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1. Introduction and exaet formulation
of the problem, FElectron-microscopic studies of the
structure of asymmetric biological particles have raised
the question (see Refs. 1, 2, and 6) of how to find the spatial
orientation of arbitrarily arranged particles of unknown
structure from their projections.

Suppose that p(yy, yo Y3 is the electron density dis-
tribution function of the particle and p,(yy, y2 ¥9 is the
electron density distribution function for a particle, which
is obtained as a result of a rotation w of the initial particle.
The task is to find the transformations wy, ..., wp if we
know the projection

P01, 12) = [P, 01, v, p3)dys,  i=1,2,....0, w, =id.

By m we denote the plane y3=0. The method of Refs.
1, 2, and 6 allows the transformation wj to be reconstructed
when the intersection of the planes 7, w3'™, ..., wy'r is
not a straight line. This condition is not always satisfied,
however, in a real situation, in particular in electron-
microscopic studies of biological particles. Suppose, for
example, that the particle under study extends in one direc-
tion and that if such particles are placed on a substrate,
the direction in which they extend is parallel to the plane

of the film,

Since the direction in which the particle extends is
clearly visible on the projection, we can assume that the
particle rotates through unknown angles ¢y, ..., ¢, around
a preferred axis and is projected onto a plane.

The center of gravity of the particle is projected to
the center of gravity of the projection., We consider aplanar
sectionthatpasses through the center of gravity of the
particle and is perpendicular to the axis around which
the particle rotates (see Fig. 1). Suppose that x; and x,
are the coordinates in the plane of the cross section, where
the center of gravity of the plane section of the particle
is situated at the point (0, 0). By p(xy, x5} we denote the
distribution function of the plane section of the particle.

We consider the following problem: a plane particle
rotates through unknown angles ¢y, ..., oy around its
center of gravity and is projected onto the straight line
X3=0. Find the relative angles ¢ — ¢, k=2, ..., n.
Clearly, we can assume that ¢;=0.

In this paper we propose a method that allows the
angles ¢ +.., ¢n to be reconstructed unambiguously
for an asymmetric particle for n=7,

Once the angles ¢y, ..., @n have been found, we can
carry out a three-dimensional reconstruction of the initial
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structure from projections in already known directions
(see Ref. 3).

2, Properties of the moments of projec-
tions, The distribution function Py (xq, xg) of a particle
rotated through an angle ¢ counterclockwise is given by

Pp(x1, X1) = p(x) cosy + X3 5ing, —xsiny +x, cos ).

For the projection P 4%y =fp¢(x1, Xg)dxy of the func-
tion pglx4, Xz} on to the straight line x,=0 we determine
the k-th moment Mj( ¢) from the equation

Mi(0)= [P, (x,)x} dx,. (1)

The entire analysis is based on the fact that My( ¢) is
a uniform trigonometric polynomial of degree k, i.e.,

M (0) = Ao cos".p +Ak-1.1 cos"".psimp +...4 hoksin"w.

Upon changing variables y; =x; cos ¢+X,8in g, y3=~%; 8in ¢+
Xy cos ¢ (and, therefore, x;=yy cos¢ — y;sing)inEq. (1), we
obtain

Mg () = fp(V1, y2) (71 cosp — y, Si"\o)kd}'l dy,
= (Jo@1, y2)y¥dy dyz)eos o + (=Ch fo(1, ¥2)5 = yady dya )cost L gsing
+o A (D fp1, y2)Yidy, dys ) sink . (1"

These equations for the moments of projections were
first obtained by Gel'fand and Graev in 1961 (Paley— Wiener
theorem for the Radon transformation, see Refs. 4 and 5);
Gel'fand proposed that they be called the Cavalieri condi-
tions, because at k=0 the condition My ¢) = const expresses
the familiar Cavalieri principle: the area of a body can be
calculated from the length of its cross sections by any
bundle of parallel straight lines,

E should be pointed out that hitherto only the Radon
transformation (in a plane and in space) and the Radon
rotation formula have been used in problems of three-

FIG. 1
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dimensional reconstruction, Undoubtedly, not only the
Paley-Wiener theorem but also other results and methods
of integral geometry (see Refs. 4 and 5) will prove useful
in applied problems.

A uniform trigonometric polynomial of degree k is
determined uniquely by the values that it assumes for any
k+1 values of the argument o, ..., ?k+ (0 =¢p< 27) such
that p;- @y = =7, [This last condition is necessary, since
M @£ m)'=(-1)KM( ¢).] Indeed, we know the values of the
function

My(v) . e
costy “RoxtBRTe A 18 T g b 4

for k+1 values of the argument Pfr «oo s Pypy under the
condition tan g =tan ®j» and as is known a polynomial of
degree no higher than k is determined uniquely by its value
at k+1 different points,

Considering several moments simultaneously, we ob-
tain a system of equations for their coefficients and angles
@i+ As n increases, this system becomes highly over-
determined but it does allow all the angles o4 to be found.

3. Finding the angles @3, ..., o for
n=7 for an asymmetric particle. Since the
center of gravity of the projection p (p(xt) lies at the point
X1=0, we have My( @) =fp ,(x))x;dx; =0, For an asymmetric
particle higher moments are generally not identically equal
to zero. Henceforth, to avoid confusion we dencte my(i)
to be a number equal to [p ¢y(xq)x}dx, =Ml o).

We consider the system of equations

Aocos® g+, cosy; sing, +No2sin?y; = m, (i), (2
A30c0s> gy +\qy cos?yysing; + A, 4 cosyysin’y, + Aoasin®yy = my ().

Since ¢ =0, the symbols Ayp=my(1) and Azo=mg(1) are known
numbers, We have obtained a system of 2(n — 1) equations
for 5+(n — 1) =n+4 unknowns Atis X025 Azts A2 Ag3s D2 eee s
¢ne For n =7, therefore, we have an overdetermined sys-
tem of equations, which we solve to find the angles o,

scey %-

Realistically, we can look for the minima of the non-
negative function

n
Z (Aaocos’y; +A1y cosg;sing; + Aoz sin? ¢y — m, (i))?
=2

n
+ I (A30c0s®y; +Xq; cos’gysingy + A3 cosgysin® gy +Ng3sindy; — my ()2
=2

L is sufficient to assume n=7, This will then be a function
of 11 variables.
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4. Final remarks.

a. This method can he simplified considerably if v
also know the values of several angles. Thus, upon fur
ing the electron microscope with a goniometer, we can
rotate the film several times with the object and take a
photograph, For example, suppose that the angles Py
and ¢; are known in addition to the other quantities, Sc
ing the system of linear equations (2), where i=1, 2, 3,
4 (¢, =0), we then find M, (¢) and M;(¢). We solve the equat
M, (@) =m,(i) in order to determine the other angles @ili=
Ingeneral, this equation has four solutions: wi(‘ N ¢i(2). 4‘1(1)

»Pin. The solution that satisfies the equation My o) =
mgi) is the value of the angle ¢ which we are seeking.

b. Using higher moments, we can in similar fashic
find the relative position of identical plane particles wi
have a finite symmetry group,

¢. Suppose that
ft@, P)= [101, x2)8(x1 0y + 32007 - p)aridrs, (w|=1,

is the Radon transformation of a finite function flx).
can then be shown that in order to find f(x) to within rot
tion or reflection relative to a straight line, we need no
necessarily know how f{w, p) depends on w. It is suffici
to know the set of functions %y (p) of one variable, whiel
depends on the parameter @, so that forveach value of &
there is a value w(w) for which oy (p) =flw(a), p), but tt
law of the correspondence v— w(a) is not known,

. A more exact formulation is as follows. We consic
flw, p) as a function of w: Ffw) with values in the spac
of functions of the variable P. To reconstruct f(x), it
would then be sufficient to know only the set of values o
Flw) and not the function itself. This is done in two sta
1) all the moments My(¢) are found; 2) Eq. (1") means ¢
the moments My(¢) determine the moments of the funct
(x4, X)), We know that a finite function is determined
uniquely by its moments.

The function f(x) can thus be reconstructed immedi
from the moments, without finding the angles.
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