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Multifractal Measures, Especially for the Geophysicist*

BENOIT B. MANDELBROT'?

Abstract—This text is addressed 1o both the beginner and the seasoned professional, geology being
used as the main but not the sole illustration. The goal is to present an alternative approach to
multifractals, extending and streamlining the original approach in MANDELBROT (1974). The generaliza-
tion from fractal sets to multifractal measures involves the passage from geometric objects that are
characlerized primarily by one number, namely a fractal dimension, to geometric objects thal are
characterized primarily by a function. The best is to choose the function p(x), which is a limit probability
distribution that has been plotted suitably, on double logarithmic scales. The quantity a is called Holder
exponent. In terms of the alternative function f(x) used in the approach of Frisch-Parisi and of Halsey
et al.. one has p(x) = f(x) — E lor measures supported by the Euclidean space of dimension E. When
fix) 2 0, f(x) 1s a fraclal dimension. However, one may have f(a) < 0, in which case « is called “latent.”
One may even have x < 0, in which case a is called “virtual.” These anomalies’ implications are explored,
and experiments are suggested. Of central concern in this paper is the study of low-dimensional cuts
through high-dimensional multifractals. This introduces a quantity D,, which is shown for g > 1 to be
a critical dimension for the cuts. An “‘enhanced multifractal diagram™ is drawn, including f(x), a function
called 1(¢) and D,.
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1. Introduction and Motivation. Reasons Why Multifractals are Indispensable
in Geophysics and in Other Sciences

The topic of multifractals is bound to become of increasing importance to
geophysics, in particular if the present volume becomes influential.

In one phrase, the generalization from fractal sets to multifractal measures
involves the passage from geometric objects characterized primarily by one number,
to geometric objects characterized primarily by a function. This function can be a
probability distribution that has been renormalized and plotted suitably.

In a different single phrase, the generalization for fractal sets to multifractal
measures involves the passage from a finite number of fractal dimensions to an

* Note: This text incorporates and supersedes MANDELBROT (1988). A more detailed treatment, in
preparation. will incorporate MANDELBROT (1989).
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infinite number of “‘dimensions.”” Moreover (and this is a special point of this
paper), these “‘dimensions™ can be negative. We shall have gone far from the
integer-valued dimensions of Euclid.

I.1. The Example of Copper

Correspondent to the simplest fractals, the basic idea is self-similarity, either
exact or approximate. The closely related notions of self-similar fractal or self-sim-
ilar multifractal can be phrased in many ways, but the geophysicist might best
understand them in the context of the distribution of a rare mineral, such as copper.
We first consider high-grade copper, then consider gradually lower grades.

High-grade copper is of course distributed nonuniformly: it concentrates in very
few regions of the world. If one examines one such region in detail, however, copper
continues to be found to be nonuniform: it concentrates in few sub-regions. And so
on. It is reasonable, therefore, to suppose that the relative distribution of high-grade
copper is the same (in the statistical sense) within each copper-bearing region,
whether it is small or large. This being granted, take a large region, and cover it by
a grid of equal “cells.” As the cell sizes are made smaller, the total area of the cells
that contain high-grade copper is found to shrink.

Mathematics has long known a construction that follows this process, and
fractal geometry has “tamed” this construction to make it a model of nature. For
example see MANDELBROT (1982), The Fractal Geometry of Nature (FGN). In the
language of fractal geometry, high-grade copper is usefully viewed as “concentrated
on,” or “supported by,” a self-similar fractal set of low fractal dimension.

Next, examine lower grade copper. The fact that it is more widespread in nature
is expressed by its being supported by a fractal set of higher fractal dimension.

Overall, in order to give a full representation of the distribution of copper, it is
seen that fractals are necessary and that no single fractal set is sufficient. A simple
description consists of giving the fractal dimensions corresponding to each of a
sequence of grades, as defined by thresholds varying from 0 to a very high value
that is rarely exceeded.

The overall idea of the preceding paragraph has been combined with the
generalization of the notion of self-similarity from sets to measures, and has thereby
led to the notion of self-similar multifractal measure. To say that a multifractal is
a measure and not a ser is a very important distinction. It will be explained in
Section 3.1. Our work on multifractals was initially concerned with the intermit-
tency of turbulence, and was mostly carried out in the period 1968 to 1976, but it
had started about 1962. My book FGN surveys multifractals on pp. 375-376, but
this survey is overly sketchy and is now obsolete.

1.2. An Interesting Old Quote

The simplest of all multifractals, which is nonrandom. is called binomial and is
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discussed in Section 5. This construction that has long been known to mathemati-
cians, and has been tamed by fractal geometry, to make it a model of Nature. It
happens that the basic circumstances that call for the binomial multifractal mea-
sure are very intuitive, and have nearly been rediscovered in the earth sciences
context described in Section 1.1. Indeed, the geologist DE Wuis (1951) (quoted in
FGN, p. 376) has described them as follows:

“Consider a [body of ore] with a tonnage W and an average grade M. th an
imaginary cut we slash this body into two halves of equal tonnage ;W, differing
in average grade. Accepting for the grade of the richer half (1 + d)M, the grade
of the poorer half has to be (1 —d)M to satisfy the condition that the two
halves together average again M ... A second imaginary cut divides the body
into four parts of equal tonnage LW, averaging (l+d)*M, (1+d)(1—d)M,
(1+d)(1 —d)M, and (1 —d)>M. A third cut produces 2* =8 blocks, namely 1|
block with an average grade of (1+ d)*M, 3 blocks of (1+ d)*(1 — d)M, 3 blocks
of (1 +d)(1 —d)>M, and one block of (1 —d)*M. One can visualize the contin-
ued division into progressively smaller blocks . .. The coefficient 4 as a measure of
variability adequately replaces the collective intangibles [dear to those who feel
that ore estimation is an art rather than a science], and statistical deductions
based upon this measure can abolish the maze of empirical and intuitive tech-
niques.”

Of course. de Wijs did not even begin to explore the geometric aspects of his first
sketch of a model, and neither he nor notable followers (including G. Matheron)
had an inkling of fractals or of multifractals, e.g., of the basic notion of fractal
dimension. However, assume that the ore density is independent of grade, making
tonnage equivalent to volume, and allow the (reinterpreted) scheme of de Wijs to
continue ad infinitum. We shall see that this leads to the conclusion that the ore
“curdles” into a binomial multifractal.

1.3. Relative Intermittency in a Context Broader than that of Metals

To broaden the scope of multifractals, let us quote from the subsection on
Relative Intermittency of my book FGN, p. 375 ss.

“The phenomena to which [multi] fractals are addressed ate scattered through-
out this Essay, in the sense that many of my case studies of natural fractals negate
some unquestionable knowledge about Nature.

“We forget in Chapter 8 that the noise that causes fractal errors weakens
between errors but does not desist.

“We neglect in Chapter 9 our knowledge of the existence of interstellar matter.
Its distribution is doubtless at least as irregular as that of the stars. In fact, the
notion that it is impossible to define a density is stronger and more widely accepted
for interstellar than stellar matter. To quote deVaucouleurs, ‘it seems difficult to
believe that, whereas visible matter is conspicuously clumpy and clustered on all
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scales, the invisible intergalactic gas is uniform and homogeneous . . . [its] distribu-
tion must be closely related to ... the distribution of galaxies . ...’

“And in Chapter 10 the pastry-like sheets of turbulent dissipation are an
obviously oversimplified view of reality.

“The end of Chapter 9 mentions very briefly the fractal view of the distribution
of minerals. Here, the use of closed fractals implies that, between the regions where
copper can be mined, the concentration of copper vanishes. In fact, it is very small
in most places, but cannot be assumed to vanish everywhere.

“In each case, [portions of space] of less immediate interest were artificially
emptied to make it possible to use closed fractal sets, but eventually these areas
must be filled. This can be done using a fresh hybrid [namely, a] mass distribution
in the cosmos such that no portion of space is empty, but, [given two] small
thresholds f and A, a proportion of mass at least 1 — 4 is concentrated on a portion
of space of relative volume at most 6.”

1.4. A Feature of Most Direct Importance in Many Sciences: Many Measures are not
Observable Directly, only Through “Cuts™

The exploration of the earth cannot be carried out fully in three dimensions.
Very often it must follow a straight bore-hole to obtain a straight I1-dimensional
cross-cut through a real system that is intrinsically 3-dimensional. Often flat cuts are
all that is available for inspection. The same constraint is encountered when
turbulence in 3-dimensional space is explored via 1- or perhaps 2-dimensional cuts.
Typically, the positions of these cuts bear no relation to the overall turbulence, and
can therefore be thought of as having been chosen at random.

Consider also the context of strange attractors. Their full natural space has a
very high dimensionality. But they are typically examined via a “‘Poincaré section”™
by a plane. The position of the plane, again, often bears no relation to the full
attractor, and can be viewed as having been chosen at random. As we shall see by
examining typical cases, the measure observed along a random cut has properties
that are without counterpart in the measures studied in their natural space, and vice
versa. This raises the issue of what can and what cannot be inferred from a cut to
the whole measure. This issue is extraordinarily important and has motivated our
early work of 1968-1976, especially MANDELBROT (1974).

2. Two Alternative Summaries

The present text begins with introductory material, continues with the binomial
measure (Section 5) and then proceeds to step by step generalizations. One must
wait until Section 8 to initiate a discussion of the cuts. The result is longer than we
would have preferred.
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We hope to interest both the reader who is not yet fully familiar with
multifractals, and the reader who is already familiar with them via the variant
approach of FrRiscH and Parisi (1985), which was adopted by HALSEY er al. (1986).

As to the reader familiar with our earlier work, MANDELBROT (1988), he will find
the present text to be much more detailed; for example, Sections 3.4 and 3.5 of the
earlier work have been replaced by Sections 5 to 8.

Our goal is not to teach manipulations, but to present the reader who is new to
multifractals with what we believe is the most understandable and simplest form of
their theory, and to provide the skilled reader with the surprisingly simple but subtle
explanation of the formal manipulations with which he is familiar.

2.1. Summary for the Reader New to Multifractals

The work is best summarized as follows:

The notion of self-similarity extends readily from fractal sets to measures. As we
shall see in Section 3 a measure is simply a way of specifying a method of spreading
mass, or probability, or other “stuff,” over a supporting set. The distribution may be
spread on a Euclidean “support™, like an interval or a square, or it may be restricted
to a fractal support, like a Cantor set. The function is the same, except for detail.

In order to describe quantitatively a self-similar method of spreading stufl
around, one standard first characteristic is a sequence of moments, or an exponent
in the cumulant generating function, which is denoted in this context by t(g). The
earliest graph of —1(q) is given as Fig. 2 in MANDELBROT (1974).

Another characteristic, equivalent to the first one, is a limit distribution function.
This limit is akin to an ordinary probability distribution function. Also, the
renormalization must follow a very unusual and ill-known path: one needs a
multiplicative renormalization that is unfamiliar. The additive renormalization, which
is I'and familiar to every student of probability, and which leads to the central limit
theorem, is worthless. Because of this renormalization, the limit distribution function
is best considered after logarithmic transformations of both axes, that is, as plotted
with doubly logarithmic coordinates. We shall denote the resulting function by p(a).
An alternative quantity f(«), given by f(«) = p(a) + 1 for measures on the line, has
become entrenched in the literature to specify the limit distribution.

One can obtain f(«) from t(g), and 1(g) from f(«), by a direct or inverse Legendre
transform. This property follows immediately from the Lagrange multipliers ap-
proach to the Gibbs distribution in thermodynamics, an approach long familiar to
every physicist. Later, we give a full mathematical justification of the formalism, valid
in a broader context in which f(a) can very well be negative. This justification is
provided by reference to existing (but little-known) limit theorems of probability due
to Harald Cramér, and concerned with “large deviations™. The Legendre transform
expresses the intuitive fact that f(x) can be obtained as the cap-convex envelope of
an easily drawn family of straight lines.
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On a plot of f(a), the quantity—1(q) is the ordinate of the intercept of that
tangent to f(a), whose slope is g, with the vertical axis. And the intercept of the
same tangent with the main bisector of the coordinate axes is the quantity
D, =1(q)/(g — 1), which is interpreted later as a critical dimension.

MANDELBROT (1974) has introduced two distinct kinds of random self-similar
multifractals, respectively called conservative (or microcanonical) (Section 7) and
canonical (Section 8). The latter are the more sophisticated, and needed for the
study of low-dimensional cuts of multifractals embedded in a high-dimensional
space (see Section 1.4). In particular, the canonical 1974 multifractals are necessary
to understand the very peculiar standing of the lognormal distribution, which is
widely mentioned when applying multifractals to turbulence. Observe that FRISCH
and PARisi (1985) explicitly note that, while their approach had originally stemmed
from MANDELBROT (1974), it was of lesser generality, because it did not accommo-
date the lognormal.

2.2. Summary for the Reader Familiar with the Multifractal Formalism, as
Originated by Frisch and Parisi

To start with a question: Since “multifractal” is not a physical notion, but a
probabilistic (and measure-theoretical) concept and tool, where is the probability
theory in the many recent papers devoted to this topic? The answer is simple and
is given in this work. It is best summarized as follows:

The function 7(g) with which you are familiar is a standard probabilistic tool to
represent measures, called cumulant generating function.

The quantity « with which you are familiar is a standard notion, called Hélder
exponent. There is no gain in calling it “strength of singularity.” HENTSCHEL and
PROCACCIA (1983) call it dimension, but experience shows that many confusions are
avoided if this term (in all its multiple and still multiplying forms!) is reserved to
sers and never used to apply to measures.

There is a wide belief among those familiar with the multifractal formalism that
the function f{x) with which you are familiar is a new concept that is defined via a
Legendre transform from the function 7(g), therefore can be labeled at will (for
example as the “‘spectrum of singularity™). In reality, if the measure is supported by
a Euclidean interval of dimension 1, f(a) is simply equal to p(a) + 1, where p(a) is
a limit probability distribution function plotted on doubly logarithmic coordinates.
But the set that supports the measure can be a fractal. This leads to a slightly more
complex rule described in Section 6.6.

There are several methods for estimating p(x) and f(«). The Legendre transform
starting with 7(g) yields one such method. But the estimation of the 7(g) involves
many diverse smoothing operations. They are not innocuous, yet they have not been
subjected to the careful analysis they deserve and demand.
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The quantities D, = 1(g)/(g — 1) are “critical dimensions™ for g > 1. They were
introduced in MANDELBROT (1974) through a theorem asserting that along a cut of
dimension D through a measure, one has {u%(dx)} = o0 when g > g.; (D). The
function inverse of the function g, (D) is D,.

The attractiveness of multifractals may to some extent be due to an aura of
mystery. All mystery is eliminated, however, when one understands the nature of
the formal manipulations. But does it really matter that 1(g), « and f(«) are properly
labeled? To respond, let us note that our approach obtains the Legendre transform
between 7(g) and f(a) via Lagrange multipliers, as is usual in first courses of
thermodynamics. In thermodynamics, there are several standard ways of making
the use of these multipliers rigorous after the fact. One way is to follow the
Darwin-Fowler method of steepest descents. This used to be a standard topic in
textbooks, but is unfortunately no longer familiar to every physicist. Thus, in effect,
the Frisch-Parisi method skips Lagrange multipliers, and proceeds to the Darwin-
Fowler method immediately. No teacher of thermodynamics would proceed in this
way in a first course! Nor should a teacher of multifractals.

The preceding remarks help explain that, in our experience, the Frisch-Parisi
approach to multifractals has generated substantial confusion. No one has an
intuition of what a “‘spectrum of singularities” can or cannot be like. Proper
foundations flush out confusion. As a foremost example, the Frisch-Parisi interpre-
tation of f(a) as a fractal dimension has led to paradoxes linked to negative f().
These paradoxes had begun as surprising anecdotal evidence, and have of course
ended by being explained away by suitable special developments of the theory. They
do not even arise in our properly probabilistic approach.

The formalism originated by Frisch and Parisi has now given rise to a very
extensive literature. But this is not the proper place to survey it, even in part. Our
goal is to set out an alternative approach on its own terms, and the relations
between the two approaches have better be developed elsewhere.

3. Spatial Variability Beyond Fractal Homogeneity

3.1. The Essential Distinction Between a Set and a Measure, and the Notion of
“Singular Measure™

To understand multifractals beyond the crude formalism, a full appreciation of
the distinction between the concepts of ser and of measure is essential.

Fortunately, a knowledge of either set theory or measure theory is completely
unnecessary. More precisely, the complications of measure theory enter into the
theory at a stage beyond the topics discussed in this paper, for example when one
wishes to follow the detailed proofs of some of the theorems to which we shall refer.
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Basic ideas are always explained best when stated in the simplest context, which
in the case of this paper is usually the interval [0, 1], the square [0, 1]* or the cube
[0.1]%. In a Euclidean space of dimension E, the interval, square or cube are
examples of basic sets of the form [0, 1]%.

The notion of a set. In order to define a set S in [0, 1]%, one needs a rule that
says for each point Pe[0, 1]¥ whether it satisfies PeS or P¢5S. Such a rule is
provided by the “indicator function” /(P) defined as I(P) =1 if PeS and /(P) =0
if P¢S.

Uniform or homogeneous measure. 1t is well-known that one can associate with
the whole [0,1]% a uniform measure. The set and its uniform measure are
mathematically equivalent. Next, consider a fractal set constructed recurvisely, e.g.,
a Sierpinski gasket, which is described in Figure 1. The most natural measure, again
called “‘uniform,” gives equal weight to each of its thirds. Again, the set and its
uniform measure are equivalent. However, the uniform measure is very special, and
in many cases very unrealistic, as has already been stressed in Section 1.

The notion of the limit of a set. Multifractals play two main roles, each of which
can begin with a complicated set of points. The first role is exemplified by the dis-
tribution of copper on earth. Since the mining engineer can see no harm in assuming

Figure 1
The construction of Sierpinski's gasket proceeds as follows. The initiator, shown in Figure la is
a triangle. In the stage between Figures la and 1b, this triangle is divided into four and the middle
fourth is erased. yielding Ib. Between 1b and lc, each of the three remaining fourths is, divided into
four and the middle fourth of each remaining triangle is erased. The sam=z process is repeated ad
infinitum.
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that each copper atom reduces to a point, all the copper atoms on earth form a set
ol points. The second role is exemplified by the successive “‘sample values” of a
random process examined at discrete instants of time, or the successive “orbit
points” of a deterministic process. Again, one deals with a sequence of points or
ordered set.

In all the cases of interest, however, these sets are very large, and to specify them
completely would be an unmanageable task. It would also be pointless. This leads
to a natural impulse, especially in the second example: let time run forever and take
the limit of the set of successive positions of our process. Question: is the limit a set?
In order to answer usefully, consider a collection of points that have been chosen
at random on [0, 1].

First suppose that their probability distribution is continuous, with a density
1'(x) such that p'(x) >0 for all x. If so, the limit of an increasingly large set of
sample points is indeed a set, namely the whole interval [0, 1]. The fact that this
limit is independent of the function u'(x) means of course that the limit contains less
information than the finite set that tends to this limit. The answer is obvious: the
least that we must do in either case is to specify, not only a limit set, but also a
density on this set.

A second familiar case is when our random point can take only certain
admissible values x,, each of which has a known probability y,. In this case, the
limit is a (denumerable) set {x, }, but we must also specify the y, which are said to
be “supported’ by this set.

How to describe a random process that generates x with a density p'(x)? A first
characteristic i1s p'(x) itself, or its integral p(x) = jg,u’(s) ds, which is a cumulative
probability distribution. An alternative though less complete characteristic is the
function

x(u) = total length of the intervals of x within which u'(x) < pu.

The densities u'(x) and the probabilities y, happen to define the two classical
examples of “measures.” Multifractals are also measures, but they belong to a third
class, which has no density and is not discrete, and is called “singular.” The best is
to first discuss them in an example.

3.2. An Old but Good Illustration of the Concept of Singular Measure

Since “to see is to believe”, Figure 2 reproduces the earliest completed illustra-
tion of a random multifractal, and appeared first in our earliest full paper on this
topic (MANDELBROT, 1972). Many geologists and geophysicists may find it difficult
not 1o find never-ending new interpretations for it.

The horizontal axis shows the “‘time™ 1, as “discretized” into small boxes of
uniform width As, and the vertical axis shows the sequence of the “‘measures” of
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Figure 2
The earliest simulation of a sample from a multifractal measure, namely the limit lognormal measure of
MANDELBROT (1972).

these boxes. Let us say again that, if the total integral measure over the time span
(0. 1] is set to 1, one can think of the measure in a box as the probability of hitting
this box. But the measure in a box is, more generall) the amount of any kind of
“stuff” contained within it.

The measure of the interval [0, 1], call it ([0, 7]), is of course an increasing
function of 7, and what is plotted here is the sequence of its finite increments
u([0, 1 + d1]) — u([0, 1]). The increments’ values are joined to form a curve, but this
curve is nor what it seems to be. It is not the graph of an intrinsically interesting
function, and it cannot readily be transformed into one.

To provide contrast and familiar background, let us draw the analogous
diagram for a measure having a continuous density x'(1). In that case, u(Ar)/Ar is
an approximation to the graph of the function representing u’(s), and a first
characterization of our measure would be provided by the distribution of this
approximate density u(Ar)/Az in time. As Ar—0, the approximate density would
tend to the true u'(z).

In the present instance, however, the situation is extremely different. By design,
the measure is approximately self-similar. This notion will be discussed in Section
3.4, but it may already be said that when the measure in Ar is examined on much
finer scales A,r < At, it proves to be about as irregular as the whole Figure 2. For
example, if At is halved, the sharing of the u(Ar) between the two halves is usually
very unequal.

It follows that this u([Af]) grossly fails to have a local density. Nor is it discrete.
Therefore, taking the limit Ar — oo transforms the wiggly curve on Figure 2 into a
curve that is even more wiggly, hence does not become an increasingly close
approximation to a function.

Suppose that the measure u([0, 7]), considered as a function of r, is continuous
but is not differentiable. Then the measure u(dr) has no local density, and is called
“singular.” (This is a technical term, due to Lebesgue.) For a singular measure.
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the notion of asymptotic “distribution™ for the values of u([Ar]) has no meaning.
Fortunately, a suitable substitute is available.

3.3. The Limit Probability Distribution p(a), and the Corresponding Function f(x)

Begin with the equivalent of Figure 2 for a sequence A, ¢ of decreasing values
of Ar. Then, for each A1, replace u([A,f]) by the quantity o, =log u([A.7])/
log A, 1, which is called Holder exponent. Next, form the probability density of «,,
and replace it by the quantity p,(x) = —log(probability density of «)/log A, 1.
Each of these two steps consists of first taking logarithms, and then renormalizing
them by dividing by the factor —log A, r. This renormalizing factor is not familiar,
and may seem peculiar and artificial. However, it will be justified in Section 7.2.
There, we examine successive examples for which the measure is known to be
multifractal, and we find that p,(a) converges as Ar —0 to a limit that does not
reduce to either 0 or oo. Any other renormalizing factor, to the contrary, would
yield a degenerate limit.

The limit of p,(x) will be denoted by p(z). It will be seen that p(x) is negaiive
for all x, except for the value where p(x) reaches its maximum, which is the
expectation {2). But one must realize that the convergence to the limit may be
slow. The property that p,(x) — p(2) can be turned around, and used to define the
notion of multifractal.

As has been first pointed out by FRISCH and PARIs! (1985), it is also worth
considering the quantity f(x) = p(2) + 1. In effect, Frisch and Parisi have discussed
f(2) in the special case p(z) = —1. so that f(«) > 0. for all 2. They have pointed
out that. in this special case, one can interpret f(x) as being the fractal dimension
of a suitable set. The replacement of p(x) by f(«) has virtues in some cases, but
our feeling is that, fundamentally, it hides the nature of the multifractals.

Between my early papers and the preprint of FRISCH and PaRrist (1985) (which
was distributed in 1983), multifractals continued to develop only in the sense that
the mathematical background was cleaned up and extended (e.g., in KAHANE and
PEYRIERE, 1976). But they did not receive new applications (nor were they
mentioned in Physical Review Letiers). Their spread is a recent phenomenon, and
most readers who have heard of them are likely to know presentations that follow
the approach common to Frisch and Parisi and to HALSEY et al. (1986). Unfortu-
nately, the algebra of these presentations is needlessly complicated, artificial, and of
limited applicability and the terminology of HALSEY er al. hides the extremely simple
nature of the underlying structure. We shall, therefore, adopt the notation of HALSEY
et al., but follow our original approach in the form into which it has lately developed.

3.4. Self-similar Measures and Beyvond

We need a few more formal definitions concerning positive measures. The
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measure of a set S will be written as u(S). Again, those not familiar with measure
can think of u as being the probability of hitting the set S. The multifractal
measures obtained as a result of multiplicative cascades are closest in spirit, to the
exacl self-similar fractal sets.

Recall that a fractal set is exactly self-similar, if it can be decomposed into parts,
each of which is obtained from the whole by a transformation called isotropic
contraction, or contracting similitude, to be denoted by J#". A self-similar set is fully
determined by a collection of contractions. For example, each third of a basic
fractal called a Sierpinski gasket is obtained from the whole by a contracting
similitude of ratio r = 1/2. Starting with any triangle in a “prefractal collection of
triangles”, the interpolation of the shape itself continues without regard to the
“past’ construction steps.

Now sappose that a (positive) measure u(P) is defined for each third of the
gasket, then is interpolated for each third of a third etc. More generally, when the
part P’ of a fractal is obtlained from the part P by the contracting transformation
A, so that P"= X"(P). the conditional measure of P’ in P is defined precisely like
a conditional probability. [t is the ratio u(P’)/u(P) of the measure u(P’) to the
conditioning measure u(P).

Now, the idea of self-similarity for a measure expresses that the process of
successive interpolations continues without regard to the “'past” steps. The rough
idea is that, as the parts contract. the measures they carry contract proportionately.
To express this idea formally, take a second contracting transformation %, and
compare u(P’)/u(P) = p{H (P)}/u(P) with u{L(P’)}/u{F(P)}. If these conditional
measures are identical for every choice of %" and ., the measure 1 will be called
a strictly self-similar multifracial.

A random measure is called sratistically self-similar if, given one or a finite
collection of nonoverlapping parts P. = % (P), the distribution or the joint distri-
bution of the quantities u(P.,)/u(P) depends only on the contractions Ko

Side remark. In a more general mathematical fractal set, the parts are obtained
from the whole by transformations that are nonlinear. Examples where the contrac-
tions are in some sense almost linear include the Julia sets of polynomial maps. The
corresponding multifractals include the harmonic measures on these sets. Other
examples of multifractal measures concern the limit sets of groups based upon
inversions in circles (FGN, Chapters 18 and 20). The limit set itself may be a straight
line, as in the example examined by GUTZWILLER and MANDELBROT (1988).
Finally, the “fat fractals™ (a new term for the fractals investigated in FGN, Chapter
15) and the Mandelbror set involve essentially nonlinear transformations. As yet,
there is no general agreement about which transformations are acceptable in
defining the terms “fractal” and ‘“‘multifractal.”

3.5. Five Basic Conceprs Concerning Multifracials

Aside from the distinction between set and measure. multifractals involve five
basic notions, each of which will be introduced in the simplest possible context. A)
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The Holder a is introduced in Section 4, in the context of the homogeneous Cantor
measure. B) The functions p(x) and f(«) are introduced in Section 3, in the context
of the binomial measures. C) The Legendre transform “multifractal formalism™ is
introduced in Section 6, in the context of the multinomial measures. D) The notion
of latent a’s is introduced in Section 7, together with a first form of randomness, in
the context of “conservative 1974 multifractal measures.” E) The notions of critical
exponent g, and of critical dimension function D, (D, is the inverse function of
e ), and the notion of virtual o are introduced in Section 8, together with a second
form of randomness, in the context of ‘““canonical 1974 multifractal measures.”

4. The Basic “Unifractal” is the Cantor Measure. It is Nonrandom and Self-similar.
Introduction of the Hoélder «

4.1. Definitions

It is probably not necessary here, to repeat the definitions of the triadic Cantor
dust %, and of its devil staircase function C(x) but it takes little space. To define &,
one starts with the interval [0, 1] and one cuts out the middle third open interval
J1/3. 2/3[. A closed interval is denoted by [ ], and an open one by ] [. Then one cuts
out the middle third open interval of [0, 1/3] and [2/3, 1], etc. The staircase function
C(x) is a special case of the function u([0, 7]) of Section 2.3. The left and right halves
of € are assigned the equal measures 1/2, so that C(1/3) = C(2/3) = 1/2. Then the
four quarters of ¢ are assigned the equal measures 1/4, so that C(1/9) = C(2/
9) =1/4 and C(7/9) = C(&/9) = 3/4. And one continues to interpolate ad infinitum.
Thus, the measure of every interval [x’, x“] in [0, 1]. is obtained from the limit
function C(x) as p([x’, x"]) = C(x") — C(x").

This measure is called Cantor measure, or fractally homogeneous measure on the
Cantor dust, for the following reason. If two pieces of Cantor dust contained in
[x7.x7] and [x}, x7] can be superposed by translation, they carry identical mea-
sures: p([x7, x7]) = p([x3, x3]).

4.2. The Devil Staircase C(x) is a Diagonally Self-affine Fractal Curve

Indeed, it subdivides into the following three parts. The “‘middle part” is
deduced from the whole by a degenerate (noninvertible) affinity of matrix (g 27 ])
and fixed point (27',27"). The two “side parts” are deduced from the whole by
affinities that share the same matrix (0_l 2_.) and have fixed points (0, 0) and

(1., 1), respectively. In the present context, degenerate matrices “‘do not count.”
Therefore, the unique simplicity of the homogeneous multifractal on € is due to the
fact that the matrix has only one possible nondegenerate form.
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More generally, consider a fractal obtained by a recursion such that there are N
contractions, all having ratios equal to the same r, and that each recursive
stage divides the measure equally between the N parts. Then the measure is self-

00
affine, the matrix being either degenerate of the form (0 r) or nondegenerate of
N-' 0 r2 0
the f = .
e orm( 0 r) (O r)

4.3. Application of the Notion of Hélder Exponent to Intervals Instead of Points.
a and f(a) for the Unifractal Measures

Adapting a classical mathematical notion due to Hélder to apply to the dyadic
cell [dr]. we write

log[u(dr))

o= log(dr)

For the Cantor dust of dimension D, the interval [0, 1] contains N*=2*
nonempty cells of length dt = b %, each containing the same measure N =% = p =%~
For each of these cells, one has u(dx) = (dx)”. Hence o = D.

The remaining cells are empty, and they form a set of fractal dimension equal
to 1. In these cells, one can say that o = o0,

Infinitesimals of the form (dy) = (dx)* with a # 1 are called nonstandard, and
Abraham Robinson has constructed around them a field called nonstandard analy-
sis. It is not needed in this discussion.

The function f(2). For future reference, it is useful to introduce a function f(x)
that is defined for two points only:

for a=D,f(a) =D, and for a=oc,f(x)=1.

4.4. Finite Sample Prefactors

In general, the Cantor measure on a Cantor set of base b is studied using cells
whose base b’ is such that " # b and b’ # b"* for all integer h. In that case, the
number of nonempty cells continues to be ““of the order” of N*, but it is no longer
equal to N*. One can write it in the form F, N*, where the prefactor F, depends on
k and remains positive and finite. The measure in a nonempty cell, similarly, can be
written as F, N ~*, where the prefactor F, depends on k, varies between cells, is finite
but can be arbitrarily small. Therefore, the sample values of « are of the form
D + log F./k. These values may overlap several of the bins in which the values of
x are sorted for the purposes of statistics.
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5. The Basic Multifractal is the Binomial Measure. It is Nonrandom and Self-similar.
Introduction of the Function p(x) and f(a), and of the Multifractal Representation

The binomial measure on the interval [0, 1] is the simplest example of a
multifractal measure. By studying this example more carefully and in greater detail
than is usual, this section hopes to make many of the important features of
multifractals stand out clearly. In particular, the function f(«) is best understood
when developed in a context in which no formalism is needed.

Under various names, the binomial and multinomial measures of Sections 5 and
6 have been long known in pure mathematics. But the first concrete application (to
the distribution of turbulent diffusion, MANDELBROT, 1974), as well as various
extensions in a “‘fractal” context have come with our work. FGN, calls them
Besicovitch measures, to honor the principal early contributor of their study, but this
terminology has never taken hold. It has now become obsolete, because it lends itself
poorly to the necessity of distinguishing between the binomial and the multinomial
cases.

5.1. Construction of the Binomial Measure, Derivation of the Equivalent Functions
S(a) and p(x)

The binomial measures are a family of multifractals that depend upon a single
parameter my, variously called a multiplier or a mass. One assumes that m, satisfies
0 <my<1and m,+#1/2, and one defines m; = 1 — m,. Often it is nice to choose
larger than m,, so that 1/2 <m, < 1. (Note that, in terms of the de Wijs quote in
Section 1.2, my=(1+4d)/2.)

The mass in the “initiator” [0, 1] is taken as unity, then the basic “‘generating
step” is to spread mass over the halves of every dyadic interval, with the relative
proportions m; and m,. The first stage yields the mass m, in [0, 1/2] and the mass
my in [1/2, 1], etc. After k stages, suppose that ¢ =0, 7,7, . . . 1, is the development
of rin the counting base b =2 and let ¢, and @, denote the relative frequencies of
0’s and 1's in the binary development of 7. Then the binomial measure is defined as
the measure that assigns to the dyadic interval [df] = [, t + 27%] of length dr = 2%
the mass

p(dr) = mgPomie,

The binomial measure is self-similar. By construction, u(dr) satisfies the property
of self-similarity described in Section 3.4.

The notion of “pre-multifractal”. One can define a sequence of measures y, (dr)
such that u(dr) = u(dr) if [dr] is a dyadic cell of length 2%, and the mass is distributed
uniformly over each cell. The measures u,(dr) can be called “pre-multifractal”,
because they play the same role relative to the binomial measure, as the broken line
“prefractal” approximations play relative to the fractal sets such as the Koch curve.
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The function u(1), an analog of the Cantor staircase function C(1), is diagonally
self-affine. As we know, this means that its variation within a cell of side b ~* is a
reduced-size replica of its variation over the original cell of side 1. In every cell, the
reduction is an affinity whose matrix is diagonal. The horizontal linear reduction is
b % in every cell. The vertical reduction is the measure within the cell, and varies
from cell to cell.

The Holder o. In the present case,

o =a(@g, @) = — @ log, my — @, log, m,,

and 0 <a,,,, = —log,my, S a € a,,, = —log, m < oc.
The box dimension. The number of intervals leading to ¢, and ¢, is
Nk, @, ©,) = k!/(koy)(kp,)!. One can use N to form the following expression:

log 2/(k, @0, ¢1) _ _log[k!f(k%)?(kfpl)!]
log(dr) log(dr) '

This quantity & is of the form —log N/logr that characterizes the similarity
dimension of a set. Hence one can call é a box fractal dimension. More precisely,
since the boxes belong to a grid, it is a grid fractal dimension.

For large k, the replacement of the factorial by the leading term in the Stirling
approximation shows that

5(kv @q, @l) = =

lim, _ . 8(k, @, @) = (g, @),

with
wq, @) = —@olog, oo — @, log; @,

Derivation of a function f(2). Eliminating ¢, and ¢, between o and §, we obtain
a function written in parametric form. It will be denoted as f(a), instead of &(«), the
reason being explained in Section 6.2.

Note that 0 £ f(«) < min{a, 1}, with equality being achieved in four points:
1) f(2) =0 for a =, = —logm, 2) f(2) =0 for a =a,,,, = —logm,, 3) fla) =1
for & = (1/2)(tmin + %max) and 4) f(a) = a for a = —mg log my —m, log m,.

A first reading of this paper may proceed directly to Section 6.

5.2. Entropy, Information, Entropy Dimension and Information Dimension

The notion of entropy, as every physicist knows, is extremely important but far
from easy to handle. One of the basis forms of entropy is written as —Z p;, log, p;.
where the p; are probabilities, and entropy written in this form has since been
reinterpreted by Claude Shannon as an “information”. Thus Section 5.1 proves the
binomial case of the important result that f(«) is often formally an entropy-infor-
mation. This role has led many authors to refer to it as “information dimension.”
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Though I do not like to argue about words, this term has always seemed
inappropriate. Even the simplest similarity dimension log, N is already formally
identical to one of the basic expressions for entropy-information.

5.3. Restatement of Section 5.1 in Terms of Rescaled Doubly Logarithmic Plots of
Probability Densities

Having obtained f(x), we shall spend several sections in a discussion of what it
really does and does not mean. First, let us reinterpret the combinatorics in Section
5.1in probabilistic terms. This will be easy, and very important because it will show
that f(2) is nor a new notion requiring an entirely new intuition, but a new form
of a familiar notion, only requiring the further development of old intuitions.

Let a dyadic cell of length 2=* be picked at random among the 2* such cells. For
the probability of hitting a cell that corresponds to a prescribed a or the equivalent
@, and ¢, we shall use the notation Pr{4 =a}. Here, A is to be read as “capital
a”, and we follow the probabilists’ custom of denoting a random variable by a capital
letter, and a possible value of this variable by the corresponding small letters. We
have of course Pr{d =a}=2"*N(k, 0y, ¢). As k-, Pr{d =a} =0 for alil
a # ). The next step is to raise the basic question of probability theory. It is
possible to “renormalize” Pr{4 = a} in such a way that it has for & — oo a limit that
is neither 0 nor oo. Clearly, this is possible and even easy: it suffices to define

log Pr{d4 =a} _log 27kN(k, @qs @)
logdr log dr

plk. @, ¢,) = —

Obviously, p(k, ¢y, @) = é(k, @4, ¢,) — 1. with (k, z) as in Section 5.1. Hence.

lim, . ook, 9o, @) = p(a) = f(2) — 1.

5.4, Restatement of f(x) and p(a) in Terms of “*Tail” Dimensions and Probabilities

What we have done is best stated in terms of “‘tail”” quantities. After k < oo has
been specified, the quantities ¢, and ¢, are both multiples of 1/k. The “tail”
quantities are defined by

N*k, @9, 0)) = 3 Nk g, —thg)

Vo2 eg

N=(k, @0, @) = Z Nk, Yo, — ¥p).
Vo< @o
By analogy with —log N/log dr, one can use N* and N~ to define the tail box
dimensions 6 *(k, @, ©,) and & ~(k, ¢,, @, ). and then to seek and define their limits
(. ¢,) and &~ (@,. @,). A bit of combinatorics and Stirling approximations
easily yields the following facts:
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For o> 1/2. 87 (@y. @) = &(¢e @) and & (@5.¢1) =1.
For g, =1/2, 6% (@o, @) =0 (9o, @) = 1.
For o< 1/2, 6% (po, @) =1 and & (9o, @,) = (@0, ¢1)-

Next, the function &% is defined by stringing together the information-carrying
portions of 6" and é ~. Thus,

3*(k, @y, @;) = min{é " (k, o, @), 0~ (k, @0, ‘r"l)}-

The next obvious step is to define the positive (resp. negative) “tail probabilities™
of a as being Pr{4 = a} (resp., Pr{4 < a}), and to define “the” tail probability as
being

Pr{4 2a} when a>d(a)
Pr{4 <a} when o<<{a).
By a further analogy, we define the quantities p*(k, @, @) =3 (k,

©o. @) — 1, and similarly p *(k, @5, ¢,), 6 (k. @5, @) and p = (@, ¢,). It is easy to
see that, as k -» o0,

For ¢o>1/2, p (9o, ¢1) = p(¢o, ©1) and p~(@g. @) =0.

For @o=1/2, p™ (0. ) =p (90, 6) =p (@0, 1) =0.

For ¢, < 1/2, p*(¢o. @) =0 and p~(@q, ¢1) = p(@o. 1)

The quantities p(k, @, @), p “(k, ©o. @), p~(k, @q. ) and p(¢g, @) will now

be interpreted in probabilistic terms, and show to be nothing but probability
distributions in doubly logarithmic coordinates.

5.5 The Notion of Multiplicative Measure and a Very Surprising Limit Theorem, a
Special Case of a Theorem of Cramer

It is useful to restate the fact that the measure u(ds) in a cell of length 2% is the
product of k multipliers equal to either m, or m,. We consider the interval [0, 1]
globally and construct a cascade as follows. It begins with a uniform density
wa(r) = 1. After the first stage, let the density become p|(¢) = m(27), where m(z) is the
following periodic function of period 2:

mt)=m, if 0<t<l and m(t)=m=1-m, if 1<t<2.
After stage 2, py(1) = m(20)m(2%).
After stage k, ui(1) = m(20)m(2%) . .. (2*1).

(The value of u;() at the dyadic points does not matter.) This p(7) is the density
of the premultifractal m, (dr).

Hence, the binomial measure is called a multiplicative multifractal. It is the
simplest example of multiplicative fractal constructed in a grid. This property makes
it exactly renormalizable.
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The process of multiplication of random quantities is unfamiliar, but it is easy
to transform it into a process of addition, by taking logarithms. Thus,

a(k) = —(1/k){logy m(n,) +log, m(ny) + - - - + log, m(n,)],

where m(n,) =mq if n, =0 and m(y,) =m, if n,=1.

Now, to select at random the cell [dr], means to select at random the & first
digits of 1. Hence we see that a(k) is the average of k values of a random variable
equal to

—log, m, with the probability 1/2, and to
—log, m, with the probability 1/2.

Comments concerning lognormality. In terms of the representation of a(k) as
the average of k random variables. The results of Section 5.1 express a limit
theorem of probability theory. The form of this theorem ought to surprise those
readers who believe that the classical central limit theorem shows that
log mi(n,) + log m(n,) + - - - is asymptotically Gaussian in “‘every case.” This would
imply that the measure Il M(y,) is asymptotically lognormal. These familiar
assertions are perfectly true, and they result from the application of a different
renormalization. From the central limit theorem one does obtain information about
the multiplicative multifractals, but this information only implies that p(x) and f(«)
are parabolic in the central bell near their maximum. Concerning their form away
from the maximum, the central limit theorem does not pretend to say anything.
This is a very important issue, to which we shall return in a more general context
in Sections 7 and 8.

5.6. The Two Forms of the Multifractal Representation

The term “multifractal,” which is due to FrRiscH and PARIsI (1985), is attractive
and has contributed to drawing attention to the multifractals. It is motivated by the
following representation that, in turn, is often inverted and made into a definition
of what a multifractal is.

*A multifractal measure can be represented as the union of a continuous infinity -
of addends. Each addend is an infinitesimal ‘unifractal measure.” It is characterized
by a single value of «, and it is supported by a fractal set having the fractal
dimension [ (). The sets corresponding to different a’s are intertwined.”

The situation after a finite number k < oo of cascade stages. After k < oo stages
“fractal dimension™ is defined for the premultifractal multiplicative measure as in
Section 4.2. It is an informal box dimension that involves a single reading of
—log N/log r, and does not involve a limit. The multifractal representation follows;
it is mostly useful when & is large enough to take the bite off the critique to be
described in Section 5.7.

The limit for k — oo. Role of the Hausdorff-Besicovitch dimension. For k — oo,
the multifractal representation involves far subtler issues, but in the present case it
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was justified in advance by theorems in EGGLESTON (1949) and VOLKMAN (1958)
that were available “off-the-shelf,” a pleasant surprise. These theorems involve the
Hausdorfi-Besicovitch dimension, Dy;. The quantity Dy had played an important
early role in fractal geometry, but this role has been decreasing sharply in recent
years.

The theorem in EGGLESTON (1949) covers the r’s that are “normal” for the
probabilities ¢, and ¢,. These are the real values of ¢ whose binary development
t=0. n,n,...1s such that the frequencies of 0 and 1 in the sequence n,, #,, ...
converge to well-defined limits ¢, and ¢,. Concerning the “Eggleston set” formed
by these 1's, the Eggleston theorem tells us that its Hausdorff-Besicovitch dimension
is the familiar § = ¢, log, @ — @, log, @,. Furthermore, the Holder exponent « can
simply be defined by taking a sequence of increasingly small nested intervals dr that
include ¢, for example the sequence of dyadic intervals, and one can write

log p((dn))

a(f) = Iimd:aﬂ log dr

When 1 is itself dyadic, the sequence of #; ends by an infinity of either 0's or I's,
Hence, one must define left and right o exponents, using log u([t —dt, f]) and
log u([t, t + dr]). But this hardly matters, because dyadic t's are of fractal dimension
equal to f(x) =0. As a matter of fact, the binomial measure’s o, and «,,, are
attained to the left and the right sides of the same dyadic values of ¢ (except that
the endpoint r =0 yields only «;, and the endpoint 7 =1 yields only o,,).

Now, let us go beyond the Eggleston theorem, and consider the r’s for which ¢,
and ¢, fail to be defined. To account for these r’s, the definition of the Hdlder
exponent takes its original mathematical form: one must replace lim, _, by

log p([dr))

log di
where ¢, (k) and ¢, (k) are the frequencies of 0 and of 1 in the k first digits of 1. To
continue, we must replace ¢, = 1 — ¢, by two independent quantities ¢ 5P and @,
with

a**"(r) = lim supy, o = lim sup,,_ o [ — (k) log, my — ¢,(k) log, m,],

@37 =limsup, .. @o(k) =1—¢™=1—liminf, _ . ¢, (k)
@i =liminf, _ . @o(k) =1— @{* =1 —lim sup, _ .., (k).

Volkmann (1958) proves that —®, log, ®, — ¥, log, ®, is the Hausdorfl-Besi-
covitch dimension of the set of r where ¢§'? = @, and also of the set of r where
@ = @,. It follows that it is also the Hausdorff-Besicovitch dimension of the set of
t where o*'(1) = a = —®, log, my, — @, log, m,. Thus, Volkmann'’s theorem extends
to all values of ¢ the interpretation of f(«) as a dimension.

Interpretation of the two multifractal representations in terms of rwo different
probability limit theorems. In terms of the probabilistic foundation of f(x) via p(x),
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the above two forms of the multifractal representations are totally different in spirit.
The box dimensional representation is the analog of the weak law of large numbers,
which says that, as the size k of a sample increases,

Pr{|sample average — expectation| > ¢} — 0.

The Hausdorff dimensional representation is the analog of the strong law of large
numbers which is indeed far stronger (and harder to prove) and asserts that

Pr{lim, ., sample average = expectation} = 1.

Space lacks to elaborate upon this analogy.

5.7. Convergence Towards the Limit f(x) is Slow, and *‘Sampling Biases™ are
Ordinarily Very Large. Therefore, f () Represents the Generating Mechanism of
the Multifractal Very Indirectly

Recall that the derivation of the function f(x) in Section 5.2 involves a limit
argument based on the leading term in the Stirling formula for the factorial. The next
question is, how fast do 8(k, @,, ¢,), 6 and § ~ converge to their limits, which we
know is either &(¢pq, ¢,) or 1?7

Figure 3 compares the limit *‘Stirling” expression with the quantities d(e, @q, @),
6% and 6~ based upon the full factorials. The value k =56 corresponds to
di =27~ 10~"7, which is minuscule. To study a probability distribution on such
fine grids would require sample sizes well beyond any ordinary experiment. Yet, even
at this stage, we see that the limit f(«) is far from having been reached.

Particularly visible is the value of « where the graphs of the functions § * and
&~ cross each other. This is where the two tail probabilities are equal to each
other, hence to 1/2. Probabilists call this the “median” value of «. Here,
607 =38 =log2* 'flog2*=1—1/k. This is a special case of the extremely simple
result, 6% =6 =1+ l/log, (dt), which holds for all multifractals. Anyhow,
whenever the distribution of « is symmetric, as it is in the binomial case, it is
obvious that the median « is also the mode o (the most probable «) and the
expectation (& ). For other multiplicative multifractals, the median, the mode and
the expectation need not converge for k — oo, but a sufficient condition for
convergence is that the bell of the limit distribution be asymptotically symmetric.
This is the case when (log M) < co.

This bias elicits a subtle conceptual question. There is no question that f(x) does
describe the process that generates the binomial measure. But what does f(«) really
tell us about actually observable quantities, namely, those relative to the premulti-
fractal measures that correspond to values of k < oo that are of “sensible size?”

To pinpoint the issue by contrast, recall what happens with self-similar fractals.
For them, the concept of fractal dimension is also best defined by a limit. Yet, we
argued (convincingly) in our books that it is concretely and practically representative
and useful, because it also has a direct relevance to ordinary-sized fractals.
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Figure 3
Three forms of the theoretical distribution of the binomial measure p(dr). Calculations were carried out
for k =20, resulting in d¢f =2~ 2°, namely, about a millionth. The three alternative distributions are
plotted in “rescaled doubly logarithmic™ form. That is, the horizontal is not y itself, but « = log u(dr)/
log(dt). The vertical bars simulate the “‘density” of o, i.e. (x being discrete) a probability divided by Aa.
The monotone increasing and decreasing step curves represent the tail probabilities Pr{4 <o} and
Pr{4 > «}. All three functions are plotted as (log of a function)/log(d1). For k — co, all three curves have
the same limit p(x). One has p(x) =0 and f(x)p(a) + 1 =1 for the center of the diagram. Thus, the
densities ““overshoot™ the limit, and the tails “‘undershoot™ it. See Sections 5.7 and 6.6 for a discussion.

In a binomial multifractal (and a fortiori in more general ones), the situation
is far harder. The f(x) is exclusively an asymptotic notion that is quite distant
from representing the distribution of the measures over intervals of ordinary sizes
dt.

The issue of the lack of direct significance of f(«) is especially acute in the case
of turbulence, or of all other phenomena in which the fractal range has a lower
cut-off that is not infinitely far, but reached by ordinary experiments. In those cases,
indeed, the passage to the limit that seems to define f(x) has no concrete meaning.
Thus, to say that the measure pu(dr) is directly represented by the limit would be a
fiction. However, again, f(«) does indeed provide a useful indirect representation of
the generating mechanism. Section 6.6 will tackle the problem of how f(a) can be
inferred from a finite sample of data.

6. The Second Most Basic Multifractal is the Multinomial Measure. Introduction of
the Legendre Multifractal formalism

6.1. Basic Background. The Domain of all Possible Points (o, 0)

To construct a multinomial of base b > 2 requires b masses my(0 < f <b —1)
adding to 1. Denote by ® the point whose coordinates are the frequencies ¢,
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0 o

Figure 4
Rough idea of the domain of («, &) for a multinomial multifractal with b =4. The domain’s upper
boundary defines the function /(). Here, all the my are different. Clearly, o, = min( —log, my) >0,
and o, = max( —log, m,) < co.

of the digits f in the base-b development 0,#,n,...n,. Every b-adic interval
characterized by @ yields

p(dr) = Tim%es, hence o = =Y @, log,my; and &= —) @, log,¢p.

In the binomial case, a single é = f(«) could be deduced from the value of «, but
this possibility is not available here. A given «, indeed, allows a host of possible sets
of values of ¢, constrained by £ ¢, = 1. Each of these sets has its own J, and the
multinomial representation would not be a sum over a sample index «, but a sum
over two indexes « and §. More precisely, the @’s yielding a given « define a portion
of hyperplane, on which the function & varies continuously. Therefore, the possible
values of & for given o cover an interval. After the points («, §) corresponding to all
the values of o have been combined, the result is a domain of the plane, as shown
in black in Figure 4.

This domain is bounded to the left by o, = min{ —log m, }, and to. the right by
Omax = Max{ —log my }. It is bounded from below by é = 0. In fact, it has as its more
precise lower boundary a certain scalloped curve. For example, when no two m, are
identical, (including a = o, and & = %, ), Omin = 0 when a = a;;, and between two
successive ay’s, Oy, follows an entropy arch of height log, 2. When several values
of B yield the same a;, the arches on both sides of o, are rescaled by an affinity. For
example, if o, is attained for N, distinct 7S, n(0tmin) = 108, Nj.

6.2. Thermodynamical Manipulations. The Lagrange Multipliers Argument, and the
Legendre Relation of the Gibbs Theory

For a given value of «, the é’s are dominated by the term whose dimension is the
highest. This is the term that maximizes —X ¢, log, ¢, given —Z @, log, m; = a,
and Z¢y =1. To solve this problem, we use the classical method of Lagrange
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multipliers (HUANG, 1966, Chapter 8). It introduces a multiplier ¢, with
— o0 < g < oo, and yields

b logymy mg
qulogbm'g zmg
The customary roles of the “partition function” and the “free energy’” are played here

by the quantities £ m§ and t(g) = —log, £ mf.
In terms of 7(g), the Lagrange multipliers determine q and f(x) from a by

d1(q)
q

Pp =

i}
a=—Y @glog, my = —alog,,ng 5

Z(q log, m; — log, 3, m %)mﬁ

max d =f(a) = —
2 mf
That is,
_ 0tlg) _ . One i
o= B and f(cx)—qaq T=q0 —T.

The black domain in Figure 4 is now replaced by its upper boundary, which is the

graph of a function /(). Since in the multinomial case the black domain of « and

o0 satisfies «>0 and & 20, we see that f(a) 20, «,, >0, S(@min) =0 and

S (@min) = 0, and %pay < 00, f(max) = 0 and f'(s,,,,) = — o0. Multifractals that are

not multinomial, yet possess these properties we call “pseudo-multinomial.”
Note, incidentally, that

1 0t my Ot

=———=|og, £ —.
P q d(log, mg) = q Omy

The moments of p. When a cell is selected at random, the multiplier is a random
variable M that takes the value m, with the probability 1/b. Its g-th moment is
{M?y =% (1/bym}. The quantity log,(M?> = —1—1(q) in a common way of
specifying a random variable in mathematical statistics, and it is called “cumulant
generating function.” (Note: The sign attributed to t in the usual multifractal
notation is unfortunate, and a number of authors, e.g., FEDER (1988), sponta-
neously select the opposite sign.) Similarly,

k
(uo(de)y = [{M¥3)* = [b 'Zmﬁ] = [b! =@k = (dr) ! +l0),
Adding the contributions y; of the (df) ! intervals of length dr, we find
<Z Hﬁ'> = (dt) ' (u(dt) ) = (dr)"®.

In the approach of HALSEY et al. (1986), this is the definition of 1(g).
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6.3. Inverse Legendre Relations, Analytic and Graphical

Knowing t(g) for all values of g, one can trace all the straight lines of equation
d,() = gu — 7. The analytic solution is that these straight lines define f(«) as their
envelope, namely

Sf(2) = min (ga — 7).

A graphical approach is often more direct. If the lines represented by &,(«) are
traced in black, they merge into a second black domain in the (a, &) plane, which
“surrounds™ the black domain of {«, 6} that we have considered previously.

6.4. Thermodynamical Analogies

If the present approach is used, the observations that, ¢ ~inverse temperature,
T~Gibbs free energy, and f~entropy are not after-the-fact “thermodynamic
reinterpretations” of multifractals. They are embedded in the multifractals’ origin in
the Lagrange multipliers. Further use of the thermodynamic interpretation is
beyond the scope of this paper.

6.5. The “Darwin Fowler™ Derivation of the “Multifractal Formalism> and Actual
Computation

FriscH and PARis (1985) and HALSEY et al. (1986) obtain the same equations
a=1"and f=qo —1 via a steepest-descent argument. Experts who have learned
statistical mechanics in older books recall that Darwin and Fowler have used
steepest descents to justify rigorously the Lagrange multipliers procedure. (See also
HUANG, 1966, Section 10.1.) However, no one teaching thermodynamics will start
with the Darwin-Fowler method, without having first presented the Lagrange
multipliers. Therefore, the path towards the formalism taken in Section 6.2. involves
the least effort and the fullest understanding. Section 7 describes the next simplest
generalization.

6.6. Estimation of f(x). Statistical Corrections for the Small Sample Bias

To deduce /() from a finite sample of data can be done in many different ways.
We shall give one “quick and dirty” method, then several examples of inference
from an observable fractal range to an inaccessible limit.

A quick and dirty correction from a single histogram. Section 5.7 shows that the
convergence to the limit d(¢q, ¢,) is much faster for the tail functions é *(k, @,. @,)
and o~ (k, ¢y, @) than it is for the density functions d(k, ¢y, ¢,). Moreover, we
already know that the value of the bias at the median where § * =&~ is ““univer-
sal”, in the sense that bias = 1/log,(1/dr), independently of f(«). Assuming that the
bias is the same for all &, which is the binomial case, suggests the following
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“Recipe”: Suppose that u(dr) is known down to cells of length 2~ *msx, Evaluate the
sample tail function §*(k,.x). An estimate of (x) is provided by *(kyae) + 1/kman-

The moments and Legendre transform route to the estimation of f() and {(c). The
preceding procedure is extremely crude, but there are several alternatives. Sections
6.2 and 6.3 suggest one alternative, which has become widely used. First, estimate
©(g) from the data; next, compute f(x) as the Legendre transform of the estimated
©(¢g). This path is deeply imbedded in the approach of Frisch and Parisi and of
Halsey er al., since their approach defines f(«) in this fashion.

However, the path via t(q) is nor unique. Let us now describe the principle
underlying this and many other estimation procedures, then list alternative imple-
mentations.

How to infer f(a) from data within an observable fractal range. Suppose that [0, 1]
has been divided into 2*mx minimal intervals of length 2~ *ms. Then the measure
p(dr) is of course known for each of these intervals., But for every k < k..., u(dr) is
also known for 2* intervals of length 2. The values of u(dr) carry considerable
amounts of information. This information can be processed by evaluating (g), but
have been a vocal advocate of alternative methods.

Two such methods are found in MENEVEAU and SREENIVASAN (1989) and in
CHHABRA and JENSEN (1989). There is room for many more.

6.7. Generalization of the Scope of the Binomial and Multinomial Multifractals
Defined on [0, 1]

The preceding discussion is of wider generality than has been suggested thus far.
Many physicists seem to be under the impression that multifractal measures are
always supported by fractal sets. The discussion thus far has shown, to the contrary,
that the simplest multifractals are those supported by [0, 1]. Now, we proceed to the
easy task of demonstrating that, when the bases are matched in a way to be
described, a multinomial measure on [0, 1] maps upon one that is supported by a
cube or by a fractal set constructed recursively.

Mapping a fractal on [0, 1]. Consider a fractal set that is constructed recursively
using a generator made of N “sticks”, which are intervals of equal lengths. The best
known examples are the generalized Koch curves (FGN, p. 142 shows that this
family also includes the Sierpinski gasket). Recursion defines a point P on such a
fractal as being on stick number #, in the first recursion stage, . . . stick number #,
in the k-th stage. Together, the integers 1, define a real number in the base N,
namely ¢ =0.9,,...,#%,...,with 0 <7 < I. In this way, every interval [d1] of [0, 1]
is mapped on a piece of our fractal, which FGN calls a “fractal interval.”

Mapping a multifractal. Now distribute on [0, 1] an arbitrary multinomial
measure of base N. The above map transforms it automatically into a multinomial
measure on our fractal.

Double points. It is known, of course, that some P’s are characterized by several
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values of ¢. Fortunately, however, the multifractal measures are continuous (though
not differentiable). When the P’s for which ¢ is ambiguous are denumerable, these
ambiguous 7’s do not matter. (There are several sources of ambiguity. The first is
that if ¢ is a multiple of N~*, it can be represented as ending in an infinity of 0s
or of (N—1)’s. A second source of ambiguity follows from double points in the
Koch fractal; for example, the Sierpinski gasket has asymptotic double points.)

Cubes. A Peano motion (our term to replace the improper term, Peano curve)
can, similarly, be used to map a given multinomial measure on [0, 1] upon a cube
[0, 1]% The only condition is that the multinomial’s base N be such that NY€ is an
integer.

Effect of mapping upon a, f(x) and p(x). This effect is, most fortunately, very
simple and even amusing. To fit a widely used notation, denote our fractal’s
dimension by D,. Denote by |dP| the Euclidean distance between the endpoints of
the map dP of the linear interval dr. It is easy to see that |dP| = |d¢|"/?s.

Therefore for the measure 4’ on the map of [0, 1], « is replaced by

o’ =log p'(dP)/log |dP| = D, log u(dt) /log(dr) = Dy

Moreover, our map multiplies the fractal dimension of a set in [0, 1] by D,.
Hence, the f-function is replaced by f* = fDy. Thus,

J'(@") /Dy = f(a'[Dy).

When f'(«) is plotted in the “reduced” coordinate states, a’/D, and f’/D,, the
shape of its graph is independent of D,.

7. The Random 1974 Multifractal Measures, Part I. The Conservative Case and the
Introduction of *“Latent™ o’s, with Negative [ (cx)’s

Now we proceed to the first of two fully studied cases of the exactly renormal-
ized multifractals. They are the “1974 multiplicative multifractals” introduced in
MANDELBROT (1974). The reader who has access to MANDELBROT (1989) will find
it fruitful to study that paper at this point.

7.1. The Conservative 1974 Measures on [0, 1]

First, let us modify the multinomial measure as follows: The indexes of the
masses sy are shuffled at random before each stage of the cascade that distributes
the mass within each of the k-th level intervals into masses within the (k + 1)st level
intervals. (Note that one must not shuffle mass between all the k-th level intervals!)
The resulting “shuffled multinomials,” are the next exactly renormalizable stage
beyond the multinomials. Observe that shuffling does not modify p(a), hence does
not modify f(x).
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The 1974 multifractals enter logically as the next stage after the shuffled
multinomials. They require a base b = 2 and a multiplier that is not limited to the
multinomial’s prescribed finite collection of myg’s, but may be a more general
random variable. Since it may depend on f, it will be denoted by M; = 0.

Since mass is conserved while it is spread around within a cell, strong “conser-
vation” rules constrain the multiplier. For example, the b random multipliers
My(0< B <b—1) must add to 1. Consider the representative point whose coordi-
nates are these b multipliers M. This is a random point restricted to an “admissible
set,” namely, to the portion of b-dimensional space defined by M; = 0 and
Z M, =1. When a cell is chosen at random, the mass is multiplied by one of the
M, chosen with equal probabilities 1 /b. Therefore, the average multiplier M is the
mixture of the b coordinates of the representative point. Clearly, 0 <M <1 and
(M>=b"". The conservative 1974 measures can, but need not, add the further
assumption that the coordinates M are identically distributed. If they are, M is the
same random variable as any of the coordinates M.

By a repetition of this scheme, the b-adic cell of length b —*, starting at
t =0,1,9>...1 is given the mass

M(HI)M(’?I’}?2) ‘M(’Tlsvank) =l—[M

Here, the successive random multipliers M for given 7 are identically distributed and
independent. Qur h-adic cell, therefore, yields

o= —(1/k)log, M(n,) +logs M(n:,12) - - . ]

Thus, « is the average of k independent random variables. Let us now show that,
for the desired a’s, its limit distribution for k — oo is far from “‘intuitive.”

7.2. Five Examples of Sums of Independent Random Variables, for which the
Probability Distribution is Known in Analytically Closed Form for Both the
Individual Addends, and for their Sum or Average

To obtain the limit distribution of « for k — co, the limit theorems known to
every physicist (law of large numbers and central limit theorem) give results without
interest. One needs, instead, the general results to be described in Section 7.3. In
order to motivate these theorems, let us begin by special random multipliers M that
allow an analytically explicit evaluation of the distribution of «.

Originally, these examples were singled out as being among the few known
examples with the desired property. After the fact, however, the first three examples
have proven to be of intrinsic interest. Example A) illustrates Section 5. Example B)
illustrates the new feature that enters in this Section 7, and Example C) illustrates
the new feature that enters in Section 8. Our random variables, whether discrete or
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continuous, will stand for —log, M or for —X log, M. To avoid unwieldy formulas,
however, they will be denoted by X, and their values by x. In each case, we denote
the density by p(x) for each addend, by p, (x) for the sum of k addends, by kp,(kx)
for the average a of k& addends. We also consider the quantity (1/k) log, [kp, (kx)],
which (in effect) was already used in Section 5.3.

A) The binomial distribution. Section 5.3 implies that (1/k) log, [kp,(ka)] —
p(x) = f(x) — 1, where f(a) is the “entropy” function described in Section 4.2.

The striking features of this example are that Omin > 0 with f"(a,;,) = oo and
Onin <00 With f"(or,:0) ='—ic0.

B) The Gamma distribution. When the parameter is y, its density is
p(x) =x""'e ¥/I'(y). The sum of two Gamma random variables of respective
parameters 3" and 7" is a Gamma random variable of parameter y” + 7", Therefore,
pi(x) =x¥~'e=*/['(ky). By the Stirling approximation, (I [k) log, [kp;(ke)] —
y log(a/y) — a4y = p(a).

Let us show that this example is encountered for the conservative 1974 multifrac-
tals when b = 2, so that the admissible set for the multipliers M, and M is the interval
[0, 1]. If both multipliers are distributed over this admissible set with uniform density,
one has Pr{M >m}=1—m. Writing ¥ = —log M yields Pr{Y = p}=:en ] This
exponential is simply the Gamma distribution corresponding to y = 1. It leads to
p(a) = log, (« log,2) — o + log, e.

The striking features of this example are that «_,, = 0 and Omax = 00, and that
P(%min) = P(%may) = —c0. These properties could not happen in the multinomial case,
and serve in Section 7.4 to introduce the notion of latent x.

The Gamma distribution and related examples are discussed in detail (with several
illustrations) in MANDELBROT (1989), which—again—the reader would benefit from
at this point.

C) The Gaussian distribution p(x) = (2rno?)~'? exp( — x?/2¢?). Here, [kpy (ko) %
= (2n0°/k) ~"/®0 exp( —a?/20?). Thus, (1/k) log [kp, (ka)] — —a?/2¢% = p(a).

Computationally, this example is the simplest of the present five. But it raises novel
issues, which is why it has not been listed first. The Gaussian has two unbounded
tails, while the conservative model requires M < 1. From M,..>1 follows
Omin = — o0, which will serve in Section 8 to introduce the notion of virtual .

D) The Poisson distribution. When <X > = y, one deals with the discrete probability
p(x) =e*y*/x!. Here p,(x) = e *(ky)*/x! By the Stirling approximation,

(1/k) log, [kpi (k)] = —y + alog, (ye/x) = p,(«).

E) The Cauchy distribution. Its density is, of course, p(x) =[n(1+x?)]~'. Bya
property called “Lévy stability,” one has p,(x) = [nk(1 + x*/k?)] ', hence pa) =0.
This result means the Cauchy case falls quite outside the pattern found in cases A)
to D). The renormalization that it requires is altogether different. But the random
variable M = exp (Cauchy variable) satisfies (M%) = oo for all g. Therefore, it is
impossible to use it as a multiplier satisfying conservation on the average.
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Features common to examples A) to D). 1) To form the quantity (1/k) log p; (k)
is to renormalize the average in a way that greatly accentuates the low probability
“tails,” and deemphasizes the central “‘bell.” In examples, we have found that the
newly renormalized average still converges to a limit, for which p(x) <0, with
p(@) =0 for one value of « Namely, for the expected value <a)
of a.

In examples B), C) and D), the analytic form of exp[p(2)] is nearly identical to
that of p(x), except that it is “wrongly normalized.” It does not integrate to 1, and
would not be proper probability density. A consequence of nonintegrability is that,
before the asymptotic range is reached, each of the above quantities (1/k) log py (ke)
is >0 over a range of a’s near the maximum of p(x). That is, as in the binomial
case, direct estimates from data collected for a finite k overestimate p(e) near its
maximum.

Differences between the five examples. Gross nonuniversality. All the above limits
differ from one another. For example, the limits for the non-Gaussian cases differ
from the limit relative to the Gaussian case. In Section 7.3, this surprising result will
be shown to hold very generally. It is the second most important probabilistic fact
underlying the multifractals (the most important fact being the behavior of mo-
ments along low dimensional cuts; Section 8).

7.3. Generalization of the Multifractal Formalism by Application of the Cramér Limit
Theorem. Profound Nonuniversality

The above examples are very special cases of the “large deviations theorems” of
H. Cramér; see Book (1984), CHERNOFF (1952), DANIELS (1954, 1987). That the
proper mathematical result is available “off-the-shelf”” is a pleasant surprise. The
“local form™ of the Crameér theorem asserts the following:

As k — oo, the quantity (1/k)logz(probability density of «)
converges to a limit, to be denoted as p(a).

The tail quantities (1/k) log, (probability of « > {a>) and (1/k) log (probability
of @ < {a)) converges to the same limit. It is easily shown that

f(a) = p(er) + 1 = p(2) + dimension of the measure’s support.

The Legendre formalism. In this multinomial case, ©(¢) could be written either as
—log, Tm% or as —1 —log, (M. This second form remains meaningful for all
random variables M. With this definition of t(g), the generalized Gibbs formalism
resulting from the Cramér theorem remains valid. That is, the relation between (q)
and f(x) follows the Legendre rules we have encountered in Section 5 for the
multinomial measures.
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Failure of universality. Moreover, there is no universality, in the specific narrow
sense exemplified in Section 7.2: different multipliers yield different f(x)’s, and
conversely.

Obviously, Cramér-type theorems extend to the case when the factors M are
weakly dependent or weakly nonidentical. See AZENCOTT et al. (1980) and
DAWNHA-CASTELLE (1979) for various generalizations.

7.4. Negative f(x)’s, and the Distinction Between Manifest and Latent Values of o

Negative f(x). The 1974 multifractals introduce a very important theme. First,
suppose that M is a discrete random multiplier and that its largest possible value
M., satisfies Pr{M = M.} <b~', which is perfectly allowable. It follows that
S (Omin) = log, [Pr{M.x}] +1 <0. As a matter of fact, f(o,,) can be arbitrarily
large in absolute value, and negative. Similarly, Pr{M = M_;,} <b~' results in
S (@max) < 0.

Secondly, the example of the Gamma distribution suffices to show that the
1974 multifractals allow o,,,=0 and o, = o, with f(a,,) = —oo andfor
S (2max) = —o0. To show that this result is intuitive, take a more general M that is
continuously distributed, but can be approximated arbitrarily close by a discrete
multiplier with log M, arbitrarily close to 0 and/or log M,,;, arbitrarily close to
— o0, with both extremes having correspondingly arbitrary tiny probabilities. Then
= 0tandionlas =00

A new and important distinction. The a’s such that f(x) >0 will be called
manifest. The remaining «’s will be called latent, which means “hidden but present.”
(For negative latent dimension in a different context, see MANDELBROT (1984).)
In the special case Pr{M, .} =b~" and Pr{M,} = b, all a’s are manifest.
Such a multifractal can be called “pseudo-multinomial.”

Crossover from the manifest to the latent «’s. The existence of latent o’s is
characterized by crossover values o, and aX,., such that f(a¥,)=0 and
S (@hin) = gmax < 00 andfor f(am.,) =0 and f'(eRax) = gmin > — 0.

The effect of latent o’s on the moments. Let us call “manifest f(«)” the function
f(e) restricted to manifest values of a. Its slopes, gX., for ., and ¢¥*,, for o, fail
to be infinite. Therefore, the manifest f(x) differs from the full f(«) function when
there are latent o’s. How much do the latent «’s contribute to t(g) and D,? For
gXin<q<qX.. they contribute nothing. But for large positive and/or negative g,
their contribution is predominant. Therefore, the estimates of 7(g) or D, made on
the basis of manifest o’s is truncated and biased.

Note that the “full” functions 7(g) and D, = 7(¢)/(g — 1), evaluated on the basis
of all «’s are analytic functions. But the “manifest” t(g) or D, evaluated on the
basis of manifest «’s is incorrect (truncated and biased) for large |¢/’s.

There is a seeming paradox here. On the one hand, the probability outside of
the central bell tends to 0 as k — oo, meaning that the tails become thoroughly
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insignificant. In the limit k — co, the most probable value, the expectation and the
other usual parameter of location all converge with each other. On the other hand,
those “‘negligibly” few values in the tails are so huge that their contributions to all
the moments of order ¢ # 0, and to 1(g), are predominant. Moreover, the moments
and 1(g) depend on the exact form of f(x), that is, are nonuniversal.

The meaning of negative values for the “dimension™ f (o). When f() is viewed as
a fractal dimension, the notion that f(x) <0 would be self-contradictory, that is,
would be impossible. This self-contradiction does not deny that p(e) is useful. It
only expresses the fact that f(x) = p(o) + | cannot always be interpreted as a fractal
dimension. As a matter of fact, several authors have approached this issue from
different angles, and have shown that restricting multifractals to f(x) =0 lead to
self-contradiction (CATES and DEuUTScH, 1987), or is otherwise not acceptable
(FOURCADE et al., FOURCADE and TREMBLAY, 1987).

From the b* data given by a single sample of measure, one can estimate f(«) if
the probability of a is >b %, which means that f(«) = 0. The range of the a’s is not
expanded by increasing k, because the population from which the sample is drawn
also depends upon k. This invalidates the intuitive belief that the sample value
necessarily converges with the population expectation as the sample increases.

In order to measure the negative f(x) for latent «’s, the only generally valid
method is to combine data from very many samples.

A remark linking Sections 7 and 8. Very often, negative f(x)’s have a different
cause, to be described in Section 8. They appear because one considers low-dimen-
sional cuts through higher-dimensional measures. In that case, one extends the
ranges of observable a’s by investigating the original measure through higher-
dimensional cuts. The reason is that “generically” one should expect the overall
original measure to include cells of higher or lower density, “hotter” or “colder”,
than the hottest or coldest cells along the one-dimensional cut.

8. The Random 1974 Multifractal Measures, Part II. The Canonical Case and the
Properties of Random Cuts. Introduction of the Critical Exponent q.;, and of its
Inverse Function D,

8.1. The Canonical 1974 Measures on [0. 1] and Random Cuts

In this next random generalization of the binomial multifractal, the multipliers
M =0 are allowed to be statistically independent. This assumption implies, of
course, that (almost surely) the cascade does not conserve mass. However, it is easy
to insure that mass is conserved on the average. It suffices that the condition
{M?»=1/b, which used to be a corollary of conservation, be preserved as an
autonomous requirement. The assumption of independence is motivated by an issue
already discussed in Section 1.4. Many multifactor measures can only be observed
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through cuts. To illustrate, we imagine a conservative cascade of cubic cells of
dimension E. Each cubic cell contains b* cubic subcells, but a straight edge of the
initial cube intersects only b cells. If »* % b, the conservation laws £ M(n,) = 1
hardly constrain the multipliers M within these subcells. These M can be assumed
independent.

Independence of the multipliers brings essential new features.

8.2. The Random Variable Q

In order to understand the structure of the cuts and the role of the *‘critical
dimension™ D,, it is necessary to introduce a random quantity to be denoted by Q
(MANDELBROT, 1974). Consider a canonical cascade that has started with mass 1
in [0, 1], and has continued over infinitely many stages. Because of the lack of
conservation the ultimate mass is not identical to 1, but is a random variable. It will
be denoted by Q.

An alternative way to write Q is to add the masses in the b subcells of length 1/5.
In the first cascade stage, the f-th interval is given the mass M(f). Ultimately, it
contains the mass M(f)Q(f), the various quantities M(B) and Q(f) being statisti-
cally independent. The sum of the ultimate masses can be written as either
Z M(B)Q(p) or Q. This identity can be written as

Y, M;Q; =Q (=means “identical in distribution™).

Thus Q is the fixed point of the operation of randomly weighted averaging using as
weights the random quantities M(f). This Q, first introduced in MANDELBROT
(1974), has been the object of several papers of pure probabilists.

8.3. The Mass u(dt) in a Cell of Length b~*: Low- and High-Frequency Factors

Let the cell start at 1 =0, #,#,...#,. The first k-stages of the cascade can be
called low frequency stages. They generate precisely the same effects as in the
conservative cascade of Section 7.1. That is, they yield the multiplicative term

M )My, m) ... M(n,, ... n,) =I_IM-

This IT M is to be called a low frequency (or long wavelength) factor, because it
is generated by multipliers that are constant over b-adic intervals of length dr = b —*
or shorter.

However, in contrast to the conservative case, that is not all! Each cell is also
subjected to precisely the same process as has been described for [0, 1]. Therefore,
the measure does nor reduce to IT M, but instead takes the form

udt) =QQn, .. )M )My, n2) ... My, .. .n) = Q[ M.
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That is, each cell involves a sample value of Q, to be called a high frequency (or
short wavelength) factor, which results from multipliers that vary over intervals that
are shorter than di = b *. Successive M and Q are independent, and all the M (or
Q) are identically distributed.

8.4. The Holder o and the Function f(x). Virtual Values of o

Write o« =, + a;,, with

%= —(1/k)[log, M(n,) +log, M(ny, 1). .. 1; = —(1/k) log, Q.

When k — o0, ay = —(1/k) log, Q—0, hence o, does not affect f'(«). That is, on
the logarithmic scale of the Hélder o, the high frequency factor Q is asymptotically
negligible. Moreover, the term a, continues to be covered by the theorem of
Crameér, and the “Gibbs™ quantities 7(¢) and f(x) and D, are precisely as for the
conservative 1974 measures. However, a canonical 1974 cascade allows fwo possibil-
ities that have not been seen in the preceding Sections, namely virtual «’s and
misbehaving t(a).

Virtual o’s.  First possibility: a canonical cascade allows M ... >1, hence
(L )min <0, with f (0t )min] < 0. If we forget Q, our o, would be a Holder exponent,
and o, <0 would be absurd, because it would imply that a subinterval o %~
includes more mass than its embedding interval 5 —*. But o, is not quite a Holder
exponent. The paradox of the a; <0, to be called virtual, can be shown to vanish
if one considers Q.

We shall see that, either both factors I1 M and Q are “well behaved,” or both
“misbehave” simultaneously, each in its own way.

8.5. The Prefactors Q) Are Infinite when q is above the Critical Exponent q_,,

We have seen that Q is negligible in the scale of the «. But in the scale of i,
taking account of Q changes the familiar {(u*(dr)) = (dx)™@* " into {pui(dn)) =
Q7 (d)"@+!. The new moment prefactors (Q¢) reflect high frequency effects due
to scales <b~*. They have far reaching effects, because they need not be finite.
Indeed, MANDELBROT (1974) shows (and KAHANE and PEYRIERE, 1976 then
proves rigorously) the following.

The inequality {(Q7) < o0 holds if, and only if, q < q., Where g, is the solution
of the equation t(q) = D, =0. When g > ¢,,;,, then 7(g) <0 and D, <0.

Without the presence of divergent prefactor {Q7», the inequality t(g) < 0 for
4 > 4. Would have meant that {u’(dr)> actually decreases as dt increases. This
would be an extreme anomaly, but it does not occur, because of QS =0,

Furthermore, the paradox of virtual o’s can be shown to vanish if one considers
the moments of Q.
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8.6. The Tail Behavior of Q

MANDELBROT (1974) has conjectured, and GUIVARC'H (1987) has proven,
that Pr(Q > w) ~ w %, This is the simplest tail behavior compatible with the
role q.; plays for Q. Since g plays the same role for u(ds), the same tail
behavior also holds for p(dr). More precisely, such is the case if df is well above.
the inner cutoff (if there is a cutoff > 0).

This prediction of the model is extremely important to the analysis of experi-
mental data. But it should be stressed that it only holds asymptotically after the
cascade has been allowed to proceed down to scales well below dz. In the case of
turbulence, this requires an extremely high Reynolds number R, and indeed there
are reports of ill-behaved sample moments of high g. But for the lower R reached
in laboratory turbulence, Q is effectively truncated at a level increasing with R,
which avoids divergent moments. Experimentalists are urged to compare the
dissipation’s t(g) for different R’s.

8.7. Sequences of Cuts with Different Bases, but Identical W Multipliers

To renormalize once for all bases, it suffices to consider a cascade that
multiplies the densities (instead of the masses) by a fixed weight W = bM, satisfy-
ing (W} =1. When 1974 measure in E-dimensions, with weight W and base b, is
intersected by a fractal of dimension D = log B/log b < E, it yields a measure with
the same W and the new base B. In fact, by using random cuts, one may view B
as continuously variable. One has —1(g) = 1 + log,{ M%) = log,{ W?> — (g — 1).
This is precisely the function that MANDELBROT (1974) plots (his Fig. 2) and
discusses for different values of b. (The same paper also shows that the critical
eriv» Which it denotes by «, depends on D.)

Now consider for different B’s or D’s the enhanced graphs showing f(a), 7(¢)
and D, (as in Figure 5), and translate the origin of each graph to the point of
coordinates o = () and f(a) = D,. This is the proper “renormalization™ to use
here, because one can show that the translated graphs coincide if one includes the
manifest, the latent and the virtual o’s. As a corollary, increasing B eventually
changes latent o’s into manifest o’s. That is, it changes negative f(a)’s into
positive f(«)’s, which one can estimate through the B* data from a single sample.
Also, increasing B eventually changes virtual a’s into latent, then into manifest
ones. Decreasing B eventually reaches D = D,, beyond which the measure be-
comes degenerate (MANDELBROT, 1974; KAHANE and PEYRIERE, 1976).

As corollary, the manifest portion of f(«) fails to represent a 1974 multifractal
in an intrinsic fashion. But a full description of the effects of the same W in
different Dy’s is provided in the context of Cramér’s limit theorem by the intrinsic
quantities « — {a ), p(e), and D, — D,.
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Figure 5
Enhanced version of the multifractal diagram. One vertical scale shows p(a) =lim, _ _(1/k) log,
(probability) versus « = —(1/k) log, (measure). A second vertical scale shows f(x). In this particular
graph, the weight W is lognormal, but u itself is nor lognormal at all. This example combines all three
multifractal regimes described in the text: manifest a’s (x <0 and 0 < f(2) < min(z, Dy)), latent a’s
(2 >0 but f(x) <0) and virtual «’s (x <0 and f(z) <8 <0). As is known, g =f"(x) and —1(g) is the
intercept of the tangent of slope ¢ by the vertical axis. Let us also observe, in addition, that D, is either
coordinate of this tangent’s intercept by the line f(x) = a.

8.8. Role of the D, as Critical Dimensions

The last task is to explain why, for 1974 measures, D, is a critical dimension for
the moments of order g, as shown in MANDELBROT (1974). Later, the D, were
written down, in HENTSCHEL and PrRocaccIA (1983), without any motivation, and
called “generalized dimensions™ (to call D, a dimension can make no geometric
sense when D, > E for low enough g’s).

The key to our motivation for D,, again, resides in the study of low dimen-
sional cuts of higher dimensional multifractals with the same f(«).

The discussion is simplest when max D, < co. The main step is to embed the
cascade in a space of dimension E > max D,. We know that the equation D, =0
defines the g, relative to the property that (u%(dx)) < oo and that the variability
of the Q’s (which are independent in a sample) overwhelms the variability of the
low frequency component of u(dx). Therefore, the law of large numbers implies
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that along the cut with D >D,, the g-th sample moment is the sum of many
contributing terms, each of which is negligible in relative value. Along a cut with
D <D, to the contrary, 7(g) <0, which can be shown to imply that, while
{u9y = oo, all the percentiles of the g-th moment tend to 0 with dr. Hence, the
sample moment is very small with a very high probability, and the exceptional
instances when it is nor very small occur because of the exceptional contribution of
a single huge sample addend.

Thus, the set of points that contribute to the sample g-th moment of y is hit by
generic cut spaces of dimension >D,, and missed by generic cut spaces of
dimension <D,.

9. Final Remarks

We realize that the later part of this paper is overly hasty. MANDELBROT (1974)
is (unfortunately but perhaps unavoidably) a difficult paper, and not a good reference
for the student. We are preparing a more complete presentation on this topic, which
will incorporate MANDELBROT (1989).

Acknowledgements

Many thanks to Jens Feder, Tamas Vicsek, Jacques Peyriére, Carl Evertsz, and
David di Vincenzo for pointing out rough and/or obscure spots in earlier versions
of this text.

In Memoriam Abraham Robinson (1918-1974). From the mathematical view-
point, expressions of the form dy ~ (dx)* are examples of “‘nonstandard infinitesi-
mals™. This is a concept from nonstandard analysis, a creation of Abraham Robinson.
He and I had once hoped to explore this joint field of interest together, but he fell
ill and passed away. The memory of this project, together with my recent accession
to the Abraham Robinson Professorship of Mathematical Sciences at Yale, bring my
thoughts back to this remarkable man.
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