
SPECIAL RELEASE ON 
MANDELBROT'S CONTRIBUTIONS TO 
PHYSICS  

NEW HAVEN, CONN. Benoit Mandelbrot, 
Sterling Professor of Mathematical Sciences 
at Yale University and the "father of fractals," 
shared the 2003 Japan Prize for Science and 
Technology  

Through numerous contributions of fractal 
geometry to physics, Mandelbrot can 
arguably be called the originator of a first 
quantitative approach to the study of 
roughness.  As background, keep in mind 
that acoustics became quantitative when 
"pure sounds" were defined as being 
periodic, making pitch measurable by a 
frequency. As had to be the case, this 
quantitative measure is consistent with 
"intuition" and earlier knowledge as 
manifested for example, in music. Similarly, 
the theory of heat became quantitative when 
Galileo devised the thermometer and 
measured hotness by a temperature;  

Most interestingly, and despite the fact 
that much of nature in the raw can be called 
rough, a quantitative measure of roughness 
was not available until fractal geometry was 
developed. Mandelbrot layed the foundation 
for a future “rugometry” when he discovered 
[FGN, 103] that ubiquitous examples of 
rough curves or surfaces are self-similar or 
self-affine, and as a first measure of such 
"pure" roughness he proposed fractal 
dimension or codimension. Those concepts 
had arisen in esoterica, as the Hausdorff-
Besicovitch dimension and Holder-Lipschitz 
exponent. It was therefore necessary to first 
reinterpret them as being numerical 
characteristics of an invariance, and then 
expand their study, both concretely and 
intuitively. Rough surfaces may also satisfy 
weaker forms of invariance. For them, 
measurement may require one of 
Mandelbrot's mathematical inventions, 
namely, multifractals.  

Like pure sound or pure elliptic motion 
under gravitation, pure roughness is an 
abstraction but a useful one.  For example, 
experiment shows that metal fractures are 
fractal over the very broad range of sizes 
covering five decades at least. The range is 
sometimes even broader, but may be limited 

by the nature of the data.  
In topics that belong to core physics, 

Mandelbrot concentrated his attention on the 
numerous specific topics in which roughness 
is the key unsolved ingredient.  A master in 
the use of the fractal tools that he identified 
or designed to handle roughness, he 
extended the range of topics he could handle 
by collaborating with eminent “insiders”. The 
topics he tackled range over fluid mechanics, 
disordered systems, anomalous fluctuations, 
the large scale structure of the universe, and 
non-linear dynamics. His studies clarified 
many old issues, opened many questions, 
and provoked extensive work.  

In the context of turbulence, Mandelbrot 
conjectured [FGN, Chapter 10] that the 
shapes it creates are fractal and [72] that its 
intermittency is modeled by a multifractal 
measure, a tool that he specifically 
developed for this purpose. Both conjectures 
have been confirmed experimentally by K. 
Sreenivasan and multifractals became widely 
used in many other areas of physics.  

In the field of critical phenomena, 
Mandelbrot conjectured that infinitely 
downsized percolation clusters converge 
towards fractal curves. This mathematical 
conjecture, since proven rigorously by S. 
Smirnov, underpins a series of publications 
with A. Aharony, Y. Gefen and others [90, 
93, 96, 100, 101, 102, 105, 110].  Those 
publications established, and this is now 
universally accepted, that the clusters 
themselves, as well as portions of clusters 
that play diverse specific roles, should be 
viewed as fractals. This added a fresh 
example to the existing cases where it can 
be said that physics is ruled by geometry.  

Diffusion limited aggregates (DLA) are a 
new, fascinating and difficult form of 
clusters.  L. Sander, who discovered them 
with T. Witten, was quoted as pointing out 
that  “numerous researchers had come close 
to discovering DLA, but didn't know the 
implications of what they had. I attribute 
[our insight] to Mandelbrot's [urging us] to 
think about odd shapes".  “It was amazing", 
adds Witten", to hit on something that 
captured peoples' imagination even a tenth 
as much as this, and for it to keep going. But 
what's truly unexpected is that this problem 
just resists being solved".  

The comments in one or both last 



sentences are also made about many other 
aspects of fractals. In the meantime, almost 
everything that is known about DLA was 
obtained using fractal tools, and the 
problem's continuing difficulty does not repel 
Mandelbrot but attracts him.  He has worked 
extensively on the "deviations" of DLA from 
exact self-similarity [127, 128, 129, 130, 
131, 133, 134, 135, 136, 137, 138, 139, 
148, 153, 157, 179].  

Another long-range issue is that of 
anomalous fluctuations discussed in many 
chapters of Mandelbrot’s books on 
“Multifractals and 1/f Noise” and “Gaussian 
Self-Affinity and Fractals.” Because many 
noises share a "1/f" spectrum, they became 
interpreted as different instances of a single 
unified physical phenomenon for which a 
single explanation could be achieved -- albeit 
with no success so far. To the contrary, 
Mandelbrot showed that 1/f noises are 
examples of roughness but can be highly 
unlike one another. Therefore traditional 
tools such as spectra do represent them 
quantitatively, but only partially, and miss 
their most significant  features.  Using fractal 
tools, Mandelbrot identified at least three 
sharply distinct kinds of 1/f noise he now 
calls “unifractal”, “mesofractal” and 
“multifractal”. Each category involves a 
different geometry and demands its own sort 
of fractal tools.  

J. Peebles and his school were taking for 
granted that the large scale structure of the 
universe is homogeneous, unevenness being 
restricted to a local scale extending to a 
crossover at 5 megaparces.  They observed 
that a 1/f spectrum prevails “locally,” up to 5 
megaparsecs, but did not seek a geometric 
description. Mandelbrot provided one [FGN 
Chapter 10].  His first step consisted in 
observing that if homogeneity is not 
assumed in advance, a correct statistical 
analysis moves the crossover from 5 
megaparces to a much larger value.  A 
second step consisted in reinterpreting those 
spectra and other evidence as symptoms of 
an underlying fractal structure extending well 
beyond 5 megaparces. A very careful 
analysis by L. Pietronero convinced a wide 
community to move the crossover to at least 
200-300 megaparces. (Even higher values 
are quoted but continue to be controversial.)  

A third step taken by Mandelbrot faced the 

criticism that clustering must introduce a 
“center of the universe” or postulate a 
hierarchy.  He showed that neither fatal 
blemish is present in two otherwise 
cartoonish fractal “scenarios”. Both are very 
easy to simulate and either suffices to 
account simultaneously for the observed 
spectra and also for the observed clusters, 
voids, and filaments.  Those scenarios’ ability 
to mimic the actual maps challenges many 
traditional beliefs.  It raises the question of 
whether those geometric structures are 
physically real or, to some unspecified 
extent, artifacts of the human mind.  Their 
effectiveness suggests the existence of other 
contexts where seemingly separate 
experimental findings simply manifest an 
underlying fractality.  

In the study of interstellar gas clouds, 
fractality also proved essential and 
encountered no controversy.  

In the context of dynamics, Mandelbrot's 
now classic study brought the non-linear 
map z x z + c back from the real line to the 
complex plane where it had started with 
Fatou and Julia.  This led him to discover and 
describe the object now called Mandelbrot 
set M, which is discussed in the Special 
Release on pure mathematics.  In physics, it 
has become the “icon” of the contrast 
between regular and chaotic behavior. It has 
also been called “the most complex object in 
mathematics”. Many facts about it remain 
unsolved, such as Mandelbrot's main 
conjecture that M is the closure of M°, 
defined as the set of values of c in 
parametric space for which there exists a 
finite stable limit cycle.   

Engineering is affected as well as 
inventors keep expanding the uses of 
fractals.  Most recently studied are fractal 
antennas, fractal capacitors that fit a farad 
on a pinhead, and fractal combustion 
chambers in chemical engineering.  

Through dynamics, the Mandelbrot set 
made mathematics and physics attractive to 
millions of students. It is not often in human 
history that a mathematical inspiration 
relative to basic physical problems 
penetrates so far into the lives of ordinary 
people, changes their vision of the world, 
and spawns new sorts of industries and arts.  
 


