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Abstract. New multiplicative and statistically self-similar measures p are defined on R
as limits of measure-valued martingales. Those martingales are constructed by multiplying
random functions attached to the points of a statistically self-similar Poisson point pro-
cess defined in a strip of the plane. Several fundamental problems are solved, including the
non-degeneracy and the multifractal analysis of i. On a bounded interval, the positive and
negative moments of ||u|| diverge under broad conditions.

1. Introduction

This paper deals with a new class of random multifractal measures introduced in
[Ma6], to be called “multifractal products of cylindrical pulses” (MPCP). They
improve on the familiar “canonical cascade multifractals” (CCM) introduced in
[Ma3, Ma4].

As will be recalled, the construction of CCM involves a prescribed artificial
b-adic grid of intervals of [0, 1]. The basis b (integer > 2) was introduced to
simplify the construction in [Mal] and allow the conjectures in [Ma3, Ma4] to be
proven [KP]. This b-ary tree structure restricts the statistical self-similarity of CCM
to b-adic subintervals of [0, 1]. The CCM led to a considerable body of literature
(see [K2], [HoWa], [Mol], [B1], [B2] and references therein for extensions).

Let (2, B, IP) be the probability space on which random variables are defined
in this paper. To construct CCM, let W be a non-negative random variable having
expectation 1, and let W, v € Uﬁo 110, ..., b — 1}", be a collection of random
variables i.i.d. with W. Consider the sequence of random measures (,, n > 1, on
[0, 1], defined by

du “
n
drl (t) =j1i[1W(t1,.‘.,tj)a
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where t = (11, 12,...),¢; € {0,..., b — 1}, is a b-ary expansion of ¢ € [0, 1], and
£ denotes the Lebesgue measure. The CCM p is the almost sure (a.s.) vague limit
of (Hn)nz1 (see [KP]). | |

The mass that 14 assigns to the subinterval [}_, ;677,37 ;077 +b7"]
is a product of two statistically independent factors: ™" ]—[;le W(,l,,_.,,j), and a
random variable Yo (?1, ..., t,) that is distributed as the total mass ([0, 1]) (this
reflects the self-similarity).

The MPCP provide a continuous parameter extension of CCM. To relate CCM
and MPCP, the basic subintervals of the form [kb—/ (k—}—l)b_j],k e{0,1,..., bl —

1}, should first be reparametrized as [s — A, s + A], where the location and scale
k+1/2 1

parameters s and A are s; ; = —;j/ and Ar ; = Tk This notation re-

states the density of u, as a product of random quantities associated, down to

a “resolution” &, = (2b")~ 1, with the atoms of the “deterministic point process”

S ={(sx,j, Ak, j): k=0,...,b/ —1, j=1,2,...}. Specifically, for (s, ) € §

with 24 = b=/, one defines the “cylindrical pulse” P ;) by

W(tl,...,tj) iftels—A, s+ Al

1 €R P Piyy) = { 1 otherwise.

Then p is the a.s. vague limit (as ¢ — 07) of the family of measures y, given by

du . .
d; (t) = ]_[ Ps.(t), with e =, if & €)ent, £nl.
(s,A)ES, A>¢

Note that for a given ¢ € [0, 1], the number of (non-unit) factors in the previous
product is the number of points in § “under”  and is equivalent to (log b) ! log 1/¢.
The factor 1/log b can be viewed as a formal density for the point process S.

The step from this framework to MPCP consists in replacing the point process
S by a Poisson point process S = {(s;, A;)} on R x (0, 1], with intensity

Sdtdi
A(dtd)) = 3

(6 > 0).
The “cylindrical pulses” associated with S are a denumerable family of functions
P;(t), such that each P; is identically 1 outside the interval [s; — A, s; +A;], and
identically equal to a weight W; within [s; —A;, s; + A ], so that the W;’s are i.i.d.
with W, and independent of S.

The MPCP 1 is the a.s. vague limit (as ¢ — 0T) of the family of measures fi,
defined on R by

dpie
“o= [1 P

de
(Sj,)»j)ES, Aj>e

For every t € R, the expected number of (non-unit) factors in the previous product
is 8§ log(1/¢). The CCM formal density 1/log b is now formally replaced by the
MPCP density §.
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The first key virtue of the MPCP’s follows from the invariance properties of A:
these measures are statistically invariant under a continuous change of scale. They
involve no b-adic grid. Neither do the limit lognormal multifractals introduced in
[Mal], nor the “fractal sums of pulses” in [Ma5], which inspired the present study.

A second key virtue concerns a deep change in the form of the familiar
multifractal function 7 (q). For MPCP, the next sections will show that when W > 0

t(g) = —1+q — S§(EW?) —1).
For CCM, it is well known that
1(q) = —1 + g — log, E(WY).

The condition of divergence of high moments of © continues to be that 7(gq) < 0
for some g > 1. The restriction 7(g) < 0 imposes on W is clearly less for MPCP
than for CCM.

Section 2 tightens up the construction of the MPCP . When E(W) # 1, the
natural normalization of the products of the pulses is formed, to give the density

d
%(x) —SEW-D T P
(57, 4))ES, hj>e

Then the main results are stated and a self-similar property is described. Theorem 1
concerns the conditions under which w is non-degenerate, i.e., positive with positive
probability. Theorems 2 and 3 concern the existence of finite moments for pieces
of w. Theorem 4 concerns the whole multifractal spectrum. Section 3 is devoted to
proofs of these theorems.

This paper incorporates, proves and much strengthens the conjectures in [Ma6].
In the absence of a grid, the geometrical properties of MPCP are subtler than those
of CCM, and serious mathematical complications arise. The reason why [Ma3,
Ma4] singled out CCM for study is that for CCM the mass ([0, 1]) = Y satisfies
the now-classical functional equation

b—1
E): Yoo =b"" Y Wi Yooli),
j=0

where the Y (j) are copies of Y, and these random variables are mutually
independent and independent of the W(;). By construction, b~ W ;Yoo (j) =
u([jb_l, (J + Db~ for each 0 < j < b — 1. The properties of p are con-
trolled by (&) itself or its iterations. For a MPCP, Sect. 2.3 replaces (£) with the
far more difficult Eq. (3). The geometry of the Poisson point process S implies
that (3) no longer involves random variables having the same distribution as Y.
While copies exist, they are implicit in integral terms (by Theorem 5). Moreover,
the copies that concern intervals close to one another are correlated. Nevertheless,
several non-obvious reductions make it possible to adapt for MPCP some features
of the familiar approach developed for CCM.
Products of more general pulses are discussed in [BM].
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2. Definitions, results and self-similarity
2.1. Construction of the limit measure and main results

Let W be a positive integrable random variable and denote E(W) by V.

Let {Bx}x>1 be a partition of Rx]0, 1] such thatforallk > 1,0 < A(By) < oo.
For every k > 1, let A|p, denote the restriction of A to By and choose a sequence
(Mj n)n>1 of Bi-valued random variables with common distribution %; denote
by Ni a Poisson variable with parameter A(By), and (Wg ,),>1 a sequence of
copies of W.

Assume that all the random variables My ,,, Ny and Wy ,, k, n > 1, are mutually
independent.

S = {Mi; 1 <k, 1 <n < N} is aPoisson point process with intensity A.
For M = (ty, Ay) = My, € S, define Wy = Wi, Iy = [ty — Ayt + Al
and the cylindrical pulse Py : t € R = Wy 14, () + 11;‘4 (1).

For all ¢ €]0,1] and ¢ € R, define the truncated cone C.(r) = {(t', 1) €
Rx]0,1]; t —A <t <t+ A, e <A< l1}and

Qc.i) = l_[ Wi
MeSNC, (1)
For every 0 < ¢ < 1, denote by u, the measure on R defined by

du _ _
L 0=00=""0 [T Pu=e"""0c
MeSN{r>¢}

and define F, = o (M, Wy, M € SN {A > ¢}). In all the text, weak convergence
of measures on a locally compact Hausdorff set K means weak*-convergence in
the dual of C(K), the space of real continuous functions on K.

The limit measure. By construction, for every ¢ € R, (Q1/5(t))s>1 is a positive
right-continuous martingale with respectto (Fj /4)s>1, withexpectation 1. Therefore
Kahane’s theory of T-martingales ([K1]) is applicable. That is, for every n € Z and
with probability one, the restrictions of the measures p to the compact [, n + 1]
converge weakly, as ¢ — 0, to a non-negative measure M(") on [n,n + 1]. It also
follows that the endpoints n and n + 1 are not atoms of .

Consequently (with probability one) there exists a unique non-negative measure
MR on R whose restriction to [1, n + 1] is u™ for every n € Z.

By definition of A, the measure ulis statistically invariant by horizontal trans-
lations. The sequel will only consider the measure o = (.

Remark 1. The choice of (Bi, Nk, (Mg n)n>1)k>1 and (Wi »)n>1)k>1 affects nei-
ther the probability distribution of the stochastic process (Q¢(#))¢e10,1], 1R, NOT
those of the other random variables defined in this paper.

The function t(g). Recall that u denotes the restriction of MR to [0, 1]. Define
Y = ||u]|. For ¢ € R define

(@) =—14+qg(1+8V —=1)—-8EWI) —1) e RU{—o0}.
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Thus t is concave and finite on [0, 1].
Non-degeneracy of ;« and the moments of || u]|.

Theorem 1 (Non-degeneracy). (i) If t/(17) > 0 then P(u # 0) = 1 and
EY)=1 (i) IfP(u#0)>0thenP(u#0)=1EY)=1,andt’(17) > 0.
If, moreover, E((1 + W)|log W|2+”) < oo for some y > 0, thent'(17) > 0.

Theorem 2 (Moments of positive orders). Leth > 1.
() Ift(h) > 0 then 0 < E(Y") < 0. (ii) If 0 < E(Y") < 00 then t(h) > 0.

Remark 2. [Ma6] conjectures that y is non-degenerate if and only if T/(17) > 0,
and that if i is non-degenerate then for 4 > 1, E(Y "y < 0o if and onlyif r(h) > 0.

The necessary and sufficient conditions for non-degeneracy and finiteness of
moments of positive orders are similar for MPCP and CCM, but, by design, are
less restrictive for MPCP. The following proposition characterizes the divergence
of high moments.

Proposition 1 (Divergence of high moments for MPCP and CCM). (i) Assume
that w is non-degenerate. There exists h > 1 such that E(Y") = oo if and only if
P(W > 1) > 0 (this is independent of §) or P(W < 1) = land E(W) < 1 —1/6.
(ii) Assume that E(W) = 1 and the CCM constructed with W is non-degener-
ate. There exists h > 1 such that E(Yé’o) = oo if and only if P(W > b) > 0 or
P(W =b) > 1/b.

Theorem 3 (Moments of negative orders). Assume Y is non degenerate and fix
a > 0.Then E(Y™%) < oo holds if and only if E(W™%) < oo.

Multifractal analysis of ;.. New definitions are needed.
For a function f : R > RU{—o0}, define f* : & € R > inf,cr(ag — f(q)).
Fort € [0, 1] and r > 0, denote [0, 11N [t — 5, + 5] by I,(¢), and fora > 0
define

1 I(t
Ey ={t €[0,1]; lim M —
r—0+ log r

o}.

The multifractal analysis of u computes the mapping o +— dimy E, on an inter-
val as large as possible, where dim g stands for the Hausdorff dimension. Since the
geometry of © does not depend on a particular b-ary tree, the logarithmic density
in the definition of the E,’s is not expressed via b-adic intervals as for CCM, but
via centered intervals.

Theorem 4 (Multifractal analysis). Assume that t is finite on an interval J
containing a neighborhood of [0, 1], and that T'(1) > 0. Define J' = {q €
Int(J); 7(9)g — t(q) > O}, I' = {t'(q); ¢ € J'}, ainr = inf(I) and asyp =
sup(I) ([0, 1] c J', I’ C]0, oo[, ajng > 0). With probability one:

(i) Foralla € I, dimy E, = t*(a).

@) Ift* (atint) = Othenforalla €10, ainel, Eq = 0. Ifagyp < 00 and T*(otsyp) = 0
then for all o €]atsyp, 00[, Eq = 0.
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2.2. Additional definitions and a principle of self-similarity

X ~ X’ means that the two random variables X and X’ are identically distributed.
If B is a Borel subset of H = Rx 0, 1] with A(B) < oo, define

o= [] Wum.
MeSNB

If 7 is a compact subinterval of [0, 1], then |/| stands for its length and we
define
T ={(t, ) e H; 0 <A< |I|, inf(I) — A <t <sup(l)+ A},
T!={(t,x) e H; |[I| < i <1, t € [sup(I) — A, inf (1) + 1]},
B, ={(t,») € H; Il <% <1, t € [inf (1) + yA, sup(]) + yAl}, y € {—1, 1},
I I I
B' =B’ UB!.
Moreover, f; the affine transformation on R which maps inf (/) onto 0 and sup(/)

onto 1.
Then for all 0 < € < 1 define ,ué as the measure determined on I by

d/‘l/l _ _
dﬂg (1) =&V=D 1_[ Py (1) =&*V—D Qc.in\ein -
MeSn{ell|<r<|I]}

Theorem 5 examines the strong similarity between the u,’s and the u,’s (see
Sect. 2.1).

Theorem 5. For every non-trivial compact subinterval I of [0, 1] one has almost
surely forall 0 < & < |I|

pe(l) = |I|6(V_l)/QC|I\(I)M£/|I|(dt)=|I|6(V_1)QT’/QB’ﬂC\I\(I) ey (dn).
1 1

Here Qpi and t — Qpincy 1) are independent of one another and of the s,

and, as ¢ — 0, the family (,ug)oqfl converges a.s. weakly to a measure ji" .

TI

B!, By

T,

0 inf (1) sup(/) 1 t

Fig. 1. Illustration of the sets in H defined early
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Moreover, the following properties hold for all f € C(I):
(i) fl f@) [,Lg(dt) ~ || f[O,l] fo fl_l(t) we(dt) for all ¢ €10, 1. In particular
Nl ~ 12 el G0) fy £ @) ! @) ~ 11 figy, f o f7 () (). In particular
I~ 1] el

Proof. The equality pe (1) = |1]°V—D f[ QCm(t),ug/m(dt) follows from the re-

spective definitions of (¢ and 1t./|7|. Because I C Iy forall M € SNT!,itfollows
that f; QCm(t)Mg/m(dt) =0 [ QBInci (1) /‘g/|1|(dt)-

The random variable Q7 and the stochastic process t = Qpinc; () are in-

dependent of one another and of the . ’s. Indeed they involve mutually disjoint
subsets of S, namely, S N T!. SN B!, and SN T7.

The reason for a.s. weak convergence as ¢ — 0 is the same for the family

(,ué)oqs 1 as for (ie)o<e<1 restricted to any compact interval.
(i) Fix ¢ > 0. To show that [, f(t) ul(dt) ~ |1| f[o’” fo f,_l(t) e (dt) for every
f € C(I), it suffices to show that the same holds for the function f = 1; for
every subinterval J of I. Indeed, every f € C([) is the limit in || ||oc norm of
piecewise constant functions. Fixing such a J reduces the problem to showing that
WL () ~ e (f1(D))-

f1 is the restriction to the real line R of the similarity f 7 = hy o0 on the plane
R2, where h,1) is the homothety with center (0, 0) and ratio |/ |’1 , and 0; is the hori-
zontal translation by the vector (— inf (7), 0). Inspired by [Ma2], we use the property
that for every subset F' of H such that f, (F) C H, A(F) = A(fI (F)). Together
with the equality f,(Tm{(t,/\) e H; A>¢lll}) =ToN{E, A) e H; A > €},
this property implies that the point process fI(S NTyN{,A) € H; L > ¢g|l|})
has the same distribution as S N Tjp,1] N {(t,A) € H; A > ¢}.

Consider the measure v, constructed on [0, 1] like the restriction of . to [0, 1],
but with the pairs (fI(M), Wuy), for M in SNT; N {(,A) € H; A > ¢|l|}, in-
stead of the pairs (M, Wy), for M in S N T,y N {(t, X)) € H; A > &} We
see that v (f7(J)) ~ we(f1(J)). Moreover, the change of variable ¢ = f;(¢) in
fl 1;() ,ug (dt) yields /Lf:(J) = |[I|ve(f1(J)), since, by construction, for every
tel

dul N — dvg .
¢ D=7 U1®).

(ii) The measures [LI and p are, respectively, the weak limit of (/,Lg)()<851 and
(e)o<e<1 as € — 0. It follows that (i7) is deduced from (i) by letting ¢ tend to 0.

Now define Y, = ||/,L§1/1|| for all s > 1. By construction, (¥, Fi/s)s>1 is a
right-continuous positive martingale with mean 1 that converges to Y.

If 1 is a non-trivial compact subinterval of [0, 1], define Y; = ﬁ lee” || and, for
all s > 1, define Y, ; = ‘}—‘Ilu{/sll-

The measure p will be represented as the image of a measure on the boundary
of an homogeneous tree.
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2.3. Measure on a tree associated with |

Given two integers b > 2 and m > 0, denote by A,, the set of finite words of length
m on the alphabet {0, ..., b — 1} (A9 = {€}). Denote U;’fzo A, by A.Fora € A,
the length of a and the closed b-adic subinterval of [0, 1] naturally encoded by a
are, respectively, denoted by |a| and I,.
Forn > landa = (a1, ...,a,) € Ay, denote (ay,...,a,—1) by al(n — 1).
Define 0A = {0,...,b — I}N. The set A acts on the disjoint union of A and
dA by the concatenation operation. For a € A, let C, denote ad A, namely, the
cylinder generated by a. Denote by A the o-field generated by the C,’s in 9A.
Denote by 7 the mapping t = (t1,...,4,...) € 0A > D . t;/b' €0, 1].
Denote by 7 the measure on (dA, A) such that for all a € A, £(C,) = b4,
If p is a non-negative measure on (3 A, A), the measure D,,.p will be defined,
d(Dy.p)
dp
verges a.s. weakly to a non-negative random measure D.p. Moreover, by [K1], the
operator L : p — [E(D.p) on non-negative measures on d A is a projection.
Define ft = D.¢ and ji,, = D,. foralln > 1. By construction, 4 = ftomw ™
and ppn = fiy o ! forn > 1.
The following three relations, (1), (2), and (3), will prove to be fundamental.
By Theorem 5, for alln > m > 1

forn > 1, by ) = b_n(S(V_l)Qch—n (z(t))- The sequence (D;.p),>1 con-

1

Yb” = Z Mb*”(la) :bima(v*l) Z QTIH-/I QBIaﬁCb,m(t) /,Lll;,’,,,n(dt), (1)

acAy, acAy

i(Ca) =b""" D0y, /1 Qplanc, iy W@d1) VaeA, ()

(Proof: i(C,) = lim,— i1, (C,) since the space d A is totally disconnected; more-
over, fin(Cy) = pp-n(ly) foralln > 1, and ple({tyy; M € S, Ay = b1} =0
a.s.)

Y = Z f(Cg) = b~mV=D) Z QT/[,/ QBlnCym () wladr)y vm > 1.
Iq

acA,, acA,

3
3. Proofs of the main results
3.1. Basic lemmas

Lemma 1. Fix B as a Borel subset of H such that A(B) < 00, g € Rand 8 > 0.

(i) E(Q%) = eABEWH-D),
(ii) E(Q log Q) = A(BYE(W? log W)er ®EWI=D if E(Wi|log W) <
Q]
(iii) E(Q%llog Opl) < A(B)E(W|log W|)erBEWH-1),
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(iv) Denote by B the integer such that < B < B + 1. There exists a constant
Cg > 0, independent of B, such that

E(Qs|log 05l%) < Ca(1 + AB)PF2(1 + V)PHEW|log W|F)erBV-D

Proof. We begin by proving (iii) and (iv). Conditionally on #S N B = k > 1,
we have Qp = [[;_; Wi, where the W;’s are i.i.d. with W and independent of S.
Hence, by using the subadditivity on R of the mapping x > x# when0 < g < 1
and its convexity when 8 > 1, forevery § > O and ¢ € R we get

k k

E(Q%llog QP [#S N B =k) < E( [W/1)_ llog WillF)
i=1 i=1

< kmxCEIREWA log WPV,

where V, = E(WY). Since P#S N B = k) = e’A(B)%, taking the uncondi-
tional expectation yields

A(B
E(Q%|log 051) < E(W|log W|F)e™ A<B>Z( B masctp et
k>1

and in the particular case f = 1, we get (ii7). To get (iv), put ¢ = 1 and define
p=B8+2(p>max(l, B))and x = A(B)V. We have
(k+ 1P

E(Qpllog 05l") < E(W|log WIP)e " A(B >Z ‘<k'+‘1>7

k p k+1)?
Define Cg = max( sup k+D k!, sup (k+1) ).
o<k<p—1 (k+1)! k=p k+Dk...(k+2—p)

(k+ 1P xk
<Cg gy ———
Z(k+l)' Z + "Z(k+1—p)!
< Cpge™ + CpxP~ 1§ — <c,3(1+x)P*1ex

k>1

(p—1=1).Since 1l +x < (1 + A(B))(1 + V), it follows that

E(Qpllog Qsl%) < Cp(1 + AB)F2(1 + V)P EW|log W|F)er B V=D
Assertion (ii) follows from the fact that if K > 1 then
E(Q% log Qp#SN B =k) =E(] [W/[D_log Wi])

= kE(W9log W)V,

Then (i) follows by a similar computation or simply by integrating the equality
given in (ii).
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Lemma 2. Fixt € R. For everys > 1, A(Cy/5(t)) = 8log s, and (Q1/s(t))s>1
is a right continuous martingale with respect to (F1/5)s>1, with expectation 1.

The verification, left to the reader, uses Lemma 1(i) with B = Cy/s(t) and g = 1.
If B C H and [ is a non-trivial compact subinterval of [0, 1] and g € R, we
define

mp.1 = inf Opncyw)> Mp.1 = sup QBncyw)>
uel uel

v1(q) = lz<o) m‘;,’l + 1ig=0) M;Igl,l'

Lemma 3. Fix a non-trivial compact subinterval I of [0, 1].

(i)(a) A(TT) = 8(log ﬁ — 2 = [1D); (B) ABy) = 8(1 — |I|). (c) For every
tel, A(ByNCy(t)) = A(Bp)/2.

@@i) Fix B > 0. If E((1 + W)| log W|’3) < oo then there exists Cg > 0 independent

P
of I such that sup,.; E <Q|1|(t) llog 11171 J; Q1 ol ) < ¢y

(iii) (a) E(Mpi ;) < Emax.Wn)-1);

(b) E(sup, e v1(q)) < S Emax(L W E LW EN) 1) 5 opory compact subinter-
val K of R.

Proof. (i) The computations are left to the reader.
(ii) Fix t € I and define

B
T =

-1
IOg |I| '/; QBIQC”‘(I)QC‘”(H)Q(BI\C\I\(T))OC\II("‘) du

It follows from the definitions of mp ; and Mp  that

-1
[T msincyw.amsncyw. <! /IQslncm(mcm(wQ(B'\cma))mcm(u)d“
ee{—1,1}

= l_[ Mpginc, .1 MBIc @)1
cel—1,1}

Hence, Tl < 4ﬂ Zae{fl,l}(Tz’S + T3,8) with
Tr,e = |log mBgmcm(t),ﬂﬁ + |log MBgmcmmJ'ﬂ
T3, = |log msg\cm(z>,1|ﬁ + |log MBS’\Cm(t)J'ﬂ'

Therefore

B
T:=Q0;®)

10g |I|71 /[ QBlﬁC|”(M) du

= |1|8(V7])Qcm(z)T1
<Ty+Ts
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with

I, = 4ﬂ|1|8(v_1)Qcm(z)\Bl[QBlmcm(z)(Tz,A +1,1)]
Ts =481V "D Q¢ (T3, 1 + T3,1).

Then the identity |I|5(V*1)E(QC”|(,)\ 8DE(Qpinc, ) = 1, together with the
fact that the sets Cyy(¢) \ B! and B n C;((¢) are disjoint, as well as C|;|(¢) and
B\ Cyy(1), yield

1

E(T) < 4f[—
= []E(lemcm(;))

E(Qpinc ) (T2.—1 + T2,0)) + E(T5, -1 + T3,1)],

where by (i)(c) and Lemma 1(i) (]E(QBIQC‘”(,)))*l = ¢ 3U=DV=D/2 js bound-
ed independently of /.

It remains to show that E(Q BINC, ”(,)TQ,S) and E(73 ¢) are bounded indepen-
dently of I and ¢ for ¢ € {—1, 1}.

First, we estimate ]E(QBlmcl”(t)Tz,_l). Conditionally on #S N B N Cnt) =

k> 1, we write SN B/ N Ci1(t) = {N1, ..., Ni}. Conditionally on #S N Bil N
C(@) =1e[l,k](fkorl =0then T, _1 = 0), we can assume that Ny, ... N; €
Bil and ty; + Ay, < -+ <ty + An,. Then, for every u € I, we have

!
QBilﬁQu(f)ﬁCm(u) € {1_[ Wy 1 <j<Il}U{l}
=]

according to whether or not u € ﬂf.: j Iy, for some 1 < j <. This implies that

k
To—1 < 2%"XOF7D S Tl log Wi IF.

i=1
Consequently for ¢ € {—1, 1} and k > 1 we obtain

E(Q pincy i Tre#S N B N Cipy(1) = k) < 2™ OF-DE

k k
X < l—[ W, Z | log WNJVS)
j=l1 j=1
= 2" LAEW | log W) VAL
Similarly we obtain
E(T3:[#S N B'\ C1(1) = k) < 2k™*T-PE(| log W|P).

Since A(B' N C((1)) and A(B! \ C|1/(¢)) are bounded independently of I and ¢
(by (i)(b)), taking the unconditional expectations in the previous inequalities (as
in the proof of Lemma 1) yields the conclusion.

(iii)(a) One obtains E(Mp: ;) < (eA(Bil)(E(ma"(l’W))_l))2 as follows. Use the in-
equality Mg: ; < MBL,I'MB.’,I andtheequalityIE(MBil’I.MB{J) = (E(MBi,,I))Z
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(B—1 and Bj are disjoint, and orthogonally symmetric with respect to the line
{t = (@nf(I) + sup(Z))/2}). Then use computations very similar to those done
in (ii) to estimate E(QBIQC‘”O)T;E): conditionally on #S N Bil =k > 1and
SNBL ={Ni, ..., N}

k
My p= sup []Wa < [max(Wy, 1.
-1 Lc{l...k}jop i=1

This yields
E(MB£1,1|#S N Bil = k) < [E(max(W, 1))1¥.

This estimate also holds if &k = 0. Taking the unconditional expectation yields
E(Mgi ) < eMNBLDEmax(LW)=1) - a¢ A(BL)) < 8/2 by (i)(b), we have the
conclusion. 3 y

(ii7)(b) Notice that sup,c g v1(q) < Mp1 ;, where Mp:  is defined as Mg ; but
with W = Winf(K) 4 wsup(K) jnstead of W. Conclude by using (iii)(a).

Lemma 4. Fix b, an integer > 2, and q € R such that E(W?) < oo. There exists
Cy = Cy(W) > 0 such that forn >m > landa € Ay, :

(D)(@) 1y (o) < wgU) Yo, With wy(Ig) = b=V =DIQY, v, (g) and
E(wq(la)) = Cqb_m(t(q)—H);

(B) Yuen, B, (1)) < C,b ™ @DEYY, ,);

(©)ifg = 1 then E(Y}) = b~"T@e3(1=b"a(V=D-EW)-DIg e

(ii)(a) 19(Ca) < wg()Y] ; (B) X ycn, B(A1(Ca)) < Cyb " @DEYY).

Proof. Fixn >m > landa € A,,.
(i)(a) By Theorem 5

q
— — 1o
/J,Z_n (Ia) = b qu(V D Q(';Ia </ QBlaﬁbem (1) H’bm—n (dt)> .
I

Hence, ,uz_,,(la) < wq(la)Y;’,,_m‘ ;,, follows from the definitions of y;,(¢) and
Ybnfm’la.

We have E(wy(l,)) = b~mHV=DIEQT, YE(y;,(¢)) since QF, and
v1,(q)) are independent. Moreover, by Lemma 3(i)(a) and Lemma 1(i) applied
with B = T'e,

qy_ _S1_p—m qy_
E(Q(;wla) — bmﬁ(E(W ) l)e 5(1=b YWEWT) l)’ (4)

and by Lemma 3(iii)(b) applied with K = {g}, E(y;,(q)) < e®Emax(1L.2WH)=1)
Therefore

]E(wq(la))Ee—%(l—b””)(E(W‘f)—l)eS(IE(max(l,2W‘1))—1)b—m[q(1+8(V—1))—3(E(W‘1)—1)]

< Cq p—mE@+D

8 —m
where Cq = e&(E(maX(l,ZWq))—l) SUP,,> | e_i(l—b )(E(Wq)—l)'
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(i) (b) Follows from (i) (a) and the independence between wy (1) and Ypn-m .
(i)(c) The super-additivity of x > 0 + x7 applied in (1) yields

q
E(Yh) = Y b V=UEQI, E <[ /1 QB1anc, w) u;“mn(dt)] ) Q)

acA,

The Jensen inequality applied in T = E([fla Opla NCpm (,)ué‘fn,ﬂ @] Ugce<p—m
F;) yields

q
I
T = (/ E(QBlclﬂCb,m(tﬂ U0<8§b7m FE)Mbln—n (dt))
I

q
= </ E(ngmcb_,,l(;))u,ﬁ%fn (dt)>

1o
— (e%(l—b_’")(V—l)b—mYbnim,la)q
by Lemma 3(i)(c) and Lemma 1(i) applied with B = B N Cj-n(t) and g = 1.
Then, by using (4) and the previous computation in (5), we get

8 —m
E(an) > Z p=mad(V—1) pmsEW)—~1) ,—§ (1=b~")EW)~1)
acA,,
S(1—b=™mq(V=1)1,—mgq q
X e2 b E(Yb —m)9

i

and the conclusion follows.

(ii)(a) and (ii)(b) are deduced from (i) (a) and (i) () by letting n tend to co.
The random function f; , , involved in Lemma 5 is defined in the proof of

Theorem 1(i) in Sect. 3.2.

Lemma 5. ()E(f;,,,(17)=b"" (—m log (b) t'(17) + E(Yp-n log Ypu-m)).
(i) Z E ub%_,,(la),ué_,, (Ia/)) <5C+Cb" (E(Yb%,,_m))zfor some C > 0
ata' e Ap
independent of m and n.
Proof. (i) Differentiate f, , , at 1~ yields E(fa”n’m(l_)) =T + T> + T5 with
Ti = —mlog (B)[8(V — DIE(fanm(D) = —b""mlog (b)5(V — 1),
T, =b""""DE ( /1 E(Qc¢, - (1) 102 (O, ) .1, (dt))
=b""mlog (b)SEZWlog W),
T3 =b""V"VE <<log(Ybnm,1a> — mlog (b)) /1 E(Q¢, )i, (dr))
= b " (E(Ypr-m log Yyn-n) — mlog (b)), '

by using Lemma 1(i) and (ii) with B = Cj-n(t) andg = 1. As /(1) = 1 +8(V —
1) — SE(W log W), we have the conclusion.
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(ii) By the Cauchy—Schwarz inequality and Lemma 4 (i) (a), for every (a, a’) € Ai

we have
1

1 _ 1 1
E <(/"Lb” (Il/l):u‘bf" (I()/)) 2) = Cl b " E(szn—m’[a szn—m’[a/)'

Moreover, Yju-m ; and Yyn-m ; , are independent when Ty, N 77 , = §J, otherwise
1 1 “ “

wehave E(Y,,_,, ; Yyon ;) < 1 since E(Yy-n) = 1.As#{a’ € Ay; Ty,NTy, #

@} < 5 forevery a € Ay, we get

1 1 1
Yo By Uy () 56" x Cro™" + 52" x C1 b~ (E(Yy, )%
a#a’ €A,

The probability measures PP; involved in Lemma 6 are defined in the proof of
Theorem 1(ii) in Sect. 3.2.

Lemma 6. [f7/(17) = 0 and E((1 + W)|log W|2+y) < oo for some y > 0 then
foreveryt € [0, 1], P;(limsup,_, o, Ypm = 00) = 1.

Proof. Fixt € [0, 1]. For n > 1, denote by I,,(t) the b-adic subinterval of [0, 1]
of the n' generation which contains . One has Yyr = |[pp—n|| = pp-n(1,(¢)) so it
suffices to show that P; (lim sup,,_, o pp—n (1,(2)) = 00) = 1.

Define

Ry, () = —log ch_,,(;)\rln(r)
Rz’n(t) = lOg b" QB’"(’)ﬂCb—n (u)dl/i
I (1)
We have
log pp—n (1 (1)) =1og Qp-n(r) —nlog(b) + Rin(t) + Ron(1),
so the conclusion results from the two following properties:
1 -n(t) —nlog (b
(1) P,(im sup og Qp—(t) —nlog(b)
00 (nloglogn)!/2
random variable X; = log (Qy,—«(t)/Qp-«-1 (t)) — log (b). By construction, the
Xy are i.i.d. with respect to P, and by Lemma 1(i), (ii) and (iv)(¢ = 1, B = 2)
applied with B = Cp,-1 ()

Ep, (Xx) = Ep, (X1) = E(Qp-1 (1) log Q)-1(1)) —log (b) = —log(h)7'(17) =0

and [Ep, (X,%) < 00. Moreover Ep, (X,%) > 0, otherwise ]P’(chfl(,) =
p!H3V=Dy — 1 implying that W = 1 a.s. and 7/(17) = 0. One concludes
using the law of the iterated logarithm.
Ry, (t Ry, (t
2) P,( lim | l,n( )| +| 2,n( )|
n—>o0  (nloglogn)l/?
(|R; . (t)|F17) is finite. We have
Ep, (IR ()1*7) = E(Qp-n (1)]10g ¢, 7|77
= b """ DEQrn0)
X]E(ch,,, (O\TIn(®) | log ch,,, (O\TIn(®) |2+y),

and Ep, (|Ry (1) 2*7) = E(Qy-n (0] log b" [} () @ pinirnc, . aodul>7).

> 0) = 1: for every k > 1 define the

= 0) = 1: this holds if SupiE{l,z},nZlEPt
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These expectations are uniformly bounded over N*. This results from
Lemma 1(i) applied with B = T and ¢ = 1 and Lemma 1(iv) applied with
B = Cyn(t)\ T"® and B = 2 + y , together with Lemma 3(ii) applied with
B=2+y.

Now we consider the assumptions of Theorem 4. Fix an integer b > 2. For
g € J', let ji; be the measure on (A, A) obtained a.s. as the weak limit of

dii q - .
(flg,n)n=1, where Z%’" (t) = p— 8 EWH-1) Qléb—n ()" The total mass of i, is

denoted by Y, and for every a € A, Y, 1, denotes plal ||/1,§“ | and is a copy of Y.

Lemma 7. With probability one

(i) Foralla € A, the sequence of functions (q > [Lq.n(Ca))n>1 converges uniform-
ly on the compact subsets of J' to q +— [i4(Cy), which is positive. Consequently
the measures fig, q € J', are defined simultaneously and have dA as support.

(ii) For every q € J', for fig-almost everyt = (t1, ..., ty,...) € 0A

lim log llq(c(tl ..... )

> %7/ )
Jim =St 2 (7 @)

Proof of (i). The next few lines will assume the following property, (P), whose
validity will be proven momentarily. (P): there exists a deterministic complex
neighborhood of J’, to be denoted by V), such that for every a € A and n > |a|,
the mapping g € J' > fi4.,(Ca) = Za’eA,,_m fq.n(Caar) possesses the analytic
extension

1

aeA,_nm aa

Moreover, given a € A, for every compact subinterval K of J’, there exist three
constants 4 > 1, ¢ < 0, C > 0 and a complex neighborhood U of K, such that for

alln > 1, sup,yy E(Wﬁi)l @) — sV (2)|") < ChirtDe,

For every a € A, the Cauchy formula applied as in [Bi] gives a.s. the uniform
convergence of (¢,§“>)n>m on the compact subsets of a complex neighborhood
of J/, and so the one of (g — ftg,n(Ca))n=1, on the compact subsets of J/, to
q +— [i4(C,). This happens almost surely simultaneously for all the a’s in A
because A is countable, so the measures [i, are defined simultaneously.

To see that ¢ — fi,(C,) is almost surely positive on J' for every a € A, so
that the support of the fi4’s is 9 A, adapt the proof of Corollary 5 (ii) (8) of [B2]
by using Theorem 5 and Eqs. (2) and (3).

Proof of (P). J’ is an open subinterval of J. Consequently, there exists a deter-
ministic complex neighborhood V of J’ so that the mapping z > E(W?) is defined
and analytic on V. Moreover, for every n > 1, the piecewise constant function
tel0,1] — chb_,. ® is almost surely defined for all z € C and depends analyti-

cally on z. This implies that for every a € A the w,ﬁ‘”, n > |a|, are all defined and
analytic on V. The fact that i,(Cy) = 1//,5“)(61) on J' follows from the definition
of fig.
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Fixa € A. Forevery zin V, ‘/fr(wrl (z) — I/frga)(Z)

_ —n8E(WH)—1) —SEW)-1) )2 _
= ) b ¢, lb” QC, i O\Cynny — 1141

1,
’
a'€Ap—py a4

(6)

Let the b-adic intervals of the n'" generation involved in the previous sum be
numbered from 0 to 5" =™ — 1 as they appear on the real line, and denoted by J;’s,
0<k<bd"™™,

Fort € Ui:om_ljk, define

{un(Z, 0 =b"EWITDOL
_ 1= 8EWH=1) Hz _
Un(Z’ t) = b ch—(n-#l)(t)\cbﬂl 0] 1.
Then fori € {0, 1,2} and ¢t € Jy define
3k+i 3k +i
Ni.= >  wpGt+—r T U@t ).

0<3k+i<b—m
It follows from (6) and a Holder inequality that for 2 > 1,
E(|y, 9, () — v @1 < 3" o)™ 1/ > E(LiG.nMde. ()
Jo i€{0,1,2}

For each t € Jp, in I';(z, t), the v, (2, t + %)’s are mutually independent since

the Ty, ;s are pairwise disjoint. Moreover, they are by construction of mean 0 and
independent of the u, (z, t + %)’s. Then, it follows from Lemma 1 in [Bi] that

.\ |h
E(|F,»(z,r)|”)§2h > E(un (Z’Hiijml) )

0<3k-+i<bn=m

3k +i\|"
x]E(vn (z,t+ pr— ) )
for every 1 < h < 2. By using Lemma 1(7) with |W?| instead of W and B €
{Cpen (D) \ Cpon (1), Cpon (1)) we get

E(|un(z, )" E(|va(z, D) < 2"peFDIGEH )

independently of ¢, where 6(z, h) = —hS[E(R(W?)) — 1] + 3[E(|W2|h) —1]
It follows from (7), (8), and (9) that (with Cy, ,, = 12"p=m+DU=h))

E(y), (@) — D @I") < Cp b HDUIH0GE)

Finally, if K is a compact subinterval of J’, a study of function using the def-
inition of J' yields & €]1,2] and a complex neighborhood U of K such that
c=sup,.y 1l —h+6(z,h) <.
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Proof of (ii). Define Eyns = (t ¢ 94; 28H4 1)
—nlog b
g € J',e > 0andn > 1. It suffices to show that for every compact subinterval K
of J/ and every ¢ > 0, a.s. forevery g € K, Y, .| flg(Eq ne) < 00.
Fix such a K and ¢. For every > 0 and n > 1, by definition of E, , - and by
Lemma 4(ii)(a), we have

< t*(t'(¢)) — ¢} for

fig(Eqne) < D figT(CHLT @0 < £ (q)

acA,

with fi.6(q) = 6" TN [sup y;, (14 p)g)] b~ TEPAHEWD=D)
ach, q'eK
(071, Yq1)' .

Then, using Lemma 1(7)(i7) and Lemma 3(iii)(b) together with computations
patterned after those in the proof of Corollary 1 in [B2] lead to the following con-
clusion: for 7 small enough, there exist two positive constants Cx > 0 and Cy > 0
such that

d _ /
V=1, sup E(fup.:(q) + sup E(|— fuy.e(@)]) < Cxnb "k.
qgek gek dq

This implies that a.s. the series an 1 fn,n,e(q) < oo converges uniformly on K.

3.2. Proofs of the results in Sect. 2.1

Proof of Theorem 1(i). Fix an integer b > 2.
Define ¢ = E(Y) (< 1). A being invariant by horizontal translations, the defini-
tion of fi implies that, for every n > 1, E(x(C,)) does not depend upon a € A,,.
Consequently, (3) yields E(ii(Cy)) = cb™l4l = cl(C,) for every a € A. In the
notations of Sect. 2.3, this implies that L(f) = cl. Moreover, ¢2 = ¢ since L is a
projection.

Moreover, as W > 0, by using (3) with b = 4 and m = 1 we see that {Y =
0} C {u’ =0, w3 = 0}. By Theorem 5 this implies that {Y = 0} C {Y;, =
0, Y5, = 0}, where Y}, and Yy, are copies of Y, and Y}, and Y;, are independent
since Ty, N Ty, = @. It follows that P(Y = 0) < (P(Y = 0))2. Finally, all that
remains to prove is P(Y > 0) > 0.

Fixn > m > 1 two integers. By Lemma C of [KP], if # < 1 is large enough,
expression (1) yields

h h
Yoo = > ) —A—h)y Yl Ui, ().

acA,, a#a €Ay

Moreover, Theorem 5 and the Jensen inequality yield ,uz,,, (g) = fan.m(h), with

_ —1)yh—1 —m(h— Iq
Janm() =7V =DYRZL pmm =D fl O, (1) Hynn (d1).
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Write

E(YE) = Y ueu, EGamnm(h)

h h
P < Y EwiaUoup. ().

aFa’ €A,

By letting / tend to 0 and by using the fact that E(Yy») = ZaeAm E(fanm()) =1
and Lemma 5, we get C > 0 independent of m and n such that

m 10g (b) T/(li) + E(Ybn log Ybn) — ]E(Ybn—m 10g Ybnfm)
1
<5C+CH" By ))

By the martingale nature of (Ypn),>1, E(Ypn log Ypn) — E(Ypn-m log Ypn-m) > 0.
1
Hence, m log (b) T/(17) < 5C + Cb" (E(Yhz,,,m))z. Moreover, as T/(17) > 0, we

1
can choose m tohavem log (b) t/(17)—5C > 0. Consequently inf,> ]E(sz,,) > 0.
We conclude as in the proof of Theorem 1 in [KP] for CCM.

Proof of Theorem 1(ii). (i) shows that P(u # 0) > O implies P(u # 0) =1 =
E(Y). Fix h €10, 1[. For all m > 1, we have Y" < ZaeAm i"(C,) by (3), and
by Lemma 4(ii) there exists C > 0 such that E(Y") < C.b6~*WE") for all
m > 1. So if Y is non-degenerate then t (k) < O near 1~ and t/(17) > O since
(1) =0.
Now assume that t/(17) = 0 and E((1 + W)|log W|2tY) < oo for some
y > 0. For every t € [0,1] and n > 1, define the measure P; , on Fj-» by
dP; ,
dP
expectation one. So IP;, the Kolmogorov extension of (IP; ,),>1 to 0 (Fp—n, n > 1),
is defined, and P; (limsup,,_, o, Yp» = 00) = 1 by Lemma 6. This yields P(Y =
0) = 1 by adapting the proof of Theorem 4.1(i) of [WaWi] for CCM.

(w) = Qp—n(t)(w). By Lemma 2 (Qp-n(t), Fj—n)n>1 is a martingale with

Proof of Theorem 2(i). It suffices to show that (Y31),> is bounded in L norm.

Number the intervals I,, a € A, (here b = 3) as they follow one another
from O on the real line, and write {I,; a € A,,} = {J;; 0 < i < 3™}. Then, for
i €{0,1,2}and n > m define

Zin= Y  nao(Jsp).

0<3k+i<3m

By construction the Z; ,,’s have the same distribution, so E(Y;’,,) < 3"1[*3(28 -

Let / be the integer such that h < h < h+1 a}nd use the sub-additivity of
x > xMOHD on R, to write Zé”n <[ Z ué’fﬁhﬂ)(lgk)]h“ and obtain
0<k<3m—1

. h
Jk7 =
E(vg) <3" Y B Us) +3") aj . BC ] syt Un,
0<k<3m-1 0<k<3m—1



Multifractal products of cylindrical pulses 427

where in the last sum the j;’s are < h, jo 4 - - - + Jam-1_1 = h+1,j; >0and
Za./o---.i3m—l,1 — 3m=D(h+1) _ 3m—1_
On the one hand, given such a jo ... jsm—1_; we have (with the notations of
Lemma 4)
jk,;hj i jk,;hj
[T wom = [ o [T vt

0<k<3m-1 0<k<3m-!1 0<k<3m-1
where the Y3i-m j, s areiid. (Ty, NTy, =Pifk # k") and are also independent

P
of ]_[05k<3m,1 (w1 (Jgk))jk h+1, Then, Lemma 4(i)(a) and computations similar to
those made in the proof of Theorem 2 of [KP] yield a constant C, > 0 (independent
of m and n) such that

. h
Jk = ~ ~
El [T s @so| = 3 c®ORpl i,
0<k<3m—!

On the other hand,

33T B () 371G RS
0<k<3m—!

by Lemma 4(i)(b) and the submartingale property of (Y;ﬁl )n>1. Since for a fixed
m large enough we have 3h_1Ch3_i’”(h) < 1 (zr(h) > 0), we conclude that
sup,>; E(Y. ") < oo by induction on £, as in the proof of Theorem 2 in [KP].

Proof of Theorem 2(ii). Fix an integer b > 2. By letting n tend to co in Lemma
4(i)(c) we get E(Y?) > p=mt ) o3(1=b~" (Y =D=EWH=D)Eyh) for all m > 1.
This yields t(h) > 0.

Proof of Proposition 1. (i) Due to Theorem 2 and the concavity of the function
7, the divergence of high moments holds if and only if limj_, o T(h) = —oo0. If
P(W > 1) > 0 it is immediate that limj, . t(h) = —c0. f P(W < 1) =1
then S(E(Wh) — 1) is bounded over R and limjy_, » T(h) = —oo if and only if
I+ 8EW)—-1) <0.

(ii) See Theorem 3 in [KP].

Proof of Theorem 3. TE(W™%) < cothenE(Y %) < oo : write (3) withb = 4 and
m = 1 and define B; = 47°V="D=1Q 1 my;, , fori € (0,3} (with the notations
preceding Lemma 3). We have

Y > BoYy, + B3Yp,

where Yy, ~ Y5, ~ Y, and Yy, Y, and (Byp, B3) are mutually independent. More-
over E(By %) < 00 (use Lemmas 1 and 3) and By ~ B3. Consequently the approach
[Mol] uses for generalized CCM yields E(Y %) < oo.
Conversely, by using (3) with b = 2 and m = 1 we get

Y <2700 [Qrio\rti Mty 1y + Qrinrio Mpn 1 1(¥1y + Yny),
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the random variables Q71,7115 [Qrio\ 1 Mpio 1, +QriyrioMpn g 1and Yy +Y1,
being mutually independent. Hence, E(Y ™) < oo yields E[(Qrrnrn) ] < 00
and as A(T'0NTN) > 0, Lemma 1(i) gives the conclusion.

Proof of Theorem 4. Theorem 4 is a consequence of Proposition 2.2(a) of [F] and
the following Propositions 2—4.

For g € J', let 11, be the measure obtained as 1 by replacing the Wy;’s by the
Wf{,,’s.

Proposition 2. With probability one: (i) the measures |14, q € J', are defined si-
multaneously and have [0, 1] as support; (ii) for every g € J', for pug-almost every
log Mq(lr(t)) - log (1, (t)) _

> 1*(t'(¢)) and lim ————2 = 1/(q).
log r r—0

t € [0, 1], lim inf
r—0 log r

Proof. (i) Direct consequence of Lemma 7(i) since g = fiq4 © x L

log g (Ur (1)) .

(i) Result on lim inf, _, ¢ Togr - fix an integer b > 2 and fore > 0,9 € J’

and n > 1 define

log gy (1) _

Fq,n,s ={t €[0,1]; log = =

T (7'(q) — e}
It suffices to show the property (P’): for every ¢ > 0, a.s. for every g € J/,

Donz1 Mg (Fgne) < 00.
From the covering |, Fyme I (t) of Fy n e, we extract two finite unions of

intervals, namely | J; J; and | J i ]’., so that two distinct J;’s or J J{’s have at most
one point in common, and Fy . C J; Ji U, J]’..
Then, since 1 < ) ()" @)= when I € {J;; J7}, for > 0 we have

g (Fyne) < Z M}]Jrn(]l.)bnn(f*(f/(lﬁ)*s) + Z M}]Jﬂ)(]]{)bnﬂ(f*(f/(q))*g)' (10)
i J

Moreover for every I € {J;, JJ’.; i, jlwehave I C I,Ul, forsomeaanda’ € A,,

and consequently ,u,ﬁ"([) <2 (,u}ﬁ'7 (1) + ,u,lfr" (1,/)). So we deduce from (10)
that if n < 1 then

W(Fgne) <8 Y bt (1, )pm @ @)=,

acA,

Since g (I5) = fig(Cy) foreverya € A (ug = fig o 7=l and fig has no atoms by
Lemma 7(ii)), (P’) comes from the proof of Lemma 7(ii).
Result concerning lim, _, log (1) . jefine

log r
Flo=trefo 1 DEEDO) oy e
o —nlog b
Fl' ={relo 1] log ullp®) <1'(q) — &}

gmE —nlog b
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It suffices to show (P”): forevery e > Oa.s.foreveryq € J',} - ,uq(Fq_’,ll’e)
+,uq(Fql’n’8) < Q.

The sets F, ,1 cand F, qln . admit the same kind of covering as the one used for
Fyne andforn > 0andy € {—1, 1}

Hg(Fine) < ) g (U (b1 @79

i
+ 3 g (Y e @re),
J
Therefore if n €10, 1[ we get

IJ«q(Fql,n,a) < 4bnn(f,((1)*5) Z g (la) Z wh(Ie)

acA, ceAy; I,NI#D
B (Fype) <2070 @FD % 7701y > e
acAny1 ce€Apt1; Iélnmlr\tﬁéw

since, for every I in these coverings, we have I; C I C I, U I, for some
a,a € A, and a € A,y1. Then (P”) comes from computations very similar
to those needed for the proof of Lemma 7(ii), by using the additional remark:

A(T!a)
SUPy ced,; 1,NIAH N(ThanTTe) tends to 1 as n tends to oo.

Proposition 3. Let b be an integer > 2. For (¢, 1) € R?, define

Ch(q, 1) = limsup, oo Chn(@, 1) = Ygen 19(Ua) Lal'and

Clq.t) = limsoinf(Y,y wd UL 0.1 C Upsy In()oti € 10,11,
ri] < 8}

(i) For all ¢ € R, ¢p(q) = inf{t € R; Cp(q,t) = 0} and ¢(q) = inf{r €
R; C(q,t) = 0} are defined, the function @p is convex and ¢ < @p.

(@) Fixa > 0. If (—@)*(a) > 0 then dimy Ey < (—@)*(a) else E, = 0.

This Proposition is deduced from [BMP] and [O].
Proposition 4. With probability one, (—¢)*(a) < t*(a) for everya € I'.

Proof. 1t adapts the beginning of the proof of Theorem VI.A.a in [B1].
Fix ¢ € J'. By using Lemma 4(ii)(b) with u(I,) instead of i(C,) (1 has no
atoms by Proposition 2) we get C; > 0 such that for everyn > 1and ¢ € R

E(Ch.n(g, 1)) < Cyb " T@HIE (YY), (11)

Moreover E(Y?) < oo by Theorem 2 (resp. 3) if ¢ > 0 (resp. g < 0). It follows
from (11) that for every t > —1(q), Cp(g,t) = 0 a.s., and by definition of ¢;(q)
we get gp(q) < —7(q) as.

Since t is continuous on J’ and ¢, is by definition almost surely continuous, we
obtained more: a.s. for every g € J', gp(q) < —1(g), so by Proposition 3(i), a.s.
for every g € J', —9(q) > t(q). The conclusion follows by taking the Legendre
transforms (—¢)* and t* on the previous inequality.
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