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Towards a second stage 
of indeterminism in 
science  

Benoit Mandelbrot  

When the International Congress for Logic, 
Methodology, and the Philosophy of Science 
was held in Jerusalem, in September 1964, I 
delivered an invited address titled “The 
Epistemology of Chance in Certain Newer 
Sciences.” But I hardly tried to prepare a 
text for the Proceedings, and for many years 
I kept resisting friendly suggestions – 
notably by the Berkeley molecular biologist 
Gunther S. Stent – that the draft be 
reworked, completed and printed.  One 
reason was that success kept eluding 
repeated attempts to state a technical point, 
while also making clear its philosophical 
implications.  But it is good to see the old 
text published at long last. It has been 
substantially edited for style and shortened, 
but not otherwise modified, and it is 
preceded by a few pages of miscellaneous 
observations, which have been recast in the 
form of a dialogue. References were updated 
in 2002.    

1. Reflections from the 
perspective of 1987 on a 
premature fractal manifesto 
written in 1964  

While the word fractal did not appear until 
1975, this 1964 draft was important in the 
evolution of fractal geometry, an 
interdisciplinary enterprise I conceived in 
1964, then developed. I have devoted to it 
almost all my creative life.  

Question:  
Why should this old text be of historical 

interest today?   

B. B. Mandelbrot:  
It occupies a critical position along the 

tortuous path that eventually led to fractals. 
This, and the fact that this text appears in a 
journal called Interdisciplinary Science 
Reviews, seems to call for a few philosophical 
and autobiographical comments. My research 
career, which must be described as 
“improbable,” was triggered by a casual side 
interest in diverse isolated empirical 
regularities that everyone else viewed as of 
little consequence. As I look back, my life 
divides into three well-separated periods.  

A period of gestation started with my PhD 
thesis in 1952 and lasted until 1964.   

Jumping ahead, the third period that 
started in 1975, witnessed consolidation and 
increasingly broad, rapid, and smooth 
development, marked by books that do seem 
to involve an effective mix of technique and 
philosophy.  Fractal geometry has the special 
charm of allowing uninterrupted interplay 
between concrete fields (ranging from widely 
practiced ones to the very obscure) and 
sophisticated pure mathematics. It has been 
successful as mathematics.  In fact, it has 
shamed the iconoclastic tradition that ran 
from Laplace to Bourbaki by stimulating or 
reviving several mathematical theories; it 
has become a widely used tool in the 
description of nature and in the wide search 
for order in chaos; and finally, fractal art is 
now becoming widely admired as art, 
irrespective of its unusual origin.  

The middle period lasted from 1964 to 
1975. From the viewpoint of fractals' 
development, it was in many ways the most 
interesting but from a personal viewpoint it 
was most frustrating.  This period was 
punctuated by successive fractal manifestos, 
the most notable ones having been a 1972 
lecture at the Collège de France in Paris, 
which followed a Trumbull Lecture at Yale in 
1970, and the even earlier 1964 Jerusalem 
lecture with which we deal here.  

When chance or duty makes me reread 
this and other unpublished texts of the 
middle period, I am surprised at the 
precision and clarity given to many ideas that 
were not fully worked out until much later in 
my life.  But my style failed to encourage the 
reader to plow through papers that had 
already acquired the reputation of advancing 



very disturbing ideas.  It is useful, therefore, 
to state at this point one basic idea of 
fractals.  

Why is school geometry so often described 
as “cold” and “dry?” One reason is this 
geometry’s inability to tell what shape a 
cloud is, or a mountain, or a coastline.  
Clouds are not spheres, mountains are not 
cones, coastlines are not circles, and more 
generally, man’s oldest questions concerning 
the shape of this world were left unanswered 
by Euclid and his successors, who concerned 
themselves exclusively with an unrealistically 
orderly universe.  In order to achieve a 
handle on nature, a radically different 
geometry is needed, one that must 
contradict many old ideas that have become 
so familiar as to seem obvious and 
universally valid.  However, to negate these 
ideas completely would be self-defeating 
because it would replace excessive order 
with utter chaos.  Fractal geometry is a new 
and very different broad area of order within 
the domain of the old chaos.  Some fractals 
imitate the mountains and the clouds, while 
others are wild and wonderful new shapes. 
More generally, the new fractal world is in 
some cases hard to tell from the real one, 
and in other cases it is of fantastic and 
surprising beauty.  

Question:   
Is there any relation between second stage 

indeterminism and chaotic fluctuations?  

BBM:  
The conventional wisdom has long been 

that the study of the weather and of 
economics is harder than the study of perfect 
gases, but will eventually use the same 
means to achieve the same degree of 
perfection.  To the contrary, my work 
suggested a profound qualitative distinction 
between the underlying fluctuations, and as 
a result the theories of the corresponding 
phenomena were bound to differ sharply.  On 
the one hand, the fluctuations that 
characterize the theory of gases should be 
viewed as “mild,” and the first stage of 
indeterminism in science was comparatively 
easy because of their being mild. On the 
other hand, the facts already established by 
1964 indicated that the fluctuations of the 

weather and of prices were “wild.”  I used to 
use “erratic,” an ill-chosen Latin word that 
did not last. My work invited the sciences to 
move on to a second stage of indeterminism.  

How was this invitation received?  
Certainly not to my satisfaction! On the one 
hand, many influential scholars considered 
my discoveries to be potentially important, 
and offered me a series of renowned pulpits 
from which to present them. Yet, until 1975, 
they were called controversial.  In fact, they 
provoked little discussion, pro or con, to 
justify them being so called controversial.  
They failed to affect the work of numerous, 
diverse, distinguished and often well-
disposed people who heard me.  To use a 
term favored by Stent, my work suffered 
from being “premature.”  

Question:  
You have said that, in your work, a 

growing role is played by sophisticated 
graphics, dear to a geometer’s and an artist’s 
eye.  Could you elaborate?  

BBM:  
Being premature is particularly painful 

when one’s whole scientific work has been 
interdisciplinary.  Thus, it is unusual indeed 
that fractal geometry managed to survive 
and to become part of the mainstream, 
without having to be first forgotten and later 
rediscovered by others, when its time came.  
Why did  its time come after 1975, but not 
before?  We cannot be sure, except that an 
essential role has clearly been played by 
computer graphics – of which I became a 
pioneer by necessity.  

Mention of Stent’s paper necessarily brings 
forth a thought concerning the issue of 
uniqueness in scientific discovery.  Indeed, 
Stent draws our attention to the (hostile) 
review that the biochemist Erwin Chargaff 
wrote of The Double Helix by James D. 
Watson.   In that review, we read that 
“Timon of Athens could not have been 
written, Les Desmoiselles d’Avignon could 
not have been painted, had Shakespeare and 
Picasso not existed. But of how many 
scientific achievements can this be claimed? 
One could almost say that, with very few 
exceptions, it is not the men that make 
science, it is science that makes the men. 



What A does today, B or C or D could surely 
do tomorrow.”  

This may be true of many of the individual 
strands of fractal geometry.  But fractal 
geometry is not merely a juxtaposition of its 
individual strands.  It arose as an integrated 
whole, ruled by a philosophy that was 
conceived and developed under conditions 

that – for better or worse – were greatly 
affected by my peculiar life story. Would 
another individual, or some collectivity, have 
reached the same philosophy and built the 
same whole? A worthy question for the 
future, assuming that this whole actually 
survives. 

 
2. Text of the Premature 
Fractal Manifesto of 1964  

Since the turn of the century, acceptance 
of indeterministic stochastic theories in 
science has spread spectacularly. A new 
epistemology has arisen as a result, 
superseding the epistemology built upon 
deterministic causal theories.  In certain 
areas of physics, the new approach was 
rapidly and strikingly successful, for example 
in the study of thermal fluctuations in gases 
and in solids, and in quantum mechanics.  
Elsewhere, progress has turned out to be 
slow, and the fulfillment of high initial 
expectations is continually postponed. Such 
is the case of meteorology and in most of 
economics. The present paper proposes to 
trace this difference to the existence of a 
deep qualitative contrast between the nature 
of the observed fluctuations in the 
“developed” and the “less developed” 
sciences.  

2.1. Differences in scientific 
development    

It is often asserted that differences in 
development between sciences are solely 
due to differences of “age” as measured from 
the earliest systematic investigation of the 
different topics. I disagree.  Indeed, 
probability theory saw its first triumphs in 
physics, but first arose in the study of the 
statistical problems raised by economic-
psychological choice.  In the hands of 
Laplace (circa 1800), a probabilistic view of 
social science and an arch-deterministic view 
of physics had reached a high point at the 
same time.  Even as late as 1912, statistical 
social science could still be presented as a 
model to be followed by statistical physics. 
Similarly, in the works of Boussinesq (1872) 
and Osborne Reynolds (1895), the statistical 
concept of turbulence in fluids was roughly 
contemporary with Maxwell’s and 
Boltzmann’s (1866) kinetic theories of gases. 
But stochastic theories dashed forward in the 
study of gases, while they still lag in the 
study of turbulence. 

 
2.2. Articulation  

Before proposing an explanation of this 
difference in fate, it is good to recall that an 
“articulation” is at the root of many statistical 
theories: small systems combine into big 
systems, and one is interested in a statistical 
theory that applies to the latter and is based 
on a limit theorem of probability theory. In 
the case of thermal fluctuations, the small 
systems have physical reality but are 
microscopic, that is, inaccessible to human 
perception.  Only the large systems are on 
man’s spatial and temporal scale. Moreover, 
the following ideas are held to be true:    
. •. The details of the microsystems 
have no effect on the macrosystems, and 
brutal approximations concerning the 
structure of the former do not affect the 

effectiveness of a macroscopic theory.  
. •. The “classical central limit theorem” 
is applicable. A fortiori, the “law of large 
numbers” is applicable.   
 

Let us recall the meaning of the terms 
used in the second statement.  As applied to 
temporal means, the classical central limit 
theorem holds that the sum of T

-1/2

 from t=1 
to T of [X(t)-E(X)] is approximately Gaussian 
for large T. As applied to means over large 
numbers of systems, this theorem states 

that the sum of N
-1/2 

from n=1 to N of [X(n)-
E(X)] becomes approximately Gaussian for 
large N. The (strong) law of large numbers 
states that there is a probability equal to one 
that, for increasingly long samples, the sum 

of T
-1 

from t=1 to T of X(t) → E(X) as T →∞, 



and for increasingly large assemblies, the 
sum of N

-1

 from n=1 to N of X(n) → E(X) as N 
→ ∞.  

First-stage indeterminism has the virtue of 
being closely related to causal theories.  
When it prevails, successful statistical 
theories can be constrained so that a 
“correspondence principle” holds: the mean 

E[the sum of N
-1 

from n=1 to N of X(n)], or 

the temporal trend E[the sum of T
-1 

from t=1 
to T of X(t)] may be made to match those of 
an approximating deterministic-causal 
theory.  In statistical mechanics, for 
example, the additional information provided 
by statistics is an important but detailed 
correction, an “error term,” a “fluctuation 

around an equilibrium state.”  
It is usually felt that this correspondence 

principle is obvious and that scientists’ 
universal reliance upon the law of large 
numbers and the classic central limit 
theorem requires no special justification. At 
best, a scientist may occasionally observe 
that the conditions of validity of these 
theorems are so undemanding, or weak, that 
they are overwhelmingly likely to be verified. 
But natural science exhibits very few cases 
(if any) where validity of these conditions is 
rigorously reduced to basic physical laws.  
Usually, their validity is listed as a kind of 
phenomenological principle that happens to 
be remarkably effective. 

 
2.3. Less-developed sciences and 
articulation  

With this in mind, consider less developed 
statistical theories that also involve a clear-
cut articulation.  Here is a first main point.  
My investigations lead me to believe that the 
less developed sciences are precisely those 
for which classical central limit theorem or 
even the law of large numbers fails to hold.    

Does this belief imply that statistical 
techniques become helpless? It does not, by 
any means. However, and this is my second 
main point, the new models will necessarily 
differ in kind from the old ones. In other 
words, they will usher a new stage of 
indeterminism into science. The change will 
not only affect the details of the answers but 
the very characterization of what makes a 
question well-posed, or capable of being 

answered, and hence worth asking.  
There are several possible reasons why the 

classical central limit theorem may fail to 
hold, and a corresponding variety of “kinds” 
of new statistical theories. No fallacious unity 
is therefore implied by referring to the 
aggregate of these theories as constituting a 
new second-stage indeterminism.  

Also, this last term does not exclude the 
possibility that indeterministic theories may 
lie between the causal and the first-stage 
indeterministic theories, rather than beyond 
the latter.    

 Anticipating briefly questions to be 
discussed below, we may note that second-
stage indeterministic models may be avoided 
by giving up the concept of statistical 
stationarity.  If we do so, however, there 
could be no theory, and this would be a very 
poor bargain. 

 
2.4. Possible reasons for failure of first-
stage indeterminism  

Even when the random quantities X(t) or 
X(n) are statistically independent, first-stage 
indeterminism fails when the distribution of 
X(t) is excessively “long-tailed” (that is, 
there is a very large probability of X being 
very large, for example exceeding 4 or 10 
times the interquartile range).  Let the 
distribution of random variable X be made 
increasingly fat-tailed. Sufficiently fat-tails 
cause the population variance to become 
infinite, and the classical central limit 
theorem necessarily becomes invalid. Later 

on, the population mean itself fails to 
converge, and the law of large numbers 
becomes invalid as well.    

The mathematicians' search of interesting 
“pathologies” conceived these possibilities 
long ago, at least since Cauchy in 1853.  But 
it is only recently that my work showed that 
these possibilities are not pathological, but 
practical and even indispensable. Examples 
occur in economics:  Pareto’s law of income 
distribution; the variation of speculative 
prices; the problem of industrial 
concentration; and so on. Examples also 
occur in physics, among them the flow of 
water from Lake Albert into the Nile River; 



this is also the context in which one ought to 
re-examine the distribution of the energy of 
primary cosmic rays.   

There is a second possible reason for first-
stage indeterminism to fail.  Even in cases 
when the distribution of X(t) itself is short-
tailed (for example, Gaussian or even 
bounded), first-stage indeterminism fails 
when the intensity of the interdependence 
between X(t) and X(t+T), as measured by a 
correlation, decreases very slowly as T →∞. 
Indeed, as the span of interdependence 
lengthens, the classical central limit theorem 
eventually fails.    

S
N
 being a sum of N independent variables 

X(n), consider the relative contribution to S
N 

coming from the largest among the X(n). 
When the expectation of X  is zero and S

N
 / 

N
1/2

 tends to the Gaussian as N → ∞, a 
theorem says that the relative contribution of 
the largest among the X(n) vanishes 

asymptotically.  When S
N
 / N

1/2
 does not tend 

to the Gaussian, the situation is sharply 
different: as N → ∞, the relative contribution 
of the largest X(n) may tend (in statistical 
law) to a nonvanishing limit.  In such cases, 
the few largest contributions to S

N
 stick out, 

and there is a strong temptation to censor 
them a posteriori, calling them outliers, and 
use first-stage indeterministic analysis to 
study what is left. 

 
2.5. Permanence of second-stage 
indeterminism  

The features described in the preceding 
two paragraphs both raise a question.  How 
final or permanent one may expect the 
second-stage indeterministic models to be?  
Classically, of course, there have been at 
least three distinct views of the roots of 
indeterminism:  

A.  Some stochastic models are held to be 
irreducible; this is the Copenhagen school's 
view of quantum theory.   

B. Other stochastic models are held to 
describe the state of ignorance of some 
observer.  For Laplace, once the past is fully 
known, so, potentially, will be the future.  If 
so, the observer’s state of ignorance will 
eventually reduce, more or less thoroughly, 
to an interplay of causal relationships.  As 
was already mentioned, the usual argument 
holds that, when these causes are very 
numerous, and each contributes negligibly to 
the whole, one should expect the whole to be 
ruled by first-stage indeterminism.  

C. The third classical view is favored by 
some extremist historians, who claim that 
the past can be of interest only for its own 
sake, and not as a basis of forecasting.  In 
particular, statistical regularities in past 
records can be of no predictive interest.  

Turn now to problems accessible to 
second-stage indeterministic models.  They 
do fall between Laplace’s conception of 
physics and the extremist’s conception of 
history. Therefore, they introduce a fourth 

possibility.  
D. One cannot always expect the causal 

reduction of fluctuations described under B to 
be possible.  It may, however, be possible to 
reduce a second-stage indeterministic model 
to a mixture of the causal and the first stage 
indeterministic approaches.    

Reductions of this kind are reassuring, 
because one has learned how to live with the 
two classical approaches.  From the 
viewpoint of historical description, they are 
feasible ex post facto and are obviously a 
useful tool.  In other contexts, they may also 
help classify and name the parts of the 
Unknown, a function whose performance is 
known to procure a feeling of power.    

As a comment upon this last feature, 
observe that ordinary vocabulary is biased 
against terms that denote entities with a 
very long-tailed statistical distribution.  For 
example, the size distribution of “human 
agglomerations” is much longer-tailed than 
those of “cities,” “towns” or “villages,” 
considered separately. Do the distinctions 
between city, town and village also have 
other foundations, more intrinsic than the 
desire to avoid a long-tailed distribution?    

However, similar distinctions often lack 
other motivation.  If so, Descartes’ precept, 
“subdivide the difficulties into parts” may be 
very dangerous. Common sense and the old 
informal science embedded in the vocabulary 
both involve a preliminary processing that 
risks disfiguring the results of experience.  In 
the areas where second-stage indeterministic 
models are indicated, examples abound 



where such faux pas are to be feared. For 
example, the flow of water alternates 
between being laminar and turbulent; hence 
the temptation to try to study the two kinds 
of regimes separately.  In fact, my work 
suggests that the study of the whole natural 
flow may be simpler than that of its turbulent 
inserts taken alone.  Similarly, in studying 
economic records, it may very well be 
preferable to avoid the temptation to attack 
periods of crisis separately, as if the 
economy changed in kind during the major 
depressions and booms.    

To decide between alternatives A and D is 
a task that a scientist must not face on 
grounds of a priori epistemological 
preferences.  Most scientists, however, agree 

with the Copenhagen view of quantum 
theory, that, as long as A has not been 
disproved by explicit construction, it is 
pragmatically unattackable.  Most will also 
agree that one may conceive of cases when 
A has been disproved, but the best rules of 
behavior continue to be the same as if A held 
true.  For example, the engineer’s attitude 
towards thermal fluctuations is hardly 
affected by the fact that they are ultimately 
explainable by the kinetic theory of gases. A 
fortiori, it is likely in many fields that the 
best action will long continue to be based 
upon a second-stage indeterministic theory 
without concern about whether it may 
theoretically be reducible. 

 
2.6. Meaningfulness of hierarchical 
descriptions  

An important special issue is the problem 
of the meaningfulness of hierarchical 
description. I have found that samples 
generated by a second-stage indeterministic 
model often seem “stratified” or 
“hierarchical” even though no hierarchy had 
been built into the generating model.  For 
example, generate an economic time series 
by a stationary stochastic process a, with a 
continuous spectrum and a smooth spectral 

density with no local maximum but a pole at 
the frequency zero. Usually the sample 
functions of such a process seem to exhibit 
long Kondriatieff-like cycles that recall 
ordinary business cycles, and so on down to 
short-period wiggles much like the 
speculative fluctuations.  A similar process 
engenders stars that group into galaxies, and 
then into clusters and then super clusters of 
galaxies, and so on. Obviously, the presence 
of such striking patterns in “forgeries” 
engendered by processes with no built-in 
hierarchy has far-reaching consequences. 

 
 


