probability Pr{A =
«} if, and only if, the number of occurrences of this value « has an expectation
at least equal to 1. This yields the condition Pr{A = a}b* = 1. For large k, thlS
reads bkf’(”} ¥=1, yielding p(a) = —1 or f,(a) =0. The range from A, ~ a..,
to A~ @,... 15 to be called “typical.” It is determined by the positive values
of f(a). It grossly underestimates the true range e,

If this were the last word, negative f,(a)’s would fail to affect observed
w,(de), hence could not be estimated. But this is not the last word.

The distribution of the range [A .., A,,..] when some «’s are latent. When b*
data are statistically independent, A_, is given by the theory of ‘extreme
values” of probability theory. One has Pr{A_ < a}=[Pr{A< a}] because
the inequality {A . < a} holds if, and only if, b* independent inequalities of
the form {A <a} hold simultaneously. One can show, for a > (A), that
Pr{A > a} is ~ the probability density b****). Therefore

amax]‘



B.B. Mandelbrot | Negative fractal dimensions and multifractals 313

Pr{A_, >a}~1—[1—p*=7] 'ml_exp{ pHiattly

max

[wl when p(a)<—1,ie,a<a]_
 RKlple)t1] .
b when p(a)>—1,ie,a>a} .

First conclusion: for every e, Pr{|A_ . —a. |>¢e}—>0 as k—>=. This
sharpens slightly the notion of “‘typical range.” But adding the fact that
Pr{A_, . > a} ~ probability density p(e,,, ) vields far more, namely

max max

log p(e,, )/ 1ogdt— p(a) + 1.

That is, the “p(«) function™ of A, is simply p,,.(«) = p(a) + 1.

Overall graphical expression of the above results. Translate the p(a) tunction
of A up by unity; discard the middle portion; denote the portion to the right as
Pmax() and assign it to A ; denote the position to the left as p_; (a) and
assign it to A ;, (Observe that the 7(¢g) functions corresponding to the limits of
Pr{A , > a} and Pr{A < «a} are “anomalous.”)

Reason to expect the preceding results to be exact. A rigorous distribution of
A .. is not available now, but a closely related problem has been tully
investigated in the literature [12], and it yields the same result.

The notion of “supersample” made of an increasing number b*™~" of
independent samples of a random measure . Having squeezed information
about f(«) from a single sample of non-independent data, we pool data from N
statistically independent realizations into a ‘‘supersample.” We write N =
b'" V% hence the supersample size is b"", because we think of E as an
embedding dimension. This odd notation is only justified after we show that
the effectiveness of supersampling is measured by £ =1+ (1/k) log, N.

An estimate of the range of variability of [A , (E), A, (E)] within a
supersample. Define A, (E) as the largest value of in a sample of size
N = b""". Under the assumption that the b*" data are statistically independent,
an already used rough argument suggests that it may be possible to estimte
Pr{A,..(E) = a} if, and only if, Pr{A = a}b"* =1, that is, b***>*** = 1. This
yields a condition much weaker than p(a)= —1, namely p(a)=—FE or —E +
1= fla)<O.

Distribution of the range [A , (), A, .(E)] under the assumption that the
b"* values in our sample are statistically independent. One finds

13

min max

Pr{A o (E) > a} ~ 1= [1 = p*@V" ~ 1 — exp{— b1+

max

~1 ) when p(ﬂf)> E i.c . < a:mx(E)
ka[p(a)u:] when p(a)< E, ie., o >amdx(E).
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Conclusion: As the supersample size grows, the variability of the range
[A,..(E), A, (E)] is controlled by increasingly latent portions of f(«a).

6. Additional comments

On the distinction between the asymptotic and the preasymplotic roles of the
function f(a). The function f(a) plays two roles [11], to be recalled momen-
tarily. They are hard to tell apart when f(«) =0 for all @ >0, but section 5 has
shown that they separate sharply when some f(«) < 0. The first role, that of a
“spectrum of singularities,” is an asymptotic property meaningful only for
dt—0. The second and less widely appreciated role of f(a) concerns its
relevance to the histograms of the measure du(d¢) for various d¢ > 0.

On goals. One reason to estimate fractal dimensions and f(a)’s is to do
physics. Another reason is to compare data sets and theories with each other.
When the concern is with (say) DLA or turbulence data, one does not estimate
f(a) because dimensions are intrinsically interesting but, because f(a) is a
possible window of a generating mechanism. It is important, therefore, that the
positive f(«) fail to exhaust all that one should attempt to extract from the
data. One can tell more about the generating process from the negative f(a),
which need not remain latent = hidden. They tell us what to expect from other
random samples of the same process. They give us therefore, firmer grounds
for the comparison between two distinct sets of data, or for the proper fitting of
a model to the data.

The results in section 5 fail to be universal, which is an added complication. Tt
has long been known that when the fractal dimension of a set is known, the set
is specified very partially. Section 4 of [13] shows that a seemingly mild
modification of u,(dr) yields a multifractal to which the results in the present
section 5 fail to apply.

The Legendre transform. Of course, the two roles of f(a) are indissolubly
linked, and the only way to reach f(«a) empirically is to estimate it by
processing the histograms. One rust not view the Legendre transforms as
providing a definition of f(a). It is only one particular method, among several
other, for estimating f(«) from the data. Other methods make more direct use
of the histograms [14, 15]. In addition, a brutal use of computer programs
embodying the Legendre method when latent & are present yields estimates of
f(a) that are sharply sample dependent, and always yields f >0, even when the
problem demands negative f’s [16, 17].

Many authors have observed that one can obtain f(a) <0 by first averaging
% u(dr) over supersamples. But such averaging cannot be justified by the
Frisch—Parisi argument.
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Conclusion and applications. In sum, there is more to a multifractal than
f(@), but this only adds to the reasons for studying f(«) as fully as possible.
Negative f(a)’s give every sign of being essential in the study of turbulence and
of DLA, and of all other phenomena that exhibit very high sample variability.

Fig. 1 is very suggestive of the situation that prevails for cuts through a field
of turbulent dissipation, and [18, 19] have already demonstrated the practical
relevance of the viewpoints described in this paper.

For DLA [20], a more closely illustrated example is provided in [13] (of
which the present work is, otherwise, a summary).

Detailed recent treatments of our approach to multifractals, which started
with [4], are found in [10, 11, 13, 21].
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