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Self-affinity and fractal dimension

® Chapter foreword. Mathematicians prefer to construct recursive fractals
by interpolation ad infinitum. The historical reason is that fractals arose in
the study of local irregularity. A continuing reason is that prefractal finite
interpolations converge “strongly” to a fractal limit. Physicists, to the con-
trary, prefer extrapolation because matter is made of nonvanishing parti-
cles so that infinite interpolation has no meaning, and because “practical
people” are not worried by flavors (strong or weak) of convergence.

For self-similar fractals, both procedures yield the same fractal dimen-
sion. To the contrary — as first observed in M 1985s, the paper reproduced
in this chapter — the local (interpolative) and global (extrapolative) fractal
dimensions of self-affine fractals can take distinct values.

The original also pioneered in showing that certain difficult new ideas
concerning self-affinity are best accepted with the help of recursive
“cartoon” constructions of total artificiality. For self-similar fractal curves,
the same path was first taken when M1967s faced the question of “How
long is the coast of Britain?” by injecting the Koch snowflake curve and
more general recursive constructions. Since 1986, I realized that the
relation between a fractal model and a recursively constructed artificial
surrogate is subtle and permanent, and deserves a stronger term than
“variant” or “pedagogical stand-by.” The term selected in M 1997F and
M1999N and carried over to this book is “cartoon;” it was retrofitted in
this and the subsequent reprints wherever appropriate.

For an excellent exposition of these ideas, see Voss 1985. °
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4+ Abstract. To define a “divider exponent” for a fractal curve, one walks
a divider of decreasing length 6, then evaluates the resulting “approximate
length” L(8), which is proportional to §'“P. Long ago, M 1967s showed
that for a self-similar curve, the divider exponent D coincides with all
other forms of the fractal dimension, e.g., the similarity, box or mass
dimensions. But for a self-affine curve, for example, a scalar Wiener
Brownian record B(t), a full description in terms of the fractal dimension is
complex. Each dimension splits into a local and a global value, separated by
a crossover. Globally, all the basic methods of evaluating the global
fractal dimension of B(t) yield 1; that is, a self-affine fractal behaves
globally as if it were not fractal. Locally, the box and mass dimensions are
1.5, but the divider dimension is D=2. More generally, for a fractional
Brownian record B(t) (a model of vertical cuts of relief), the global fractal
dimensions are 1, several local fractal dimensions are 2 — H and the local
divider dimension is 1/H. This is the fractal dimension of a self-similar

fractal trail in the plane, a curve implicit in the definition of the record of
B, (). +
H

THIS PAPER DESCRIBES A NEW OBSERVATION that is elementary yet
both practically and theoretically significant. It will explain certain odd or
inconsistent results of measurement and shall add to our understanding of
the notion of fractal dimension.

1. Introduction and summary

It is known that there are several ways of measuring a fractal dimension.
This means that several alternative definitions exist, but in the extensively
studied case of strictly self-similar fractals all these definitions yield the
same value. This paper describes the new and more complex situation that
prevails for fractal curves that are not self-similar but self-affine.

Two practical examples of such curves are vertical cuts through either
a relief or a surface of non-isotropic metal fracture and records of electric
noise. The results are of wide validity, but the arguments are carried out
(as described in Section 2) on “records of functions.” In this usage — which
does not follow M1982F{FGN} and may be new - “record” is contrasted
with “trail.” When a point moves in the plane (x,y), the trail is the set of
points (x,y) that have been visited, and the records are the sets of points

(t,x(t)) and (£,y(t)).
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The main examples will be records of the scalar Brownian motion B(t),
of the more general fractional scalar Brownian motion B, (t) (whose param-
eter H satisfies 0 < H < 1) and of related fractal “cartoons” that simplify the
discussion and are introduced and discussed here for the first time. (They
relate to the new “interpolable random walk,” which I intend to explore in
detail elsewhere.) The discussion covers three algorithms that I introduced
while setting up fractal geometry. We shall use for them a new stream-
lined terminology adopted since FGN.

Two sentences suffice to deal with the “(self-)similarity dimension” D..
This notion applies to self-similar sets, which are made of N parts, each
obtained from the whole by a reduction of ratio r. For these sets,
Dg=1log N/ log(1/r). For self-affine sets, D, simply cannot be evaluated.

This paper's first finding (Section 4) concerns the self-affine curve's
“box dimension” D,. The local value (using small boxes) is 2 — H, which
coincides with its Hausdorff-Besicovitch dimension, itself a local property.

The second finding (Section 5) concerns the “divider dimension” D,
defined by walking a divider along a curve. Although it may be theore-
tically meaningless, it can always be evaluated mechanically. It will be
shown that for self-affine fractal records, the local value (using small
divider openings) is D.=1/H. This value differs from the box dimension
2—H - except in the degenerate limit case H=1. Conversely, 1/H coin-
cides with the small box and Hausdorff-Besicovitch dimensions of an
important self-similar fractal curve that is implicit in the definition of
By, (t): it is the curve in E-dimensional Euclidean space whose E coordinate
records (E >1/H) are independent realizations of B(t).

This paper's third finding (Section 6) concerns the “mass dimension”
D,,. Again, it may be theoretically meaningless but always can be evalu-
ated mechanically. The local value (using small radii) is D,, =2 — H.

The fourth and final finding is that all the above-mentioned local dimen-
sions are high frequency limits. The corresponding low frequency limits
are all equal to 1. In the long run, our self-affine fractals are one-
dimensional! The point of crossover from 1 to either 2—H or 1/H is
shown to depend on the ratio of units of ¢ and of B; in general, this ratio is
arbitrary. The biases that may result are investigated.

Motivation for this study. M, Passoja and Paullay 1984 studied fracture
surfaces of metals but did not use the divider dimension. I was asked
why, and that question triggered the present investigation.
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2. Self-affine sets: definition and examples of records of Brownian
motion, of fractional Brownian motion, and of cartoons

Wiener's scalar Brownian motion B(t) is the process starting with B(0)=0
and having the following property: for every collection of non-
overlapping intervals Af, the increments of B(f) are independent and sta-
tionary Gaussian variables B(t) has the following well-known invariance
property:

The random processes B(t) and b~ 12B(bt) are identical in distribution
for every ratio b > 0.

Since the rescaling ratios of t and of B are different, the transformation
from B(f) to b~ /?B(bt) is an “affinity.” This is why B(t) was called “statis-
tically self-affine” in M 1982F(FGN} (page 350).

The more general fractional Brownian motion B,(t), where 0 <H <1,
plays a very important role in fractal geometry. If B, (0) = 0, the random
processes B,(t) and b_HBH(bt) also are identical in distribution. For the
value H=1/2, one obtains B(t) as a special case of B(t).

Unfortunately, a rigorous study of B(t) requires difficult arguments.
This and related pedagogical needs made it desirable to have a cartoon of
B,,(t) whose rigorous study is elementary; this led me recently to introduce
a series of cartoons of B(t).

First, let me describe the essential properties of the cartoons as exem-
plified in Figure 1. More generally, a limit process M, (t) is defined when
H is of the form H=log b’/ logb”, where the integer bases b’ and b” are
such that b"—b” is positive and even. When the time increments belongs
to the construction grid and At = b"~* the increment of M,,(t), is binomial
with mean 0 and standard deviation (At)". That is

Myt = Mul(p+ Db =2 @) = = £ (A1)

holds for all k and p. Clearly, MH(pb’l_k) is a multiple of b”~¥. The linear
interpolation between these values of M,(t) is the k-th approximant of
M,(t), to be denoted by Mg()(t).

Actual construction of Mu(t). The details are not important here, but one
can construct M, (f) as an interesting fresh example of the “multiplicative
chaos” procedure that I pioneered in M1972j{N14} and in M1974f{N15},(see
also M 1982F{FGN } p. 278 ff.). (Recently, this procedure has been redis-
covered in part in Hentschel & Procaccia 1983.) The building blocks are
“multiplicative effect functions” u,(t) defined as follows. For all k and ¢,
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|1 ()| =b"/b”, and each interval [p to p+ 1], where p is an integer, splits
into b" subintervals. In (1/2)(b’+b”) of those subintervals chosen at
random, one sets [, (t) >0, and in the remaining (1/2)(b" — b”) subintervals,
one sets U, (t) < 0. This insures that, for all integers k and p,

p+1
[ =1,
p

For example, if b"=4 and b” =2, then p,(t) > 0 over three subintervals and
<0 over one. See Figure 1 for illustration. Now pick statistically inde-
pendent functions p,(t), and form the product

k
MOt = T ra@".

n=—o0

Then integrate to obtain the prefractal approximant
g
M®) = f M®(s)ds.
o

Finally take the limit M(t) = limy _. M(k)(t). Although this limit depends on
b’ and b”, the present discussion considers only the value of H; hence, the
limit will be denoted by M,,(t).

3. The fractal dimension of the above self-affine cartoons

The graph of zeros of B(f) is widely known to have a Hausdorff-
Besicovitch dimension equal to 1/2. It is almost as widely known that for
the graph of B(t) itself the Hausdorff-Besicovitch dimension is equal to
1.5=1/2+1. The corresponding dimensions for the records of both B(t)
and M,,(t) are 1 — H and 2 — H. But the Hausdorff-Besicovitch dimension is
a very nonintuitive notion; it can be of no use in empirical work, and is
unduly complicated in theoretical work, except in the case of self-similar
fractals. As a replacement, my work introduced (in an increasingly formal
fashion) several alternative definitions that are useful precisely because
they lack generality. For self-similar sets, the values yielded by these
various definitions of dimension were identical. But, as we move on to
self-affine shapes, we shall find that local and global values must be dis-
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tinguished for each dimension and that the various local values cease to be
identical.

The reason is fundamental: the notions of “square,” “distance” and
“circle” are vital in the usual “isotropic” geometry but meaningless in
affine geometry. More precisely, they are meaningless when the quantities
plotted along the t and B-axis are distinct and their increments At and AB

FIGURE C21-1. A prefractal approximant of a non-random self-affine “cartoon”
curve. This broken line of 4> =64 intervals is the second approximant of a
nonrandom prototype of the random function M,(t), which Section 2 intro-
duces as “cartoon” of the Wiener Brownian motion. The bases in this example
are b’=4 and b’ =2, hence H=1/2. The construction is recursive. The left
most four intervals, which end with dots and proceed UDUU (that is: up,
down, up and up), form the generator of this example. The 4>=16 left-most
intervals (again ending with dots) illustrate the second approximant.

In order to randomize this function, each occurrence of the generator is
chosen at random from the four possibilities DUUU, UDUU, UUDU and
UUUD; for some purposes it is best to narrow the choice to UDUU and
uubu.
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cannot be compared or combined. When there is no intrinsic meaning to
the notion of equal height and width, a square cannot be defined. Simi-
larly, a circle cannot be defined because its squared radius R = AP + AB?
would combine the units along both axes. Furthermore, it becomes impos-
sible to “walk a divider” along a self-affine curve because the distance
covered by each step combines a At and a AB.

A complicating factor is that in the case of vertical cross-sections of a
relief, both At and AB are lengths. Also, the purely affine plane of a noise
record is always represented on the same graph paper as an isotropic
plane. The above distinction is therefore elusive, and it is impossible to
avoid the temptation to draw circles and squares, to walk dividers and to
evaluate various “prohibited” dimensions “mechanically.” Sections 5 and 6
describe the results thus obtained.

4. The box dimension is meaningful for the records of By(#) and the
cartoon Mpy(t); its local value is 2 — H, and its global value is 1

Having covered the unit circle with a lattice of boxes of side r=1/b, let
N(b) denote the number of boxes in this lattice that intersect the set.
When N(b) behaves like N(b) oc b7, the exponent is the box dimension.

In mathematical discussions of dimension, the symbol oc refers to local
behavior and is a shorthand for lim; .. log N(b)/ log b= D;. When the set
is bounded, one begins by drawing the whole set within a unit square of
the plane. When the set is unbounded, one considers bounded portions
obtained as intersections with squares.

The box argument for the records of B(f) or B(t), as given in M
1982F{FGN} (bottom left of p. 237 ), is heuristic and is not readily made
rigorous. For the record of M,(t), on the contrary, the exact argument is
transparent. To cover this fractal curve from t=0 to ¢t =1 with boxes of
side 1/b=b"F one needs b =b stacks of boxes, each with a height
between b”~* and b~ [ (1/2)1 +b'/b")].

Thus, apart from multiplication by a factor of order 1, one has N~
Ve /0% = Y)Y From H=log b/ log I, we have b” =b", hence
N=b*"".  The multiplicative factor vanishes when taking
lim; . log N/ logb, and hence Dy =2— H. Observe that in this high fre-
quency limit the scales chosen for t and B do not matter.

The physicist, however, also thinks of the global limit b — 0 or r — oo,
which requires an unbounded record. The portion of a self-affine record
from 0 to t>1 is covered by a single box Hence
limy .o log N(b)/ log b=1. (The detailed argument requires some care; we



432 PHYSICA SCRIPTA: 32, 1985, 257-260 < < H21

will not dwell on it here). In conclusion, two limits that are identical for
self-similar fractals are now found to differ!

Thus, a self-affine curve involves a crossover time increment, call it ¢ ”
such that By(t+t.) — By(t) oct.. Stated alternatively, the most intrinsic
units of t and By, are such that B,(t + 1) — B,,(t) ~ 1.

Terminology. “Box dimension” is a fresh abbreviation for “box-counting
dimension.” In the case of self-similar fractals, I occasionally called D, the
“similarity dimension,” a term I now regret using because it does not
carry over to the self-affine case.

Several writers call D, a “capacity”; this term conflicts with two com-
peting meanings. The first is a term Kolmogorov based on a (non-
obvious) analogy with information-theoretical capacity. ~The second,
Frostman dimension, involves the potential-theoretical capacity and is
about to prove central to fractal analysis. {P.S. 1999: Unfortunately, this
last expectation, which was motivated by the fractal character of the dis-
tribution of galaxies, is slow to be implemented. But the good news is
that “capacity dimension” has ceased to be used.}

5. The divider dimension cannot always be evaluated for the records of
Bp(t) or My(#). Its value evaluated mechanically for small n is 1/H. This
is not the fractal dimension of the record of By(f) but of a trail related to
this record. For large 1, the divider dimension is 1

“Divider dimension” is my present term for a notion that applies only to
curves having the following property: the length L(1) measured by
“walking a divider of opening n” along the curve behaves like
L(n)occn Pe 1 developed this notion to interpret Richardson's empirical
findings on geographical coastlines, which are horizontal cuts of the relief
and are self-similar. The temptation is irresistible to use the same tech-
nique for vertical cuts of the same relief.

When n>t. (e.g., when the intrinsic unit of B, is very small), the
record is effectively a horizontal line. The divider walked along the curve
remains mostly parallel to the f-axis, and L(n) varies little. This L(n)
yields D=1, irrespective of the value of H.

When n<t. (e.g., when the intrinsic unit of By, is huge), the divider
walked along the curve remains mostly parallel to the B-axis. The cartoon
M,(t) yields D.=1/H with little algebra. For example, let b’ =4 and b” =2,
yielding the Brownian H=1/2. When k is large and n=2"%, the quantity
L(n)/n, which is the number of divider steps, is seen to be exactly equal to
4°=n72, and hence D.=2. For more general values of H=1logb”/ logt’,
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one finds that for small n, L(n)/n is multiplied by b” when n is divided by
b”. This yields D.=1/H.

At first blush, this is an extremely strange value. First, it can exceed 2
(in fact, it can be arbitrarily large), which is impossible for the Hausdorff-
Besicovitch dimension of a self-avoiding curve in the plane. Second, 1/H
disagrees with the value 2 — H that the other local definitions of the fractal
dimension give for the cartoons.

However, readers familiar with the fractional Brownian motion will
recognize 1/H as being the fractal dimension of the trail (in an
E-dimensional Euclidean space RF satisfying E > 1/H) of a motion whose E
coordinates are independent realizations of Bj,(t).

In this case, an attempt to measure the fractal dimension for one set
actually measures it for a different set. The heuristic argument that
follows suggests that this outcome should have been expected. As already
mentioned, if N<t., our divider remains most of the time nearly parallel to
the B-axis; therefore, our experiment nearly collapses time by nearly flat-
tening the record into a trail along the B-axis. Suppose our scalar B is one
coordinate of a vectorial B in a space RE of Euclidean dimension E>1 /H.
If a divider of opening n is walked along the trail of B, the steps'
projections on any coordinate axis will differ in size, but most will be close
ton/ \/E . Now measure the length of the trail of B with steps of length n
subjected to the additional constraint so that their projection on one axis is
exactly n/ \/E . A moment of thought suggests that this last constraint will
not have much effect on the number of steps. Thus (apart from a numer-
ical correction factor dependent on E), walking a divider takes about as
many steps along our collapsed record as along the trail in a space of E
dimensions. In conclusion, the divider dimension should indeed be the
same in both cases, that is, 1/H.

Remark on the “fracton/spectral” dimension. The box and the Hausdorff-
Besicovitch dimensions of the zeros of B(t) are 1—H, and Section 5
deduces a set of dimension 1/H from a set of dimension 1 — H. In a more
familiar context, one starts with the trail of B,(t) of dimension 1/H and
deduces 1 — H as the dimension of the instants of this motion's recurrence
to the origin. A further step led physicists to call 2H fracton dimension
(Alexander & Orbach 1982) or spectral dimension (Rammal & Toulouse
1982). Therefore, we deal here with a situation that is the converse of the
usual one. The question of whether this remark generalizes to processes
restricted to a fractal curve (e.g., a percolation cluster) remains to be exam-
ined.
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6. The mass dimension cannot always be evaluated for the records of
Bp(t) or My(t). When its value is estimated mechanically, it is 2 — H for
small R and 1 for large R

“Mass dimension” is my present term for a notion I had devised for sets
having the following property: the mass M(R) contained in the inter-
section of the set with a disc or ball of radius R behaves like M(R) oc RP.
The disc or ball can be replaced by a square or cube whose sides are par-
allel to the axes and of length 2R.

As already mentioned, the notions of “square” and “circle” are mean-
ingless in affine geometry. Nevertheless, we must tackle the practical
questions that arise after a self-affine fractal has been drawn on ordinary
graph paper. The “mass” of the record of B,(t) between times ' and t” is
set to be |t/ —t"].

When R>t, the record of By(t) is effectively a horizontal interval. It
occupies a very thin horizontal slice of the square of side 2R, hence,
M(R) <R and D,,=1.

When R<t., the record of B,(t) is effectively a collection of vertical
intervals, one for each zero of B,(t). Again, the argument is simplified if
we replace B(t) by the cartoon M,(t) and consider a square of side
R=b""%, with top and bottom ordinates proportional to b”~*. The mass we
seek is the same as for the k-th approximant function Mg)(t). Thus, mass is
the number of times Mg‘)(t) traverses the ordinate of the center of a square,
multiplied by the duration 6 of each traversal. The number of traversals is
oc(R/8) "M, and &=b"F =" =R"". Hence M(R)ocR>~", yielding
the familiar value D,,=2 — H in the small R limit.

7. Crossover pitfalls

To summarize, self-affine fractals do not involve a single set of exponents
Dy, Dy and D, ,, such that N(b) oc bP:, L(n) o< nP» for all n and M(R) oc RPx
for all R. Different exponents are approached as one moves in opposite
directions away from the crossover point f.. And the value of t. is not
always intrinsic, since in the case of noises it depends on the units chosen
along the axes. A truly mechanical estimate of Dy, D,, or D is likely to
combine values of n or of R that range on both sides of the crossover ¢..
Such an estimate will depend on exactly where t. lies in the range of n or
R. Therefore it will depend on the units of ¢ and B. It will be worthless.
Reliability is improved by exaggerating the vertical scale.



H21 ¢ ¢ SELF-AFFINITY AND FRACTAL DIMENSION 435

8. Discussion

The notion of the fractal dimension brings an unavoidable proliferation of
distinct quantities, each contributing to a fractal's complete description.

This forces us to consider the issue of the foundations of fractal geom-
etry. “Foundations” is a treacherous term, and in particular the figurative
meaning it takes in mathematics, science and philosophy is profoundly
different from its meaning for the architect and the layman. A building's
foundations always come first, followed by the basic shelter and later by
the decorative work. Before expanding a building, one tests its foundations
and strengthens them if necessary. In successful branches of mathematics
and of science, to the contrary, concern with “foundations” tends to come
late, after each period of extensive substantive achievement. Ten years ago,
laying careful foundations for fractal geometry was not a high priority
concern. The new discipline had to gain acceptance and — before that —
had to be built almost from scratch. It included a few essential parts sal-
vaged from the work of mathematicians engaged in other pursuits, but to
this day — as exemplified by this chapter — many basic issues remain com-
pletely untouched.
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Editorial changes. The original text used the gallicism compass instead of
the correct term divider. The more logical notation D}, should be hard to
understand when spoken, therefore the old notation D. was preserved.
Various original terms, were replaced by the term cartoon adopted
throughout these Selecta. This chapter can be viewed as a prelude to the
three chapters that follow. The primitive hand-drawn cartoon of the ori-
ginal has been improved.

Literature. This paper and the three that follow have helped trigger a
substantial literature on self-affine fractals. Most fortunately, the main
papers are collected in Family & Vicsek 1991. My contributions to that
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volume were not edited before they were reprinted. The reprints in this
Selecta book should be easier to read.

How this paper came to be written. The distinction between self-similar
and self-affine fractals is very clearly made in the Mathematical Addenda of
M 1977F (Chapter 12, p. 276) and in M 1982F{FGN} (Chapter 39, p. 350).
For a long time it was best not to belabor this distinction but the need to
face it became irresistible the spring of 1985, when I was at Harvard in the
Mathematics Department, teaching a course called MA195. This paper
was written during this time. An excellent survey, Voss 1986, is reprinted
in Family & Vicsek 1991.

The summer that followed revealed that, for diverse reasons, several
other authors had also been thinking of this topic. Mathematical papers
include Kono 1986 and Kamae 1986. Quite independently, the physicist P.
Wong (see Family & Vicsek 1991) had become worried by his encounters
with shapes that should obviously be called fractals yet whose behavior
appeared “anomalous.”

Now we see that, while vaguely aware of the fact that a fractal need
not be self-similar, all too many scientists were unknowingly drawn to
think always in terms of self-similar fractals. I must count myself among
those careless scientists, who sometimes spoke of “fractals” when they
meant “self-similar fractals.” For example, I often wrote that the fractal
dimension can have many definitions, but always takes a single value
when a set is well-defined. When penning this assertion, there seemed to
be no need to say that the discussion concerned self-similar fractals.

Cases of near-simultaneous involvement and discovery are, of course,
a cliché in the sciences. But in fractal geometry, the serious advent of self-
affinity was the first case of near-simultaneity. The discovery of
multifractals involved nothing close to near-simultaneity, as seen in
M1999N, Chapter N2. Near-simultaneity characterized the direct contin-
uation of my old work in Frisch & Parisi 1985 (an excerpt appears in M
1999N, Section 5.5.2) and soon later its rediscovery by other writers.
However, I had been quite alone in studying multifractals in the late 1960s
and the early 1970s.





