


































320 A. B. Goncharov

Let E = (P(2). Then F \s the set of planes tangent to the quadratic cone in 
C^. This F-structure on 3-dimensional manifold defines a conformal structure 
and vice versa.

Lemma 2.7. Lei £=0(2). Then dim r<r'= 1. and Hf^=0for 
w = 0, 1, 2,....
Proof. Wf = {a,x + a2X^}- Let x*, x^* be the dual basis. Let T* e and 
r'(.x) = Ad^, T(x^) = Bd^. Then 0 = 7'‘(-v)(x^) - T\x^Xx) = -B, hence 
dim ry* = 1 and so on. We have a:* (g)...® 1 e Tf and dim C"-^ = 1, 
dim <5, Horn Tf') = L hence =0. ■

By Theorem A, this F-structure is always completely integrable and for 
any plane there is an infinite-dimensional family of integral manifolds 
tangent to V^. For example, for the flat family of cones in the surfaces 
(x - + (y - yoV + (z - = 0 are integral manifolds.

Notice (see the Remark in the Introduction) that the same is true for an 
F-structure such that F is a curve in Gr|.

Lemma 2.8. If /c¡ > 1 then = 0.
1 ^ f

Proof. Similar to that of Lemma 2.7. ■

Lemma 2.9. There is a unique integral manifold through each suhspace of this 
completely integrable F-structure.

This lemma, which is a reformulation of the “Desargues theorem” from
[12], is a corollary of Theorem A.
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Chapter II
Generalized Conformal Structures

§3. Geometry of the cone KiX)
1. CHSSs. Suppose that the Dynkin diagram for the Lie algebra g is 
obtained by discarding the vertex y of the Dynkin diagram of the Lie algebra 
s. The root y corresponding to y enters with coefficient 1 into the 
ecomposition of the minimal root with respect to simple roots and, 

inversely, every such simple root is connected with CHSS ([17,18]). The 
following table collects the information about CHSS; CHSS is presented in 
t e orm SJG^, where and are maximal compact subgroups in S and 

.respectively. By Ef, and E-, we denote compact groups of typ»e E^ and E-,.
e vertex y is enlarged. Denote by Y. the root vector corresponding to the 

root a.

CHSS rank The Dynkin diagram

I SV(p + ,)/SU/(p) X V(q)) min (p,,)

II S(H.2n)IV(n)

HI Sp(2n)IU{n) „

IV SOin + 2)/SO(2) x SO(fi) 2

V £./SO(10) X t/(l) 2

VI £,/£, X [/(i) j

2- The cone K{X). Let be the Levi decomposition of the
stabilizer of x g A' in S.

Let be the cone of highest weight vectors in the G,-module 
each element in is highest with respect to a Borel subgroup in Gx- 

Clearly, s e S transforms Kx into Kxx\ therefore the cone K(X) c 1^ 
associated with X and K{X) is linearly equivalent to all cones Kx- It 'V'H ^ 
convenient for us to identify V with n_ ^ and A:(A') with K^.

3. The structure of the G-module S(n_). The results of this subsection
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elucidate various facts on G-orbits in n_. However, all statements in the proof 
where we make use of these results may be proved by case-by-case checking.

Let b be the Cartan subalgebra in s which is at the same time a Cartan 
subalgebra in g, and A the root system for (b, s).

Let A* be positive roots, positive roots corresponding to n and Ng the 
maximal nilpotent subalgebra in G corresponding to roots A^\A^.

Roots a and P are called strictly orthogonal if a — ^ ^ A and a. + Pi A 
and a is orthogonal to p.

The system of strictly orthogonal Harish-Chandra roots yi 
where r = rkX, is defined by induction as follows: y, = y and y, is the unique 
minimal root in A^ strictly orthogonal to yi,- -,yi-i ([17]).

In what follows, is the irreducible G-module with the highest weight X 
and (L^, 5*(n,)) = dim Home A'*(n-)).

Theorem 3.1. (Schmid [24]). (F^, 5'*(n.)) = 1(0) if and only if X is 
{im)possible to present as A = —Wiy, —...— mp/„ where ^ ^
m, ^ 1 and -y ... + m, =■ k.

Denote by ' a submodule in S'fn-) isomorphic to F^ and put a, = yi + 
... -4- y,. Let/i e 'F^ be a vector of highest weight with respect to Nq-

Corollary 3.2. The set 5(n_)'^' is an algebra isomorphic to the algebra of 
polynomials inf,...,/,.

Lemma 3.3. //(F„ F. (g) F^)o > 0, then \P - y\ < <x.

Lemma 3.3 is an easy corollary of the Steinberg formula for the tensor 
product [25].

Let'F °'F be the product in 5(n_).*1

Proposition 3.4. (L^, ,, 'F, ° 'L^,)c = 1-

Proof. 5"(n_) °'F^ = 5''^‘(n-)- Let 'F^ c 5'(n_) and ^ # a,. Then 
- p\ ^ ly, - y^l > \aj\ = |y|. (This follows from the fact that |y,| = |y^|, 

see [21]), hence by Lemma 3.3, ('F^, 'F^ ° 'F^) = 0. ■
Let' F* be a submodule in Sfri-)* isomorphic to F*. Let 2;- j be the set of 

common zeros of polynomials of'F* a Proposition 3.4 implies that
0 = Zq Z\ c ... c; Z'_i. Put Zf = Z'^Z'i-i and Z, = n_\Z,_i. Let/J 
be a vector of highest weight in 'V*.

Proposition 3.5. Let 0 be a nonzero G-orbit in ti_. Then (9 = Zjfor some i, 
such that 1 < /■ < r.

Proof. There is an / such that 1 ^ < r and G <= Z,. Suppose that G # Z,.
Then there is a G-orbit G' <= Z, such that # Z,. Let xeG' and /e 
^ 'V*, so that/lc, = 0. By the Bernside density theorem and Corollary

T2* we have ffjG' = 0 and /* = /* .. ./*^ for < ... < J„. From the



Generalized Conformal Structures on Manifole>s 323

definition of Z\ we get = 0 for j < i. Hence, j„ ^ i. Thus, if f\,.-=0, 
then f\^. = 0. But if ye Z, and y ^ S>\ there is a polynomial g such that 
gif = 0 and giy) # 0. Contradiction. ■

Proposition 3.6. (a) Put = y + ... y Then the G-orhits of 
vectors are mutually distinct.

(b) If Py'.L—►GL(iy) is a fundamental representation corresponding to 
the simple root y and v is its highest vector of weight y„. then dpi # 0 
anddp,(Y,r\^^) = 0, ^ ^

Proof. Clearly (b) implies (a). Let H = £: ]. Since y, + y, is not a
root, then [£ , £ ^ = 0 and Xy(W^,) = L Restricting the representation 
dpy to the Lie algebra {£■.,//.,£ ,} we have dpfY^.)Vy¥^0 and 

V, = 0. This immediately implies ‘(v^) i 0. Further­
more,^ for the sake of simplicity let us assume k = 2. Then dpyfY-I-

+ dPy^y.yy + 2dPy{Y_^ )dPyfY_^)){Vy) = idp y
)dp/y , )(v^). If we consider the Lie algebra {y_ ,// , Fj, we 

apy(£'_, )(Vy) ^ 0. The weight of this vector is — Xy ~ 72* ”
V2, ) // ) = therefore, considering { y , H , Y } we get
^Py(y^,)dPy{Y_^,)iVy) 0. ■ ’■

Corollary 3.7. The number of non-zero G-orhits in n _ equals rkX. The orbit 
(TlXO is minimal. K{X) is defined by a system of quadratic equations.

4. Examples. (I) y = 01^-^". Then K, is the cone induced in T,X by the 
set of subspaces with an (m — 1 )-dimensional intersection with x.

Another reformulation: K{X) = {u ® w e C” (g) C"}.
One more reformulation: K{X) is the cone of matrices of rank 1 in the set

of matrices of size w x (n — w). This cone plays an important role in integral 
geometry (see [9]). Other orbits are matrices of higher ranks.

(II) X = SOi2m)lU{n). In C^" define a non-degenerate complex metric. 
Then A" is the orthogonal Grassmannian, i.e. the connected component of the 
manifold of maximal isotropic subspaces in C^" and A^(y) = (u a vreA^C"}- 

Other GL(/j)-orbits in A^C" are 2-vectors G such that A'G ^ 0 and 
A'”" '0 = 0 for r = 1,2,..., [n/2].

In T'^jA'the G,,-orbits are induced by the set of maximal isotropic subspaces 
having an (n — S^4)-dimensional intersection with x. For r = 1 we get the 
cone K^.

(III) X = Sp{2n)IU{n). In C^" define a symplectic structure. Then A'is 
the Lagrange Grassmannian, i.e. the manifold of Lagrange subspaces in C 
and A:(A') = {vv e S^C"}.

Other GL(n)-orbits in S^C" are quadratic forms of rank r ^ n on C"*- 
Each G,(-orbit in T^X is induced by the set of Lagrange subspaces having 
(n — r)-dimensional intersection with x. For r = 1 we obtain the cone Kx-

(IV) X = SO{n + 2)/50(n) x 50(2). This is a non-degenerate quad­
ratic in CP"*^, and K{X) is a quadratic cone in C", while is the inter-
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section of X cz and a hyperplane in tangent to X at x.
Another G;,-orbit is T^X\(K^ kj 0).
(V) X = E(,ISOf\0) X (7(1) is the complexification of the projective 

plane over octaves. K(X) is a cone of simple semispinors [7] in the semispinor 
representation of 50(10). The manifold X may be realized as the set of 
irreducible idempotents in the Jordan algebra recovered from Mj (K) <S) 
_C, i.e. the complexification of 3 x 3 Hermitian matrices over octaves 
([8]).

Another (7j,-orbit is T^X\(K^ u 0).
(VI) X = E-ijEf, X i/(l); then K{X) is a cone spanned by the set of 

irreducible idempotents in (AT) ® ^C.
Let us describe the O-orbits. Xci A° B = {AB + BA)I2 be the Jordan 

product in Mj fK) ® gC and

det (A, B,C) = ^tr A ° B ° C + ^írA-trB-trC - ^[/rA-/rB ° C

+ trB'trA ° C + trC’trA ° B'\.

£■5 (g) C is the group of C-linear transformations in A/jfAOOgC, 
preserving det (A, B, C) (cf [8]) and KfX) = {A e M¡ (AT) ® R^ldet 
(A, A,B) = 0 for any B}.

Other orbits: {A\ det (A, A, A) = OlX/TfA') and {A\ det {A, A, A) 0}.

5. Isotropic subspaces in XfX) and families. In the fundamental 
representation Py:5—GL(IT) corresponding to y, consider the cone of 
vectors Ky of highest weight. For example, for Gr”“''" this cone consists of 
simple w-vectors in A^C" (corresponding to the Plücker embedding of Gr”^" 
into PiA^C)) and for the space C^" with a complex metric and a maximal 
isotropic subspace x e SO(2n)/U(n) in C^", the simple semispinor that E. 
Cartan assigned to x is the eigenvector for /’;c([7]).

Proposition 3.8. (a) Ky is a cone over X.
(b) The interseciion of Ky with the subspace tangent to Ky along the 

generatrix v = C*v is a cone over K^.

Proof. Statement (a) is evident. Let us assume that P„ P, i.e. v = v^. Each 
vector T^Ky is uniquely presentable in the form dpy(Y)Vy, where Ten_ © 
Center G. Points of the cone Ky in the neighbourhood of Vy are expressed in 
the form

exp {t'dPy{Y))Vy = Vy + hdPy(Y)Vy 4 ^ + ••••

Therefore exp (/•ifpy(y))e T^ATy iff i/py(r)^Vy = 0. It remains to make
use of Proposition 3.6(b). ■


































