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Abstract. Simple multifractal measures are constructed by multiplying
a periodically extended function with copies of itself. The frequencies of
the copies form a geometric series, (1,b,b%,...,b",...), where b is a real
number larger than 1. This deterministic construction leads to measures
that are similar to random multifractal measures, yet are easier to build.
At the same time, they do not have the unphysical disadvantages of other
deterministic multifractals, such as the multinomial measures. The effect
of random phase shifts is also considered.

1 Introduction

Multifractals are encountered in many fields [22]. Examples are the energy dissi-
pation in a turbulent fluid [14, 15, 24, 25, 22], the growth rate along a DLA-cluster
[23,4, 6], the reaction rate along a fractal catalyst surface [8,2], the current dis-
tribution in a percolation cluster [28], and time in a model for price variation
[21]. This variety of multifractal measures calls for a better, more intuitive under-
standing of how multifractals originate, and for alternative simple constructions.
Some constructions, such as the popular multinomial multiplicative cascade, are
recursive and subdivide space into boxes, using an integer base b. In general, b is
nonphysical, so that it would be desirable to minimize its role. The new method
presented in this paper does just that.

A self-similar fractal set is identical at all scales; in a (multiplicative) mul-
tifractal measure m, the distribution of a quantity to be called mass is similar
at different resolutions. The space over which mass is distributed is divided into
fractal subsets, each with the same value for m. The fractal dimensions of these
subsets can be plotted as a function of the Holder exponent « defined by m ~ §%;
when the resolution § approaches zero, the plot yields the multifractal spectrum
f(a). While this formalism may not be the most general one (see, e.g., [16,19,
20]), it suffices for most applications. For a general introduction to multifractals,
see [17,18,5] and the recently published book [22].

Much work on multifractals, especially after their popularization by Frisch
and Parisi [7] and Halsey et al. [10], assumes implicitly that a multifractal mea-
sure is close to being multinomial or even simply binomial. The construction of
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Fig. 1. Binomial measure, after 10 generations, with p; = 0.6 and p, = 0.4.

a multinomial measure on a line segment [0,1) starts by dividing the segment
in b pieces of length 1/b, and associating a different weight or probability p; to
each of these pieces. Each of the b shorter segments is replaced by a b times
smaller copy of this generator, in which mass or probability is redistributed in
the same way as in the generator; therefore, the j-th piece in the i-th segment of
the first iteration is given the weight p;p;. The number of segments N with the
same weight p = p;p; follows the multinomial distribution, and this multiplica-
tive cascade continued ad infinitum creates a multinomial multifractal measure.
For b = 2, the measure is binomial. An example with p; = 0.6 and p» = 0.4 is
shown in Fig. 1. When the resolution § = b~" approaches zero in this cascade,
sets with the same Holder exponent a = lims_,glogp/logd are fractal, and they
have a fractal similarity dimension f(a) = —lims_0log N/logd. The link be-
tween f(a) and the moment generating function involves a Legendre transform
(the thermodynamic formalism), and the explicit formulas for o and f(«) are
well-known and will not be repeated here (see [10,16-18]).

The multinomial measures are a fine first example, yet inadequate for most
practical purposes. In the first place, why the arbitrary division in segments,
based on some integer b 7 Why should this multiplicative cascade proceed with
the same set of probabilities {p1,... ,pp} ? Moreover, the measures obtained in
turbulence [14, 15] and growth phenomena [23, 4, 6] are definitely not binomial or
multinomial. Even the best known signature, the f(a) spectrum, need not have
the familiar ()-shape, unless special conditions are satisfied as Coppens discusses
in the practical example of catalysis [2].
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The random multiplicative multifractals introduced by Mandelbrot [14, 15,
22] can lead to f(a) spectra that have different shapes, and do not require
an arbitrary choice of a base b. Ingenious mathematical examples, such as the
Minkowski measure [9, 20], were studied to show how the spectrum can become
left-sided (i.e., the maximum value of f(«) is obtained for & — 00) [27], or how
a or f(a) can be negative. Moreover, there can be several maxima in the f(«)
curve [26].

The experimental evidence shows that these spectra are not just esoteric cre-
ations. But they are complicated and make it very desirable to have some simple
method to generate various spectra other than the inadequate multiplicative
scheme behind the multinomial measures. The method introduced in this pa-
per responds to this strong desire and proves particularly powerful, despite its
simplicity. The method merely involves the repeated multiplication of a periodic
function w(t) (the generator) with rescaled copies w(b¥z) of itself. We will show
how this product of harmonics leads to a multifractal measure.

The main advantage of our method is threefold. First of all, a great variety
of measures can be constructed through a multiplication of functions that is
not much harder than the generation of multinomial measures, but much more
general. Secondly, as opposed to the multinomial measure, in which the “base” b
is an integer larger than 1, the base is now any real number larger than 1. Thirdly,
we will prove how the essential characteristics of measures constructed using this
completely deterministic method are the same as those of Mandelbrot’s random
multifractal measures, when the multipliers are chosen in a way to be discussed
in this paper.

This is a preliminary announcement of the method and some of the general
features of the multifractal product of function (MPF). Detailed mathematical
proofs will appear soon [3].

2 Methodology of the MPF

Define a function w(z) with period 1, i.e.:
w(z + k) = w(x), Vk € N. (1)

This “generator” and a base b >1 define the functions w(bi~'z),i = 1,2,3,...
These functions’ frequency is b*~! times higher than for w(z). Now, let:

n

ml (z) = H wd ). (2)

i=1

Like w(z), the functions m? (x) have period 1, if b is an integer.

When w(z) = p; for (j —1)/b < z < j/b, with }°,p; = 1, the b-nomial
measure is recovered. Note the resemblance to a Fourier series, where a sum of
periodic functions w; (cosines, sines) with a geometric series of frequencies con-
verges to the limit Weierstrass function. Here, the sum is replaced by a product,
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and, if a nondegenerate limit m(z) = m®_ (z) exists (in the sense of measures
rather than functions), it can be shown to be a multifractal measure that we call
a multifractal product of functions (MPF).

The multifractal spectrum f(«) is defined as follows. First, the coarse-grained
Holder exponents of the b™ intervals [ib™", (i + 1)b™™) = [i€, (i + 1)e,) are
evaluated for all 4 =0,...,b" — 1:

(i+1)en s
1 (417" , 108;/ my, (z)dx
. 1€n
afi) = ~log, / (e = e EY
The histogram N («) is then constructed, by distributing the Holder exponents
in bins [a,a + Aca). The normalized logarithm of this histogram is the pre-
multifractal spectrum:

1 log N(a)
== =__2" 1 4
Fal) = logy N(a) = —p-2C @)
The limit multifractal spectrum is:
fl@) = lim f,(a). (5)

n—oo

Another way to derive f(«a) is from the cumulative distribution N(A > a). It
should be noted that b can be any positive real number larger than one and does
not have to be an integer in the MPF, as opposed to the multiplicative cascades
leading to multinomial multifractals.

The multifractals constructed in this way are entirely deterministic, but can
be randomized by introducing a random phase shift with every iteration, i.e.,
we let

n

my, (@) = [Twlt™ (= + ¢2)], (6)

=1

in which ¢; is a random deviate uniformly distributed between 0 and 1.

3 Examples

An unlimited variety of measures is generated through this MPF by changing
the generator w(z). A few examples are presented below.

— A multinomial measure is constructed when w(z) is constant within each of
b intervals of length 1/b.

— The potential well or “fjord”, w(x) = 1—0.25[1 —cos(27z)]?, shown in Fig. 2
generates the measure shown in Fig. 3 after respectively 5 (above) and 10
(below) generations. This could serve as a crude model for the accessibility
measure along a rough surface. Even visually, the measures in this and the
previous example are quite different from the binomial measure in Fig. 1.
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Fig. 2. Potential well or “fjord”, w(z) = 1 — 0.25[1 — cos(2mz)]>.
— For w(z) = y/z(1 —z) (a semi-circle), the tenth generation w?,(z) looks

as in Fig. 4. The pre-multifractal spectrum corresponding to this “circle
measure” is shown as well. It is clearly different from the familiar symmetrical
spectrum of a binomial measure. For higher pre-multifractal generations,
similar spectra were found with similar amin and amax, yet the fluctuations
become smaller and occur at other places. They appear to be a result of the
typical relatively slow overall convergence and the way in which the spectrum
was generated through binning. This could be avoided through a procedure
similar to the one described in [1].

— The following class of base functions is particularly interesting, because their
shape can be qualitatively changed by modifying the value of the parameters:

w(z) = a+ Bz +v(1 —2)°, 0<z<l (7

Depending on the values of the 5 parameters, a wide range of MPF's can be
constructed. This example will be discussed elsewhere.

4 Link with random multiplicative multifractals

The deterministic measures generated using our new method are interesting by
themselves, but also because of their close relation to random canonical multi-
plicative multifractals (CM?) [15,22].

The construction of the random CM? measures relies on an integer base b.
It starts with a uniform measure of density 1 and begins by dividing [0, 1] into
b equal b-adic parts. After the first construction step, the density is constant
on each b-adic part and its b values w; are independent and identically dis-
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Fig. 3. Fifth (above) and tenth (below) generation of the potential well MPF shown in
the previous Figure, formed by a binary multiplicative cascade of w(z) =1 — 0.25[1 —
cos(27nz)]?. The interval [1/8, 7/8] is shown for the tenth generation, because a plot
of miy(x) over the interval [0,1] would be completely dominate by the peaks m? (0) =
mb (1). This is typical for a multifractal measure.
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Fig. 4. Above: tenth generation of the “circle measure”, formed by a binary multi-
plicative cascade of a semi-circle. Below: the corresponding pre-multifractal spectrum.
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tributed random variables with cumulative distribution function F'(w) = Prob-
ability {W < w} and average (w) = 1. The notation w is preserved for reasons
that will transpire momentarily, but w no longer denotes a periodic and non-
random function. The second step of the construction introduces b? equal b-adic
parts. The corresponding multipliers are independent and identically distributed
random variables w;; and the corresponding densities at the end of the second
step take the form w;w;;. When this multiplicative procedure is iterated, the
random multifractal C M? ensues.

The cumulative distribution function F'(w) is of course non-decreasing and
such that F(0) = 0 and F(oo) = 1. If necessary, the graph of F(w) can be
processed by filling in each jump by a vertical straight interval. Exchanging the
coordinate axes for this filled-in graph yields the filled-in graph of an inverse
function F~!(z), which in turn can be made into a left-continuous inverse func-
tion. Using integration by parts, (w) = fol wdF(w) = fol F~Y(z)dz. This result
begins to justify using the same letter w for different purposes. Indeed, the same
formal condition of conservation on the average applies to CM?2, in the form
{w) = 1, and also to the MPF, in the form fol w(z)dz = 1. When b is an integer,
the inverse F~!(z) of the cumulative probability distribution used to construct
the random C'M? is the function w(z) used to construct the MPF.

In the CM? construction, only an interval [0,1] is considered; in the MPF
construction, the function w(z) is periodically extended beyond this interval.
For almost all z, the infinite series of multipliers w(b’~'x) used to construct the
MPF samples the interval [0,1) in a uniformly dense way, as is the case for the
CM?2, because the B-map:

(:c, {bz}, {b2a:}, .. ) , (8)

where {y} = y mod 1 is almost surely uniformly dense in [0,1). The latter was
shown by Weyl, Hardy and Littlewood [29,11,12] and in a more general case by
Kuipers and Niederreiter [13].

To conclude, a left-continuous function w(x) that satisfies conservation on
the average can be used in two distinct ways: when b is an integer, to construct
a CM? measure; for all b, to construct a MPF measure. There is clearly a close
relationship between the previously studied multifractal properties of the C'M?
and the simpler to construct MPF, which is also multifractal.

This raises the question of whether or not the multifractal formalism that
[15,22] developed to apply to CM? also applies to the MPF. For integer b, this
is already clear from the relation discussed above. The answers provided in [3]
for general b are to the affirmative. The criterion of non-degeneracy is:

/1 w(z) log, w(z)dz < 1 9)
0

and the 7(¢) and f(a) functions are those familiar from the study of CM?2.
To be more precise, the preceding affirmative answers apply directly to the
randomized MPF in which w(b*~'z) is replaced by w[b~1 (z+¢;)], with a random
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phase ¢;, as in Eq. (6). For irrational b, the same affirmative answer applies to
the non-random product, Eq. (2), for n — oo, taken over the interval [X, X + 1],
where X is asymptotically large.

An interesting corrolary of this link between the random measures and the
limit MPF is that a large number of transformations on w(z) do not change the
spectrum either. Such transformations include translations, rotations or reflec-
tions of parts of w(x) about vertical axes. However, note in passing that finite
generations of the MPF do not sample the interval [0, 1) uniformly for all z, so
that the identity of measures and spectra is not valid for finite generations.

5 Conclusions

This paper introduces a new, simple way to generate a great variety of multifrac-
tal measures. We call these measures Multifractal Products of Functions (MPF).
They are constructed by repeatedly multiplying a periodically extended func-
tion with copies of itself, each copy having a frequency b times higher than the
previous one in the series, where b is a real number larger than 1. The generation
is therefore similar to the iterative construction of certain basic fractals, or the
cascade leading to a multinomial measure, but is clearly much more general than
the latter.

Apart from simplicity, the most important advantage of the MPF is the link
between them and random multiplicative measures. This opens the way to many
applications, because of the ease with which the MPF operates. Despite the fact
that the MPF is either completely deterministic or slightly randomized (by using
Eq. (6) with random phases), the multifractal spectrum is the same as that of a
random multiplicative measure.

We sketched the methodology and gave some examples; other papers will re-
fine the mathematical background and discuss the generated multifractal spectra
in more detail. The method can be used in various applications in which multi-
plicative processes are present, such as in the description of turbulence, growth
processes and the study of the accessibility distribution over rough interfaces.
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