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Abstract
In the Brownian model, even the largest of N successive daily price increments
contributes negligibly to the overall sample variance. The resulting ‘absent’ concentration
justifies the role of variance in measuring Brownian volatility.

Mandelbrot introduced in 1963 an alternative ‘mesofractal model’, in which the
population variance is infinite. A significant proportion of the overall sample variance
comes from an absolutely small number of large contributions, expressing a ‘hard’ form
of concentration.

To achieve a prescribed proportion of the overall measured variance, those 1900 and
1963 models require numbers of days of the order of N1 and N0, respectively. This paper
shows that an intermediate possibility exists: a new and very flexible ‘soft’ form of
concentration is provided by the ‘multifractal’ model Mandelbrot introduced in 1997. The
standard ‘extreme values’ theory applies to mesofractals but multifractals behave very
differently. The single largest contribution to sample variance is asymptotically negligible;
however, an arbitrarily high proportion of the overall variance is contributed by a number
of days of the order of ND, where 0 < D < 1. The characteristic exponent D, a fractal
dimension, is a consequence of scaling. It allows ‘softness’ to be modulated between the
unrealistic extremes N1 and N0. As N increases, so does the absolute number ND, but the
relative number ND/N decreases to zero. As a result, the bulk of the significant effects
concentrates in a small proportion of cases. (This is a finite approximation of a set of
measure zero, but mathematical refinements do not matter in this paper.)

Since the 1960s, my work on financial prices has been based
on fractals, that is, on scaling (dilation/reduction) invariances.
This paper introduces and discusses an important additional
aspect of price variation. Because of its novelty, it is best
to begin with a very informal introduction to multifractal
scenarios in political economy and history.

Many disciplines concerned with very complex structures
are dominated by an ancient alternative between two scenarios
that are exact opposites of each other. The contexts vary and
the main distinction varies in its degree of sharpness, but not
in kind and the two opposites are both widely perceived as
oversimplified and unrealistic but as the only ones available.
Of course, the ubiquity of this alternative suggests it is natural
to human thought. Nevertheless, it is very important to move
on, and this paper proposes a multifractal scenario that bridges

those two extremes. Let us begin with a few examples that
range over nature and culture, that is, over social and natural
sciences.

The traditional scenario of political history that was
overwhelmingly dominant for millennia views every record
of the past, short or long, as dominated by a few ‘heroes’,
perhaps even one—be it Alexander, Caesar, Napoleon or the
like. The opposite scenario views masses of common people
as dominant and asserts that no individual matters much more
than any other.

In music and literature, traditional accounts nearly
reduced everything to the likes of Homer, Shakespeare or
Beethoven. An opposite style that has lately gathered
momentum views the ‘heroes’ as barely standing out from their
unheralded contemporaries.
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The scenario of a concentrated economy or industry
allows many agents but assumes that the largest or a few
largest predominate (monopoly or oligopoly). The alternative
scenario of a nonconcentrated economy or industry allows
a large number of agents, but—taken singly—each has a
negligible relative effect on the whole.

A model in finance born in 1900 and strengthened in
the 1960s implies that every individual day’s contribution to
price change is negligible. This is an inevitable conclusion
from the notion that prices follow the toss of a coin or—more
precisely—a Brownian motion.

The preceding examples belong to ‘social sciences’, but
the scope of the underlying opposition is far more general.
In the early 1800s, during the years that led to the theory
of evolution, there was a split between ‘catastrophists’, who
thought that past geologic change concentrated in a few
spasmodic periods, and ‘uniformitarians’, who argued that
change was more or less continuous.

I seek a constant interplay between a highly technical core
and intuitive motivations and consequences. The multifractals
started in my work on turbulence and financial prices, but also
have an aspect that should interest the more ‘qualitative’ or
‘intuitive’ thinkers in political economy or even of history.
Indeed, the multifractals provide a new ‘in-between’ scenario
that is intermediate between the familiar scenarios exemplified
above.

Fractal geometry’s impact in other fields began in each
case with technical considerations. I coined the term, fractal,
to minimize the unfortunate confusing effects of over-used
old terms like information or catastrophe (not to mention
relativity). But fractality soon took an additional aspect: it
became a metaphor beyond formulae, one that even the non-
techies find useful. It has refined many people’s view of nature.
For example, coastlines and mountains used to be perceived as
residing in some unspecified realm beyond circles, cones and
any other geometric shapes. But fractal geometry expanded
intuition, even for persons not keen on technical detail, and
today coastlines and mountains are part of a broader geometry.

Now, abandoning generalities, let us describe this paper’s
ambition. It concerns a ‘multifractal’, ‘soft’ or ‘relative’ form
of the concept of ‘concentration’, which is fundamental to
economics and my work. This form is a prediction drawn
from the ‘multifractal’ model of price variation that was
first discussed in chapter E6 of Mandelbrot (1997). The
earlier ‘mesofractal’ model first discussed in Mandelbrot
(1963) overshot the goal and predicted ‘hard’ or ‘absolute’
concentration. In the Brownian model, as has already
been mentioned in passing, concentration is ‘absent’. It
will be shown that the progression from mesofractal to
multifractal clarifies concentration and makes it more realistic.
More generally, multifractal concentration helps understand
multifractality. The mathematics is new, but was not
introduced and developed for its own sake.

Tunable concentration helps attack diverse recognized
problems, both conceptual and practical, that are deeply rooted
in the tradition of economics, finance and history. They will
be discussed elsewhere.

It is best to present the ideas independently of earlier
publications (including previous papers in this journal)
referencing them only for historical reasons, for specific proof
or in the course of digressions. Section 1 is somewhat informal,
section 2, formal, and section 3 is actually an addendum to
Mandelbrot (2001d).

1. Introduction; reasons for studying the
concentration for variance or some
analogous quantities
In the context of scaling processes, the unit of time is arbitrary
but for brevity will be called one day. The average daily price
change will be neglected as being very small. Negative price
increments bring diverse irrelevant complications. Therefore,
to study concentration is easy for positive quantities. For
reasons to be described in section 1.7, this paper works in the
context of sample variance, except for generalizations sketched
in section 3.

1.1. The evidence of concentration in price variation

In its original context of firm sizes, concentration expresses
that, even in an industry that contains a large number N of
firms, the largest firm is typically far larger than the average
or the median one. In highly concentrated industries, the
largest firm’s size may exceed the size of all of the other
firms taken together, even if the total number of firms is large.
A comparable link of concentration is also present in the
populations of cities and a possibly lesser one in the wealth
of individuals.

Mandelbrot (1963) adapted the concept of concentration
to the study of financial prices, and this topic became so
important to fractal modelling that Mandelbrot (1997) includes
that word in its subtitle. As an example of basic motivating
facts familiar to everyone, consider a diversified portfolio
following the Standard & Poor 500 Index. Of the portfolio’s
positive returns over the 1980s, fully 40% was earned during
ten days, about 0.5% of the number of trading days in a decade.
Another source reports that, of the 816 months between 1926
and 1993, the 60 best showed returns of 11% on average and
the 756 worst ones, of 0.01%.

In the Brownian model, such a high level of concentration
has a probability so minute that it should never happen.
Unfortunately for the model, it happens every decade.

The everyday practice of statistics treats extreme but rare
events as ‘outliers’ one can disregard. But in concentrated
quantities, extreme values carry essential information and
cannot be dismissed. It is good to recall that the notion of
‘outlier’ originated around 1800, during the age of Gauss, in
the ‘theory of errors’ of observational astronomy. There, errors
could be sorted into small ones—intrinsic to the process, and
large ones—caused by the observer’s elbow, foot or cat, or
other cause identifiable as residing outside astronomy. One
assumes the existence of an underlying true value and takes
it for granted that the intrinsic errors average out so that each
individual error is negligible and can do no harm.
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Similarly, as used for prices, the term ‘outlier’ implies that
the changes to which it applies are beyond ordinary finance.
I hold the opposite view, and think that large changes are the
most important of all, not only for speculators (as seen in the
above examples), but also for all students of the fundamental
mechanisms of price variation.

1.2. Illustrated reminder of the typical shapes of
actual records of financial price changes and/or
simulations of the three models examined in this
paper

Figure 1, well worn from repeated use in many of my
recent books and papers, prepares for the different states of
concentration. Once again, graphics is never a complete and
permanent substitute for appropriate mathematics or statistics.
However, I have often argued that, when used prudently, it
invariably provides unmatched insights. Moreover, graphics is
invaluable to the study of multifractality, because at this point in
time the appropriate mathematics is at best not widely known
and at worst underdeveloped. Thirdly, a practical issue will
arise when this paper’s predictions are subjected to empirical
verification. In the absence of objective statistical tests that
apply far beyond near-Gaussian and/or near-independent data,
there may be no present alternative to graphics. However, those
who disagree with my view of graphics may skip this section.

The top panel of figure 1 illustrates the increments of
Brownian motion.

Panel 2 of figure 1 illustrates the increments of the
mesofractal model.

A simulation of the multifractal model is illustrated by at
least one of the bottom five panels. Finally, at least one of the
five bottom panels represents an actual record.

The reason for throwing actual records and model
simulations together is to show visually that, among those
contenders, only the multifractal model reproduces several
features of the data. Hence, among the bottom five panels of
figure 1, the multifractal model and records of actual data are
hard to tell apart. Once again, this visual evidence would not
be accepted by itself but it adds to extensive analytic evidence
to show that multifractals provide a good model.

After those values have been squared, multifractal
concentration is easy to both believe and check numerically.

An intermediate model, called ‘unifractal’ or Gaussian
long-term dependent (Mandelbrot 1965), is illustrated by the
third panel of figure 1. From the viewpoint of concentration,
that model behaves like the Brownian, hence need not be
further mentioned until section 3.

1.3. Presentation of three ‘states’ of concentration:
absent, hard and soft

The Brownian model predicts ‘absent’ concentration. This
well known fact is fully proved in every book that does not take
it for granted. Panel 1 of figure 1 makes this absence easy to
believe. Absent concentration is one of the many irremedially
unrealistic features of the Brownian model.

In contrast, my fractal models all share the property that,
over N days, change concentrates in a number of days that

Figure 1. Stack of diagrams illustrating the successive ‘daily’
differences in at least one actual financial price and some
mathematical simulations. Obviously, the top three lines do not
report on data but on models; in contrast, to identify the models
among the lower five lines is difficult.

is ‘small’. Compared with N it is absolutely small for the

‘hard concentration’ of the mesofractal model of 1963. It is

relatively small for the ‘soft concentration’ of the multifractal

model of 1997. Soft concentration can be ‘tuned’ to fall

anywhere between the unacceptable extremes of absent or hard

concentration.

The source of concentration in the mesofractal model is

the length of the tail of the distribution. In the multifractal

model, the source is extremely different: it is the form of the

distribution beyond the tail combined with the rules of long

(global) dependence. The standard theory of extreme values

applies to mesofractals but not to multifractals.

Let us now introduce and elaborate, making several fine

distinctions that could seem to involve hair-splitting but in fact

are indispensable.
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1.4. ‘Strongly absent’ concentration is characteristic
of the classical coin-tossing model leading to
Brownian motion and the overwhelming majority of
existing would-be improvements

Section 2 on multifractals will require splitting absent
concentration into two parts. Given an overall price change
over a large number of days, weak absence of concentration
asserts that every day makes an asymptotically negligible
contribution. A stronger and more assertive property is this:
in order to achieve a prescribed proportion p of the total sum,
with 0 < p < 1, one must add the contributions of a number of
days roughly equal to pN , that is, of the order of N1. Indeed,
the top panel of figure 1 looks like ‘grass’ with a few ‘shrubs’
and ‘bushes’, but no ‘trees’.

Asymptotic negligibility is a property that holds widely,
and in particular is satisfied by the Brownian model and
practically all the ad hoc improvements. It led to wonderful
work in pure probability and proves fundamental in the study of
many natural random phenomena. But it is not a law of nature,
only a mathematical theorem. Its conditions of validity may
seem undemanding but exclude the variation of financial data.
More precisely, it is often invoked as valid in a ‘long run’ that
is too far removed to be of concrete concern.

Digression: proof of asymptotic negligibility of individual
Brownian contributions. A classical ‘cartoon’ is provided
by simple coin-tossing. Every day contributes ±1 to the price
and 1 to the sum of squares. Over N days, each day’s relative
contribution to the sum of squares is simply 1/N . As N

increases, every day’s contribution rapidly becomes negligible.
‘Soft negligibility’ and ‘hard negligibility’ are both obvious for
coin-tossing.

In the Brownian model, the theoretical daily volatility is
the expectation of the quantity [P(t + day) − P(t)]2. The
empirical volatility is the average of the same quantity over a
sample made of statistically independent values. The relative
contribution of the wildest day is of the order of 1/N multiplied
by a logarithmic factor that is insignificant.

The proof of this negligibility for the Brownian is clumsy
and the result is far more general and easier to prove under
the far weaker assumption that 
P has zero expectation and
a finite absolute moment of order 2(1 + ε) where ε > 0. Then
an easy-to-prove generalized Bienaymé–Chebyshev inequality
asserts Pr{(
P )2 > y} � E{(
P )2+ε}y−1−ε. It follows that,
while (
P )2 grows like N , max(
P )2 ∼ N1/(1+ε) grows less
rapidly than N .

1.5. The first sharply non-Brownian model: ‘hard’
concentration is an automatic characteristic of the
‘mesofractal model’ in Mandelbrot (1963); this
follows from the standard ‘theory of extreme values’
of probability theory

The mesofractal model proposed in Mandelbrot (1963)
accounts for certain price records—but certainly not for
all. It uses Lévy stable random variables, hence brings the
variation of financial prices within a conceptual framework

that is sufficiently broad to also accommodate the distributions
of wealth and firm or city sizes. To represent those
quantities’ distributions, the Gaussian distribution is not only
inappropriate in degree, but in kind: it resides in a totally wrong
‘ballpark’.

The theory of mesofractal concentration merely rephrases
the very well known theory of extreme values of independent
random variables and additional classical theorems by Darling
and others that are referenced in Mandelbrot (1997, appendix A
to chapter E7). The conclusion is that, in contrast to the
Brownian, the largest of N daily price changes is not only
non-negligible, but in fact of the order of magnitude of their
sum. That is, independently of N , a significant proportion of
the sum of squared price changes over N days occurs during
one, or at most, ‘a few’ days. ‘A few’ denotes a small integer
independent of N , that is, of the order of N0. This form of
concentration will be called ‘hard’, ‘absolute’ or ‘mesofractal’.

Mesofractal concentration is too extreme; it disagrees with
much of the evidence. At first, mesofractal concentration
is invariably perceived as completely shocking. After some
thought, it seems on the right track but to exceed what is
observed. It might be close to the mark in the ‘short’ or
‘middle’ run but surely not over the ‘long run’ of large
Ns. This ‘mismatch’ was not recognized sufficiently in
my earlier publications, but later helped me proceed beyond
mesofractality to multifractality. Numerous authors have
independently proposed, instead, that the extreme values
should be truncated. Mandelbrot (1997, 2001a, 2001b)
criticizes those proposals and maintains that the multifractal
model makes an arbitrary truncation unnecessary.

Rank-size plots. Formulation simplifies if one begins by
ordering all firms by decreasing size within their industry, then
reducing every size by division through their sum. Let Sr be
the reduced size of the firm of rank r in the order by decreasing
size, so that �Sr = 1. By definition, the average firm size is
1/N . However, in highly concentrated industries, this value
is anything but ‘typical’, and can often be best understood as
lying between two partial averages. The first concerns one or a
few firms that are substantially larger than 1/N and the second
concerns the many firm sizes that are substantially smaller than
1/N . For the present purposes, let us say that if the reduced
size S1 is not much larger than 1/N , the industry can be called
non-concentrated. The higher S1, the higher the concentration.
This topic is discussed in Mandelbrot (1997, chapter E7).

General comments on the interpretation of sample
moments. Diversification relies on the idea that averages of
every order converge to the corresponding expectations, and
that the expectations can be reliably estimated from limited
samples. This allows the common measure of volatility to be
the mean square deviation from the first-order average.

In the context of financial price change, the first-order
averages are not a burning issue, but the mean square is
questioned both by my models and by the empirical evidence.

Should blind trust in averages and expectations also extend
to the scenario of a concentrated industry? Of course not. In
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the extreme example of gun purchases in the USA, how large
is a dealer’s average volume? This is a ratio whose numerator
is reasonably well known and reasonably meaningful, but the
denumerator is a ‘number of firms’ that is to a large extent an
artefact. To simplify, a gun buyer has a choice. Walmart has
a high overhead and makes money, hence charges a markup.
The alternative, a private dealership, is charged a wholesale
price and its overhead reduces to the cost of registration. A
few years ago that cost was raised above a nominal level and
a high proportion of dealerships simply closed. Asymptotic
negligibility, both hard and soft, is completely invalid and a
hard form of concentration prevails.

1.6. ‘Soft’ concentration is an essential feature of the
multifractal model of financial price variation
(Mandelbrot 1997); concentration follows from the
rules of global dependence, which is so strong in the
multifractal model that the standard theory of
extreme values does not hold

The multifractal model introduces a very different and new
form of concentration that will be called ‘soft’, ‘relative’ or
‘multifractal’.

Its predictions split in two parts. (A) Section 2.3 will show
that, taken individually, the largest values are asymptotically
negligible, as in the Brownian case, but decrease less rapidly
as N increases. (B) Section 2.5 will show that an arbitrarily
high proportion of price change over N days occurs during a
number of days of the order of ND , where the characteristic
exponent D is a fractal dimension that satisfies 0 < D < 1
and is one of the key parameters of a multifractal. While this
absolute number ND increases with N , the relative number
ND/N decreases.

The exponent D is neither injected arbitrarily nor
borrowed from other models. Neither is D obtained by
formal interpolation or curve-fitting, but as a necessary
consequence of a model. It is based on scaling invariance
and can be estimated directly. As D increases from
0 to 1, asymptotic negligibility gradually softens and
concentration gradually hardens. Among statistical models,
the unrealistic Brownian and mesofractal models roughly
correspond—respectively—to the extreme and atypical limit
cases D = 1 and 0. The multifractal ND neatly fills
the gap between those limit behaviours. An illustrative
example of the derivation of ND is described in full detail
in section 2.

Note that while multifractality implies that the successive
price changes are long tailed, the main point lies elsewhere:
those changes are so strongly dependent that the usual theory of
extreme values is not only inapplicable, but totally misleading.
One must replace it by a very different correct theory that
follows from the theory of multifractal measures, as suitably
extended to functions that fluctuate up and down.

Using terms to be fully explained in section 2, the
main specific version of the multifractal model proposed in
Mandelbrot (1997) proceeds in continuous time and consists
in a Brownian motion that is not followed in clock time but in a
‘multifractal trading time’. There is nothing ‘ordinary’ about

the classical Brownian motion B(t); it is best distinguished by
being called ‘Wiener Brownian motion’, WBM. But the main
model also allows a generalization called fractional Brownian
motion, FBM, and denoted by BH(t).

This model’s tunable parameters are sufficiently numerous
to provide great versatility. There is a parameter H that
satisfies H = 1/2 for Wiener Brownian motion (WBM), and
H �= 1/2 for fractional Brownian motion (FBM). Additional
parameters specify the multifractal time. The simplest case,
called limit log-normal, has one parameter; it is surprisingly
realistic (Mandelbrot et al 1997) but not completely so.
The ‘cartoon’ multifractal model sketched in Mandelbrot
(1997) and developed in Mandelbrot (2001c), which will enter
section 3 of this paper, has two parameters.

The concept of ‘wild randomness’ and extension of its scope
from independent to globally dependent random variables.
A distinction between three ‘states’ of randomness—
respectively, ‘mild’, ‘slow’ and ‘wild’—was introduced in
chapter E5 of Mandelbrot (1997), where it is studied for
independent variables. It classified the Bachelier model
as ‘mildly random’ and the mesofractal model as ‘wildly
variable’.

To generalize those thoughts to diverse forms of global
dependence is a long-term project that I chose to carry on
using special examples. In particular, it is natural to generalize
the scope of the notion of wildness to include the multifractal
model.

Between the sizes of different firms, some interdependence
is surely present; but it is not documented and hence cannot
provide a practical counterpart for multifractality. One
can order firms by size, alphabetically by name or address, and
the like. But there is no intrinsic ordering comparable to the
ordering of price changes by the clock. Unquestionably, some
statistical dependence between firm sizes is associated with
geographical or other forms of proximity but it is not clear
how it can be defined or reported. Therefore, the study of
firms’ concentration must rely on the theory of extreme values
among independent random variables, a classical tool also used
for mesofractal prices.

1.7. Separate but converging reasons for studying
concentration through the squares or suitable other
powers 1/H of the price increments

Tradition and subtle properties of the fractal models provide
two distinct reasons to replace price increments by their
squares, then study concentration among daily contributions
to the sample variance.

The traditional choice of the mean square has an old
and universally valid reason of convenience: variance is
manageable with a slide-rule. Before the computer, no
alternative was present but the computer made this reason
less compelling. An additional objective reason of principle
is often present in physics: a sum of squares is often
an intrinsic quantity (for example, an energy) following
basic laws of physics (for example, conservation). Another
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properly physical objective reason is restricted to the case of
independent Gaussian variables: in that case, the first and
second moments provide a ‘sufficient statistic’.

Whatever the motivation, the use of mean squares implies
that one expects the sample mean square to converge to a limit.
After a large number N of days, it is taken for granted—
hence seldom stated explicitly—that each additional day’s
contribution is negligible. This justification of the use of
variance to measure volatility is intrinsic to the Bachelier
Brownian model.

For the data or the fractal models, on the contrary, variance
is not a good measure of volatility. Nevertheless, two distinct
serendipitous facts lead to the conclusion that to discuss and
evaluate concentration in the fractal models, it continues to be
best to work with variance.

Mesofractality. The touchy issue of the finiteness of the
population variance of price increments. The mesofractal
model uses Lévy stable variables for which the expected
average is finite but the expected variance is infinite. Indeed,
the high-u distribution of daily price increments obeys the
power law Pr{U > u} ∼ u−α with 1 < α < 2, hence the
squared increment obeys the power-law Pr{V > v} ∼ v−α/2

with α/2 < 1. It follows that the largest of N independent
addends and their sum are of the same order of magnitude.

Multifractality. Here, under wide conditions, the population
variance is finite. The quite different reasons for favouring the
mean square reside in the role Wiener or fractional Brownian
motion assumes in expressions to be recalled in section 2.1. An
objective justification to the use of sums of squares is provided
by the Wiener Brownian motion in multifractal time, the only
model to be examined in detail. There, (price increment)2

is an important intrinsic quantity and takes the form (time
increment)(square of a reduced Gaussian).

In the fractional Brownian variant of exponent H �= 1/2,
the corresponding intrinsic quantity is |price increment|1/H .
Therefore, the intrinsic procedure is not to take the square but
the power 1/H of the absolute change. To minimize diverse
complications the argument will mostly be phrased in terms of
1/H = 2, except in section 3.

2. Multifractals predict weak asymptotic
negligibility and soft concentration; the
dimension exponent of multifractal
concentration is tunable and fills the gap
between the Brownian and mesofractal
extremes
Soft concentration is a very general property of the multifractal
model but this section will concern the case where time follows
a binomial measure on the interval [0, 1]. It is the very simplest
example of nonrandom and linearly self-similar multifractal
measure, but allows the features of multifractals relevant to
concentration to stand out without extraneous complications.

2.1. Wiener Brownian motion in multifractal trading
time taken to be an integrated multifractal measure

The simplest multifractal model asserts that the logarithm of a
financial price reduces to B(θ) in terms of a ‘trading time’ θ ,
that is a multifractal function of the clock time t . That is,

P(t) = B[θ(t)].

In this model, the sequence of squares of the increments dP(t)
is a sequence of increments dθ , each multiplied by the square
of a Gaussian variable. Section 1.7 mentioned the features that
justify the introduction of squares.

When clock time is divided into very short increments

t , the corresponding increments 
θ = (
t)U(t) vary
enormously in size. In particular, the distribution of the
exponents U(t) is highly scattered. Both the casual glance
and the lessons drawn from the mesofractal model draw our
attention to values that stand out as sharp spikes. They can
indeed be extremely important, yet even the sharpest spike
is asymptotically negligible compared with the whole. The
fractal dimension D introduced in section 2.5 concerns values
of U(t) that are smaller than the spikes and fall within a range
one can call ‘median’. Taken separately, each is asymptotically
negligible. But their number ND is just sufficiently large to
insure that their total contribution is nearly equal to the whole
increment of θ . Multifractal concentration consists in the fact
that D < 1.

2.2. The basic example of multifractal time:
definition and construction of the Bernoulli binomial
measure

The Bernoulli binomial measures are constructed recursively
and depend upon a single parameter m0, variously called a
multiplier or a mass. We assume thatm0 satisfies 1/2 < m0 <

1 so that m1 = 1 −m0 satisfies 0 < m1 < 1/2.
Every recursive construction involves an ‘initiator’ and

a ‘generator’. The initiator is the interval [0, 1] containing a
mass taken as unity spread uniformly over [0, 1]. The generator
consists in spreading mass over the halves of every dyadic
interval, with the relative proportions m0 and m1 placed to the
left and to the right. Thus, the first stage yields the mass m0

in [0, 1
2 ] and the mass m1 in [ 1

2 , 1]. Each later stage consists
of multiplying the mass yielded by the preceding stage, by
either m0 or m1. Therefore, we deal with a multiplicative
process. After k stages, suppose that t = 0. β1β2 . . . βk is the
development of t in the counting base b = 2, and let ϕ0 and
ϕ1 denote the relative frequencies of 0s and 1s in the binary
development of t . Then the ‘prebinomial’ measure is defined
as the measure distributed uniformly over each dyadic interval
[dt] = [t, t + 2−k]. This interval of length dt = 2−k receives
the mass

µk(dt) = m
kϕ0
0 m

kϕ1
1 ,

to be called ‘premultifractal’. This sequence of measures
µk(dt) has a limit µ(dt) such that µk(dt) = µ(dt) if [dt]
is dyadic of length 2−k .
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2.3. For the Bernoulli binomial measure, weak
asymptotic negligibility holds, while strong
asymptotic negligibility fails

The total binomial measure is constant and equal to 1. But
after only a few stages of construction, its distribution becomes
very unequal. Both a casual glance at the typical shape of price
change distribution and the lessons drawn from the mesofractal
1963 model force us to first examine the values that stand out as
sharp spikes. They are indeed extremely important as evidence
to dismiss the Brownian model and for many other purposes.
The densest cell’s measure mk

0 is far larger than the least dense
cell’s measure mk

1. Write

2k = N, − log2 m0 = αmin < 1, − log2 m1 = αmax > 1.

It follows that

mk
0 = b(− log2 m0)(−k) = (dt)αmin = N−αmin .

That is, the maximum mk
0 tends to 0 following a power law.

This is a weak form of asymptotic negligibility.

Weak asymptotic negligibility extends to multifractals
beyond the binomial measure. The preceding result
holds very generally, because many multifractals involve an
exponent αmin > 0 that plays the same role as in the
binomial case. (In more general multifractals the same role
is reattributed to a larger exponent α∗

min.)
Similarly, the total contribution of any fixed number of

largest spikes is asymptotically negligible. We now proceed
to the total contribution of a number of spikes that increases
appropriately with N .

2.4. The ‘carrier’ of the Bernoulli binomial measure

In the simplest of all possible worlds, many spikes would have
been more or less equal to the largest, and the sum of Nαmin

spikes would have been of the order of NαminN−αmin = 1.
Actually the world is more complicated. A key feature of

multifractals is a subtle interaction between number and size.
The large contributions are large but too few to matter. The
small contributions are very numerous, but so small that their
total contribution is negligible as well. The bulk of the measure
is found elsewhere in a rather inconspicuous intermediate range
one can call ‘mass carrying’. Section 2.5 will show that there
are aboutND spikes of sizeN−D , whereD > αmin so that those
spikes are far smaller than the largest spike. Taken separately,
each squared change in that range is asymptotically negligible.
But their number, which is ND , is exactly large enough to
insure that their total contribution is nearly equal to the whole
increment of θ . When a sequence of squared price increments
is plotted, this range does not stand out but it makes a perfect
match between size and frequency.

Practically, the number of visible peaks is so small
compared with ND that a combination of the peaks and the
intermediate range is still of the order of ND . The combined
range has the advantage of simplicity, since it includes the ND

largest values. Note that the peaks tend to be located in the
midst of stretches of values of intermediate size—as large cities
tend to be located in regions where smaller cities concentrate.

Log-normal heuristics. The preceding argument involves
the increments of a multifractal and depends very much on
their probability distribution. It is important to make a point
concretely without entering into a full mathematical treatment.
For that, a familiar analogue is provided by the log-normal
density

p(x) = 1

xσ
√

2π
exp

(
− (log x − µ)2

2σ 2

)
.

Mandelbrot (1997, chapter E9) builds ‘a case against the log-
normal’. I am far from liking it and even, in most contexts,
tolerating it. But in this instance, a good analogue need not be
a reliable approximation.

A very asymmetric log-normal density p(x) has an
asymmetric bell a little to the right of x = 0 and a long tail for
x → ∞. The point in the bell where p(x) is largest defines
the most probable or ‘modal’ value xmod of X. In a large
sample of size N , the few largest values of X are individually
negligible; even together they matter little. At the other end,
values are very numerous but tiny; even together, they matter
little. The bulk of the sum corresponds to an exact adjustment
between size and frequency. It is contributed by values of X
in an otherwise undistinguished zone near the expectation of
X, which may greatly exceed xmod.

2.5. The coarse-grained Hölder exponent, f (α), and
the fractal dimension of the carrier of the Bernoulli
binomial measure

The coarse Hölder exponent α(t) is defined as

α(t) = log[µ(dt)]

log(dt)
.

In the Bernoulli binomial case, it takes the form

α(t) = α(ϕ0, ϕ1) = −ϕ0 log2 m0 − ϕ1 log2 m1.

Since m0 > m1, one has

0 < αmin = − log2 m0 � α � αmax = − log2 m1 < ∞.

The number of intervals leading to ϕ0 and ϕ1 isN(k, ϕ0, ϕ1) =
k!/(kϕ0)!(kϕ1)!. One can use N to form the expression

f (k, ϕ0, ϕ1) = − logN(k, ϕ0, ϕ1)

log(dt)
= − log[k!/(kϕ0)!(kϕ1)!]

log(dt)
.

For large k, the replacement of the factorial by the leading
term in the Stirling approximation shows that

lim
k→∞

f (k, ϕ0, ϕ1) = f (ϕ0, ϕ1) = −ϕ0 log2 ϕ0 − ϕ1 log2 ϕ1.

Derivation of the carrier of the measure. The value ϕ0 =
m0 is very special because it leads to f = α = −m0 logm0 −
m1 logm1. The accepted notation for this quantity in the theory
of multifractals is D1 or D(1) but this paper simplifies it to
D. Therefore, µ ∼ (dt)D and N ∼ (dt)−D . The reason
for the great importance of D is that the approximate product
(dt)D(dt)−D = 1 contains practically the whole measure. That
is, the rest of the measure is lost among approximation errors.
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Box dimension, the function f (α) and its graph. This
short paragraph provides a link with the broader theory of
multifractals. Note that the above quantity f is of the form
− logN/ log r that fractal geometry calls the similarity dimen-
sion of a set. Hence one can call f a box fractal dimension.
More precisely, since the boxes belong to a grid, it is a grid
fractal dimension. Eliminating ϕ0 and ϕ1 between α and δ, we
obtain a function f (α) written in parametric form. Note that
0 � f (α) � min{α, 1}. Equality to the right is achieved when
ϕ0 = m0, which was seen to greatly matter for concentration.

2.6. Multifractal concentration solely depends on D;
it is not affected when mass has a power law
distribution with a finite exponent qcrit > 1

Subtle phenomena require subtle tools and multifractals are
subtle and all too easily misunderstood. By further clarifying
an aspect of their nature, this brief section hopes to underline
the conceptual difference between the hard and soft forms
of concentration and warn against tempting but incorrect
conclusions.

The basic fact that Mandelbrot (2000b) reported is this:
the short-tailedness of the binomial Bernoulli measure is a
special case. A more widespread and near-‘generic’ behaviour
consists in measures that follow a power-law distribution
with exponent qcrit > 1. Since the mesofractal model is
characterized by qcrit < 1 (this is one half of Lévy’s α

exponent), it seems that multifractality and mesofractality
simply merge into one another at the value 1. In other
words, the question inevitably arises ‘Does the value of qcrit

contribute to concentration?’. The answer is to the negative:
for qcrit > 1, mesofractal oligopoly is overwhelmed by
multifractal concentration.

3. Examples in which H need not be 1/2
include the cartoons in Mandelbrot
(2001c); the isolines of the concentration
exponent D in the phase diagram
This section illustrates multifractal concentration by reporting
on explicit evaluation of D in the special example of the
cartoons sketched in E6 of Mandelbrot (1997), chapter N1
of Mandelbrot (1999) and, in greater detail, in Mandelbrot
(2001). This example is (a) more versatile than the Bernoulli
binomial to which section 2 limits itself, and (b) concerns at
the same time an oscillating function that models price and the
multifractal measures that models trading time.

The cartoons make it necessary to generalize the sum of
price changes squared, which defines variance, by a sum of
absolute price changes raised to a power 1/H that may be =2 or
�=2. This section adds to the understanding of the cartoons, but
requires on the part of the reader substantial prerequisites that
cannot be repeated in this paper. Therefore, many readers will
be content with examining figure 2. By design, all the diagrams
relative to the cartoons are two dimensional. To insure this,
the cartoons are not binomial and dependent on one parameter,
but were made trinomial and dependent on two parameters.

Sections 3.1 sketches special cases and sections 3.2 and 3.3
concern H = 1/2 and H �= 1/2, respectively. Section 3.4
moves on to a most specialized consideration.

3.1. Special cases. Proof that asymptotic negligibility
extends to the Fickian and other unifractal cartoons

A heuristic argument proceeds as follows. Instead of pursuing
the recursive contribution for the same number of steps
throughout, prescribe ε > 0 and stop the recursion as soon as
the width of the intervals of the approximation becomes <ε.
The remaining intervals’ widths 
x will range from ε(1−2x)
to ε, where, as usual, x is the abscissa of the function addressP .
Each of the remaining intervals contributes to f (t) the amount
±(
t)H ; all those amounts become negligible as ε → 0.

Proof of concentration for special mesofractal cartoons.
This paragraph is a second digression directed towards the
reader familiar with the recursive cartoons developed in
Mandelbrot (2001c). Observe that after k iterations, the
variation of fk(t) consists in 2.2k − 1 intervals taking two
alternating forms: inclined up and vertical down. The average
vertical displacement per interval, 1/(2k+1 − 1), tends to 0 as
k → ∞. Subtracting it from each displacement leaves 2k

‘two-steps’, each defined as made of a step up increasingly
short and steeply inclined, and a vertical step down.

The largest two-step’s length converges to −(2y − 1).
Therefore (aside from its sign), the largest two-step is of the
same order of magnitude as the total of all the two-steps. The
same—a fortiori—is true of the squares of the steps.

3.2. Fine-tuning of intermittence

3.2.1. The intermittence exponent D for H = 1/2, that is,
y = 2/3. In that case, consider a sum of N squared daily
price changes, and denote by M(N) the number of days that
contributes the overwhelming bulk of that sum. The theory of
multifractals tells us that M(N) ∼ ND .

Because of asymptotic negligibility and near-equality of
the addends, D = 1 in the unifractal special case, in which
M(N) ∼ N . At the other end D(1) = 0 and M(N) ∼ N0

in two cases: in the mesofractal limit x = 1/2, and also for
x = 0. The properly multifractal cases yield 0 < D < 1.
As one moves away from the unifractal D = 1 locus on
figure 2, the line y = 2/3 intersects the wavy curves at values
of x that yield D = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3. As
x and therefore D decrease, the degree of intermittence seen
in figure 2 will increase. Therefore, a good definition of the
degree of intermittence must include the quantity 1 −D.

3.2.2. The intermittence exponent D for H �= 1/2. The
interpretation of figure 2 becomes different. The reason is
subtle and can only be sketched here. To replace the variance,
the combination of multifractals and FBM uses the sum of
absolute price increments raised to the power 1/H �= 2.
Roughly speaking, it corresponds to the sum of increments
of trading time over equal increments of clock time.

As to the expression M(N) ∼ ND , its validity extends
to H �= 1/2, but only if, instead of being squared, the price
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Figure 2. Iso-lines (lines of constant value) for the exponent of
multifractal concentration, C(1). It attains a maximum D = 1 along
the unifractal locus and the interval 0 < x = y < 1/2; and
decreases to 0 as y is fixed and x increases or decreases.

increments are raised to the power 1/H . We can now interpret
the wavy lines beyond their intersections by the line y = 2/3.
They are the loci where D takes the values 0.9, 0.8, 0.7, 0.6,
0.5, 0.4 and 0.3.

3.3. Differences associated, for fixed y therefore H ,
with the value of min U (t), therefore the location of
x to the left or the right of the locus of unifractality

The next simplest characteristics of a multifractal cartoon are
minU(t) and maxU(t). They are very important, because
the former measures the degree of ‘peakedness’ of the peaks
of 
θ , while the latter measures the duration and degree of
flatness of the low-lying parts of 
θ .

The mathematical situation is as follows. To be concrete,
take H = 1/2 and move x away from the unifractal value
x = 4/9, either leftbound towards x = 0, or rightbound
towards x = 1/2 − ε. The value of minU(t) begins as 1 and

tends to 0 in both cases. In contrast, the behaviour of maxU(t)
is very sensitive to the direction of motion. To the left, it
increases without bound. In contrast, one finds that to the right
minU(t) only increases up to the limit log 3/ log 2 ∼ 1.5849.

Concretely, this asymmetry creates a sharp and highly
visible difference. For given D(1), the probability of U(t)
being very small will be far greater for x to the left than to
the right of the unifractal locus, that is, above or below the
starred line in figure 7 of Mandelbrot (2001d). This prediction
is clearly vindicated by other lines on that figure 7.

Those predictions came after I drew figure N1.4 of
Mandelbrot (1999). That figure consisted, in effect, in moving
always to the left of the unifractality and never to the right.

The above asymmetry between left and right can be
expressed in terms of a theory that warrants a mention here,
but only a very brief one: the variation of θ is ‘less lacunar’ to
the right of x = 4/9 than to the left.
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