Exercise X - mandatory

Math 320a/520a - Fall Semester 2017

Due Thursday, 11/16/2017, 2:30 PM

- 1. For any given $0 < \alpha < 1$, find a Borel set $E_{\alpha} \subseteq [-1,1]$ such that $\lim_{r \to 0^+} \frac{m(E_{\alpha} \cap [-r,r])}{2r} = \alpha$.
- 2. Show that if (X, \mathcal{A}, μ) is a finite measure space then $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$ for any measurable function $f : X \to \mathbb{R}$. Does this still hold for **integrable** functions when μ is σ -finite rather than finite? (Prove or show a counter example)
- 3. Prove or disprove the following statements for $1 and an arbitrary <math>\sigma$ -finite measure space:
 - (a) $L^p \subseteq L^q$
 - (b) $L^q \subseteq L^p$
- 4. Give an example of an increasing function $f: \mathbb{R} \to \mathbb{R}$ such that f' = 0 a.e., but f is not constant on any open interval.
- 5. When does equality hold in:
 - (a) Hölder's inequality?
 - (b) Minkowski's inequality?
- 6. Show that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous with compact support then f * g is also continuous with compact support.
- 7. Show that if $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$, for $1 \leq p < \infty$, then $||f * g||_p \leq ||f||_1 ||g||_p$.
- 8. Consider $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$ for $1 < p, q < \infty$ with $p^{-1} + q^{-1} = 1$. Prove or disprove the following statements:
 - (a) f * g is uniformly continuous
 - (b) $\lim_{x\to\infty} f * g(x) = 0$
 - (c) $\lim_{x \to -\infty} f * g(x) = 0$