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A case against the lognormal distribution

 ✦ Abstract.  The lognormal distribution is, in some respects, of great sim-
plicity. This is one reason why, next to the Gaussian, it is widely viewed
as the practical statistician's best friend. From the viewpoint described in
Chapter E5, it is short-run concentrated and long-run even. This makes it
the prototype of the state of slow randomness, the difficult middle ground
between the wild and mild state of randomness. Metaphorically, every
lognormal resembles a liquid, and a very skew lognormal resembles a
glass, which physicists view as a very viscous liquid.

A hard look at the lognormal reveals a new phenomenon of delocal-
ized moments. This feature implies several drawbacks, each of which suf-
fices to make the lognormal dangerous to use in scientific research.
Population moments depend overly on exact lognormality. Small sample
sequential moments oscillate to excess as the sample size increases. A
non-negligible concentration rate can only represent a transient that van-
ishes for large samples. ✦

AFTER LÉVY, ZIPF AND PARETO were described as providing inspira-
tion to scaling and fractal geometry, Chapter E4 also listed a widely-
followed nemesis. Robert Gibrat, the author of Les inégalités économiques
(Gibrat 1932), remains foremost among the many who claim that economic
inequalities (presumably all of them) can be described and explained by
the lognormal. As is well-known, Λ is called lognormal when G = logΛ is
Gaussian. Section 1 recalls the basic facts about the lognormal, and
describes in parallel several reasons why it is liked, and counterbalancing
reasons why its assets are misleading. In a word: this distribution should
be avoided. A major reason, elaborated in Section 2, is that a near-
lognormal's population moments are overly sensitive to departures from
exact lognormalities. A second major reason, elaborated in Section 3, is
that the sample moments are not to be trusted, because the sequential
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sample moments oscillate with sample size in erratic and unmanagable
manner.

Once again, the preceding paragraph and the rest of this book avoid
endless and tiresome repetition of the terms “density,” “distribution,”
“random variable,” and the like. It is better to deal with such words as
“Gaussian,” “lognormal,” “Bernoulli,” “Poisson,” and “scaling” as
common names. For example, if there is no loss of intelligibility and the
context allows, “lognormal” will be a synonym either of “lognormal
distribution,” or of “lognormal random variable.” Only a slip of the pen
can make me use the word “normal” as synonym of “Gaussian.” The
reason is that in this book the norm is randomness that used to be called
“anomalous” and that Chapter E5 describes as “wild.” Since the word
“lognormal” will not change, I try not to think about its undesirable root.

Some statisticians tell practicing scientists that there is no need to deal
with many different random variables, because every variable can be
transformed into a Gaussian ... or even a uniform variable. This transfor-
mation is discussed and dismissed in Chapter E5.

The lognormal claims to represent both the bell and the tails in distrib-
ution of personal income, though only roughly. The scaling is concerned
with the tail only, but claims to represent that part in more precise, more
enlightening and more useful fashion. The L-stable is claimed in Chapter
E10 to represent the tails well and the bell, reasonably. More generally,
the lognormal, the scaling and other narrower-purpose distributions con-
tinually compete in the many fields of science where skew long-tailed
histograms are a fact of life and concentration ratios are not small. My
research life began by facing the conflict between the lognormal and the
scaling in the study of word frequencies.

The endless conflict between the lognormal and the scaling is illus-
trated on Figure 1. It is annoying and boring, and its very existence is irri-
tating and implies that the two distributions differ less than their vastly
different analytic forms would suggest. Section 3 will show that such is
indeed the case: many lognormals can be approximated over wide spans
of values of the variable by judiciously chosen scaling, and conversely.

This assertion does not endorse the claim by statisticians who despise
log-log plots, that “everyone knows that every log-log plot is straight;
therefore, a straight log-log plot cannot mean anything.” If this were true,
the scaling distribution could not be conceivably proved wrong (“falsified”
in Popper's terminology.) But it would not be a candidate for serious sci-
entific discourse. Be that as it may, all log-log plots are not straight.
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The lognormal's properties helped Chapter E5 draw a deep difference
between mild, slow, and wild “states of randomness.” The Gaussian is
mildly random. The scaling thrives on its own wildness: it faces the
many difficulties due to skewness and long-tailedness, and this is why it is
usable and realistic. The lognormal lies between the mild and the wild, in
the state of “slow randomness;” it even provides an excellent illustration
of this intermediate state and its pitfalls. It is beloved because it passes as
mild: moments are easy to calculate and it is easy to take for granted that

FIGURE C9-1. Illustration of how a sample of a very skew lognormal random var-
iable can “pass” as being from a scaling. The abscissa is log x, the ordinate is
 log Fr (X > x), with Fr the frequency in a sample. This is the plot of the dis-
tribution (cumulated from the tail) of a sample of 9 000 lognormal variables X,
where  log X has zero mean and a standard deviation equal to  log e10. The
graph “passes” as straight. The arrow near x = 12 marks the mean, and the
arrow near x = 150, the mean plus one standard deviation.
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they play the same role as for the Gaussian. But they do not. They hide
the difficulties due to skewness and long-tailedness behind limits that are
overly sensitive and overly slowly attained.

In the metaphor of “states of randomness,” the contrast between liquid
and solid leaves room for glasses. These hard objects used to be viewed
as solids, but their properties are not explained by the theory of solids (as
a matter of fact, they remain poorly explained). In time, strong physical
reasons arose for viewing glasses as being very viscous fluids. The glassy
state is a convenient metaphor to characterize the lognormal, but also a
challenge that will be taken up in this chapter. Therefore, the lognormal's
wondrous properties are irrelevant and thoroughly misleading; it is not the
statisticians' best friend, perhaps even their worst one. For those reasons,
and because of the importance of the topic, this chapter was added to
bring together some points also made in other chapters.

Given the serious flaws of the lognormal, there are strong practical
reasons to prefer the scaling. But scientists learn to live with practical dif-
ficulties, when there are solid theoretical reasons for doing so. The scaling
has diverse strong theoretical points in its favor, while Chapter E8 shows
that the usual theoretical argument in favor of lognormality is weak,
incomplete and unconvincing. Unfortunately, the fields where the
lognormal and the scaling compete lack convincing explanations.

Helpful metaphors. There are many issues that the scaling distribution
faces straight on, but the lognormal distribution disguises under a veneer.
The lognormal distribution is a wolf in sheep's skin, while the scaling
density is a wolf in its own skin; when living among wolves, one must
face them on their own terms.

References. The literature on the theory and occurrences of the
lognormal is immense and I do not follow it systematically. Aitchison &
Brown 1957 was up-to-date when I took up this topic, and I marvelled
even then at the length of the mathematical developments built on founda-
tions I viewed as flimsy. See also Johnson, Kotz & Balakrishnan 1994.

A warning against a confusion between “lognormal” and “logBrownian.”
To my continuing surprise, “lognormal” is also applied here and there to
the “logBrownian” model according to which log (price) performs a
Brownian motion, à la Bachelier 1900. The only feature common to those
two models (not counting the evidence against both) is slight: the
logBrownian model asserts that where a price is known at time t = 0, its
value at time t is a lognormal random variable.
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1. INTRODUCTION

1.1 The lognormal's density and its population moments

Let V = logΛ be Gaussian, that is, of probability density
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The simplest distinction between states of randomness (Chapter E5)
involves the convexity of log p(λ) and the finiteness of the variance.

The cup-convexity of the tail of log p(λ). For the lognormal, there is a
“bell” where log p(λ) is cap-convex, and a tail where log p(λ) is cup-
convex. Most of the probability is in the bell when σ2 small, and in the
tail when σ2 is large. If generalized to other distributions, this definition
sensibly states that the Gaussian has no tail. Because of the cup-convexity
of  log p(λ) in the tail, Chapter E5 calls the lognormal “long-tailed.”

Finiteness of the moments. An easy classical calculation of EΛq needed in
the sequel yields
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Hence the following result, valid for all q( − ∞ < q < ∞)
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Ways of normalizing Λ. One can set µ = 0 by choosing the unit in
which λ is measured. To achieve EΛ = 1, it suffices to set µ = − σ2/2.
Using the notations µ = − m and σ2 = 2m.

EΛq = exp[ − qm + q2m] = exp[mq(q − 1)].

In particular, EΛ2 = exp(2m) = expσ2, and the variance is ν2 = exp(2m) − 1.

Skewness and long-tailedness. The lognormal's skewness and kurtosis
confirm that, as m → ∞, the distribution becomes increasingly skew and
long-tailed. But skewness and kurtosis are less telling than the above-
mentioned notions of “bell” and “tail”.

The reader is encouraged to draw several lognormal densities, normal-
ized to EΛ = 1 and parametrized by the standard deviation ν. On both
sides of the point of coordinates 1 and p(1), include an interval of length
2ν. As soon as m > (log2)/2 ∼ 0.35, this interval extends to the left of the
ordinate axis. This fact underlines the unrepresentative nature of the
standard deviation, even in cases of moderate skewness.

This fact also brings to mind one of the deep differences that exist
between physics and economics. In physics, moments of low order have a
clear theoretical interpretation. For example, the population variance is
often an energy that must be finite. In economics, to the contrary, the
population variance is nothing but a tool of statistical analysis. Therefore,
the only real interest is restricted to the insights that population moments
can yield, concerning phenomena ruled by sample moments. This chapter
will show that the predictions drawn from the lognormal are too confused
to be useful while those drawn from the scaling are clear-cut.

1.2 Three main reasons why the lognormal is liked, and
more-than-counterbalancing reasons why it should be avoided

An asset: the lognormal density and the formulas for its moments are very
simple analytically. So are products of lognormals.

A more-than-counterbalancing drawback: the distributions of sums are
unmanageably complicated. Dollars and firm sizes do not multiply; they add
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and subtract. But sums of lognormals are not lognormal and their analytic
expressions are unmanageable. That is, the lognormal has invariance
properties, but not useful ones.

This is a severe handicap from the viewpoint of the philosophy of
invariances described in Chapter E1 and throughout this book. Once
again, each scientific or engineering problem involves many fluctuating
quantities, linked by a host of necessary relations. A pure curve-fitting
doctrine proposes for each quantity the best-fitting theoretical expression,
chosen in a long list of all-purpose candidates. But there is no guarantee
at all that the separately best fitting expressions are linked by the relations
the data must satisfy. For example, take the best fit to one-day and
two-day price changes. The distribution of the sum of one day fit need
not be analytically manageable, and, even if it is, need not be identical to
the distribution of a two-day fit.

Major further drawback: Section 2 shows that the population moments of the
lognormal are not at all robust with respect to small deviations from absolutely
precise lognormality. Because of this lack of robustness, X being approxi-
mately Gaussian is not good enough from the viewpoint of the population
moments of exp X. The known simple values of EΛq are destroyed by
seemingly insignificant deviations. The technical reason behind this
feature will be described and called “localization of the moments.” Hence,
unless lognormality is verified with absolute precision, the moments'
values are effectively arbitrary.

The deep differences between the lognormal as an exact or an approxi-
mate distribution were unexpected and led to confusions even under the
pen of eminent scientists. Few are the flaws in the Collected Works of
Andrei N. Kolmogorov (1903-1987), but his influential papers on
lognormality (especially in the context of turbulence) are deeply flawed.
Hard work to correct those flaws led M 1972j{N14} and M 1974f{N15} to
results on multifractals that overlap several fields of inquiry and greatly
contributed to fractal geometry and the present discussion.

Another major drawback: Section 3 shows that the sequential sample
moments of the lognormal behave very erratically. This additional drawback
tends to prevent the first one from actually manifesting itself. The popu-
lation moments of a lognormal or approximate lognormal will eventually
be approached, but how rapidly? The answer is: “slowly.”

When the lognormal Λ is very skew, sample size increases, the answer
is that the sequential sample average undergoes very rough fluctuations,
and does not reach the expectation until an irrelevant long-run (corre-
sponding to asymptotically vanishing concentration). In the middle-run,
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the sample and population averages are largely unrelated and the for-
mulas that give the scatter of the sequential sample moments of the
lognormal are impossibly complicated and effectively useless. This
behavior is best explained graphically, the Figure captions being an inte-
gral part of the text. Figure 2 uses simulated lognormal random variables.
while Figure 3 uses data.

Powers of the lognormal being themselves lognormal, all sample
moments are averages of lognormals. Their small, and medium sample
variability is exteeme and not represented by simple rules deduced from
lognormality. By contrast, the scaling interpolations of the same data
yields simple rules for the very erratic sample variability. Erratically
behaving sample moments and diverse other difficulties that the scaling
distribution faces straight on, are characteristic of wild randomness.

A widely assumed asset: it is believed that the lognormal is “explained” by a
random “proportional effect” argument. Aside from its formal simplicity, the
greatest single asset of the Gaussian is that it is the limit in the most
important central limit theorem. That theorem's limit is not affected by
small changes in the assumptions, more precisely, limit Gaussianity
defines a “domain of “universality,” within which details do not count.
Similarly, the lognormal is ordinarily viewed as being justified via so-
called “proportionate effect” models. They represent log X as the sum of
independent proportionate effects, then invoke the central limit theorem to
conclude that log Z must be approximately Gaussian.

A more-than-counterbalancing drawback: the random proportional effect
models yield the Gaussian character of log Λ as an approximation and the conclu-
sions concerning Λ cannot be trusted. In most scientific problems, the lack of
exactitude of central limit approximations makes little difference. The
number of conceivable multiplicative terms of proportionate effect is not
only finite (as always in science) but small. Therefore, the Gaussian
involved in the limit theorem is at best a distant asymptotic approximation
to a preasymptotic reality. When John Maynard Keynes observed that in
the long-run we shall be all dead, he implied that asymptotics is fine, but
economists should be concerned with what will happen in some middle
run. Unfortunately, we deal with one of those cases where, because of the
already-mentioned sensitivity, approximations are not sufficient.

Under the lognormal assumption, the basic phenomenon of industrial concen-
tration must be interpreted as a transient that can occur in a small sample, but
vanishes asymptotically. In an industry including N firms of lognormally
distributed size, how does the relative size of the largest depend on N?
This topic is discussed in Chapter E7 and E8.
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In the long-run regime N → ∞, the relative size of the largest of N
lognormal addends decreases and soon becomes negligible. Hence, a size-
able relative size of the largest, could only be a transient and could only
be observed when there are few firms. Furthermore, the formulas that
deduce the degree of concentration in this transient are complicated, evade
intuition, and must be obtained without any assistance from probability
limit theorems.

FIGURE C9-2. My oldest illustration of the erratic behavior of the sample averages
of very skew approximately lognormal random variables. Several samples
were generated, each containing over 10,000 values. Then the sample average
N− 1∑N

λ = 1Xλ
was computed for each sample, and plotted as a line.

Both coordinates are logarithmic. In an initial “transient” zone, the aver-
ages scatter over several orders of magnitude. The largest average is often so
far removed from the others, that one is tempted to call it an outlier and to
disregard it. The approximate limit behavior guaranteed by the law of large
numbers is far from being approached. The expectation EX is far larger than
the bulk of sample values Xn, which is why huge sample sizes are required for
the law of large numbers to apply.

In addition, the limit depends markedly on the Gaussian generator. In
this instance, log Xn = ∑In − 6, where the In are 12 independent pseudo-
random variables with uniform distribution. With a different approximation,
the limit would be different, but the convergence, equally slow and erratic.
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To the contrary, in an industry in which firm size is scaling, the rela-
tive size of the largest firm will depend little on the number of firms. Fur-
thermore, the asymptotic result relative to a large number of firms remains
a workable first-order approximation where the number of firms is not
very large.

FIGURE C9-3. Illustration of the erratic behavior of the sample mean square of a
set of very skew natural data, namely the populations of the 300 largest cities
in the USA. This old graph was hand-drawn in 1986. The alphabetical order
was picked as approximately random and N− 1∑X2

n was computed for every
value of N. The curve to the left uses linear coordinates in units of 1011; the
curve to the right uses log-log coordinates.

There is not even a hint of convergence.

In light of this Figure, examine two conflicting claims. Gibrat 1932 claims
that the distribution of city populations is lognormal, and Auerbach 1913 that
this distribution is scaling. It may well be that both expressions fit the
histograms. But it is clear that the fitted lognormal only describes the
asymptotic behavior of the sample mean square and gives no information
until the sample size enters the asymptotic range. However, the sample of
city sizes is exhaustive, and cannot be increased any further, hence the notion
of asymptotic behavior is a figment of the imagination. To the contrary, the
fitted scaling distribution does predict the general shape of this Figure.
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Conclusion. Even in the study of the transients, it is better to work
with the scaling approximation to the lognormal than with the lognormal
itself. This scaling approximation makes one expect a range of sizes in
which the concentration depends little on N.

The 3 and 4-parameter generalized lognormals. They will not be discussed
here. To all the defects of the 2-parameter original, the generalizations
add defects of their own. Simplicity is destroyed, the moments are
equally meaningless and Gibrat's purported justifications, already shaky
for the lognormal, lose all credibility when parameters are added.

2. THE POPULATION MOMENTS OF A NEAR-LOGNORMAL ARE
LOCALIZED, THEREFORE OVERLY SENSITIVE TO DEPARTURES
FROM EXACT LOGNORMALITY

2.1 Summary of a first argument against the lognormal

The expressions obtained in the Section 1.1 prove to be of little conse-
quence unless the lognormal holds with exactitude beyond anything that
any scientist or engineer can reasonably postulate for a statistical distrib-
ution. Otherwise, the classical and easily evaluated population moments
are devoid of practical relevance.

2.2 Even when G is an acceptable Gaussian approximation of Z, the
moments of eG may drastically differ from the moments of eZ

This sensitivity is a very serious failing. When a theoretical probability
distribution is characterized by only a few parameters, a host of properties
are intimately tuned to each other. It suffices to verify a few to predict the
other. Moving on from a theoretical distribution to one obtained by
fitting, one hopes that “small” errors of fitting yield small prediction
errors. Such is, indeed, the case for the Gaussian G, but not for the
lognormal Λ = eG. The trouble is that the practical use of the lognormal
consists of predictions that are very sensitive to departure of G from exact
Gaussianity.

The sensitivity of the lognormal will not be proved theoretically, but
will instead be illustrated by comparing a) the Gaussian, and the following
near-Gaussian examples: b) a Bernoulli random variable B obtained as
sum of K binomial variables bounded by max B, c) a Poisson random
variable, P, and d) a gamma random variable Γ obtained as the sum of γ
exponentials. Textbooks prove that B, P and Γ can be made “nearly
identical” to a normal G. The underlying concept of “near identity” is crit-
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ical; for sound reasons, it is called “weak” or “vague.” Let us show that it
allows the moments of the “approximations” eP, eB and eΓ to depend on q
in ways that vary with the approximation, and do not match the patterns
that is characteristic of eG.

a) The lognormal. To match the Poisson's property that EP = EP2 = ρ,
we set EG = µ = ρ and σ

2 = ρ. It follows that [E(eG)q]1/q = exp [ρ(1 + q/2)].
Thus, [E(eG)q]1/q is finite for all q, and increases exponentially.

b) The logBernoulli. Here, [E(eB)q]1/q ≤ exp (K max B). Thus, [E(eB)q]1/q

is bounded; in the vocabulary of states of randomness expounded in
Chapters E5, eB is mildly random, irrespective of K, but this property is
especially devoid of contents from the viewpoint of the small- and the
middle-run.

c) The logPoisson. [E(eP)q]1/q = exp [ρ(eq − 1)/q]. Thus, [E(eP)q]1/q is finite
but increases more rapidly than any exponential. Like Ue, the lognormal
eP belongs to the state of slow randomness

d) The log-gamma. E(eΓ/α)q = ∞ when q > α. Thus, eΓ/α is of the third
level of slow randomness when α > 2, and is wildly random when α < 2.

Expectations. By design, the bells of G and P are very close when ρ is
large, but E(eG) = exp(1.5ρ) and E(eP) = exp(1.7ρ) are very different; this
shows that the expectation is not only affected by the bell, which is
roughly the same for G and P, but also by their tails, which prove to be
very different.

The coefficients of variation. They are

E[(eG)2]  
[E(eG)]2

− 1 = eρ − 1 and
E[(eP)2]

[E(eP)]2
− 1 = exp[(e − 1)2ρ] − 1 ∼ e3ρ − 1.

The dependence on the tails is even greater for eP than it is for EΛ.

Higher order moments differ even more strikingly. In short, it does
not matter that a large ρ insures that B and P are nearly normal from the
usual viewpoint of the “weak-vague” topology. The “predictive error”
E(eP)k − E(eG)k is not small. Less good approximations Z yield values of the
moments E(eZ)k that differ even more from E(eG)k.

Illustration of the appropriateness of the term “weak topology.” In a case
beyond wild randomness that is (thankfully) without application but
serves as warning, consider Z = expV∼N where V∼N is a normalized sum of
scaling addends with α ≥ 2. By choosing N large enough, the bells of V∼N
and G are made to coincide as closely as desired. Moreover, EV2 < ∞,
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hence the central limit theorem tells us that V∼N converges to a Gaussian G,
that is, comes “close” to G in the “weak”, “vague” sense. The underlying
topology is powerful enough for the central limit theorem, but for q > α
moments cannot be matched, since EV∼q

N = ∞ while EGq < ∞, and all positive
moments E exp(qV∼N) are infinite, due to the extraordinarily large values of
some events that are so extraordinarily rare that they do not matter.

2.3 The moments of the lognormal are sensitive because they are
localized, while those of the Gaussian are delocalized

The formula EΛq = exp(µq + σ2q2/2) reduces all the moments of the
lognormal to two parameters that describe the middle bell. However, let
us consider a general U and take a close look at the integral

EUq = ⌠⌡uqp(u)du.

For many cases, including the lognormal and the Gaussian, the
integrand uqp(u) has a maximum for u = u∼q, and one can approximate
q log u + log p(u) near its maximum by a parabola of the form
− (u − µ∼ q)/2σ∼ 2

q, and the integral is little changed if integration is restricted
to a “leading interval” of the form [ − σ∼ q + µ∼ q, µ∼ q + σ∼ q], where σ∼ q is the
width of the maximum of uqp(u). When q′ is allowed to vary continuously
instead of being integer-valued and close to q, the corresponding leading
intervals always overlap. We shall now examine what happens as q′
moves away from q. There is continuing overlap in the Gaussian, but not
in the lognormal case. It follows that different moments of the lognormal
are determined by different portions of the density p(u); therefore, it is
natural to describe them as localized. By small changes in the tail of p(u),
one can strongly modify the moments, not independently of each other, to
be sure, but fairly independently. This fact will help explain the observa-
tions in Section 2.1.

2.3.1 The Gaussian's moments are thoroughly delocalized. Here,

 
log [uqp(u)] = a constant + q log u − u2

2σ2
.

  At its maximum, which is µ∼ q = σ
√
q , the second derivative is 2/σ2, hence

σ∼ q = σ/
√
2 . Successive leading intervals overlap increasingly as q

increases. Numerically, the second percentile of G  is given in the tables
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as roughly equal to 2.33. Values around the second percentile greatly
affect moments of order 5 or 6. The value G = 3 is encountered with
probability 0.0026, and its greatest effect is on the moment of order q = 9.
Therefore, samples of only a few thousand are expected to yield nice esti-
mates of moments up to a fairly high order.

2.3.2 The lognormal's moments are localized. For the lognormal, a good
choice variable of integration, v = log u yields the formula in Section 1.1

EΛq = 1

σ
√
2π

exp
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
µq +

σ2q2

2

 
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∞

−∞
exp
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− [v − (µ + σ
2q)]2

2σ2

 
 

dv.

When µ = − m and σ2 = 2m, so that EΛ = 1,

µ
∼

q = µ + σ2q = m(2q − 1), while σ
∼

q = σ = 
√
2m is independent of q.

  Consequences of the dependence of µ∼ q and σ∼ q on q, concerning the localized
character of the moments of the lognormal. The midpoints of the leading
intervals corresponding to q and q + ∆q differ by σ2∆q. When σ is small,
the leading intervals overlap only with neighbors. When σ2 > 2σ, integer
qs yield non-overlapping leading intervals.

Consequences of the values of µ∼ q and σ∼ q concerning the direct estimation of
the moments EΛq from the data on a lognormal Λ . One can evaluate EΛq

from the mean and variance as estimated from the distribution of log Λ,
or from Λ itself. The latter method shows that the population moments of
the lognormal are delocalized and overly dependent on separate intervals
of rare values.

The moment EΛ. As soon as m = 2.33, log λ
∼

1 lies on the distribution's
first percentile to the right. That is, the estimation of EΛ from the λ data
is dominated by one percent of the data. As soon as m = 3.10, log λ

∼
1 cor-

responds to the first per-mil to the right. That is, the estimation of EΛ
from the λ data is dominated by one-thousandth of the data.

The moment EΛ2. Its estimation is dominated by log λ
∼

2 ∼ µ + 2σ2 = 3m.
The percent and per-mil thresholds now occur, respectively, for m = 0.77
and m = 1.03. Therefore, the empirical variance makes no sense, except for
very small m and/or a very large sample size.

The moment EΛ3. Its estimation, hence the value of the empirical
skewness, is dominated by log λ

∼
3 ∼ µ + 3σ2 = 5m.
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The rest of the argument is obvious and the practical meaninglessness
of its estimate is increasingly accentuated as q increases.

Implications of the sensitivity of the population moments to the confidence a
scientist may place in them. For both the Gaussian and the lognormal, a
standard formula extrapolates all the EΛq and the tail's shape from two
characteristics of the bell, namely, µ and σ

2. For the Gaussian, the extrap-
olation is safe. For the lognormal, the extrapolated high moments cannot
be trusted, unless the underlying distribution is known in full mathemat-
ical precision, allowing no approximation. But absolute exactitude for all λ
is not of this world. For example, Section 1.2 mentioned that the statisti-
cians' attachment to the lognormal is rationalized via the Central Limit
Theorem, but this theorem says nothing of the tails. Moreover, due to the
localization of the lognormal, high order moments largely depend on a tail
that is effectively unrelated to the bell.

Prediction in economics demands such as extrapolation from the fitted
distribution to larger samples and corresponding larger values. From this
viewpoint, data for which one may hesitate between the lognormal and
the scaling distributions are genuinely difficult to handle. By fitting the
scaling distribution the difficulties are made apparent and can be faced.
By contrast, lognormal fitting hides them and prevents them from being
recognized, because it fails to be sensitive in the regions in which sensi-
tivity matters. The decision between lognormal or the scaling cannot be
helped by the development of better statistical techniques. When data are
such that the scaling and lognormal representations are equally defensible,
and the limited goal is compression of data for the purpose of filing them
away, one may just as well flip a coin. But we must move beyond that
limited goal.

3. THE POPULATION MOMENTS OF THE LOGNORMAL BEING
LOCALIZED, THE FINITE SAMPLE MOMENTS OSCILLATE IN
ERRATIC AND UNMANAGEABLE MANNER

3.1 Summary of the second argument against the lognormal

Population moments can be evaluated in two ways: by theory, starting
from a known distribution function, or by statistics, starting from sample
moments in a sufficiently large sample. For the lognormal, Section 2 took
up the first method. We now propose to show that the sensitivity of the
population moments to rare events has another unfortunate consequence:
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the second method to estimate the population moments is no better than
the first.

3.2 From exhaustive to sequential sample moments

Every form of science used to depend heavily on the possibility of
reducing long lists of data to short lists of “index numbers,” such as the
moments. But Section 5.1 of Chapter E5 argues that computer graphics
decreases this dependence. Moreover, the heavy reliance on moments
seems, perhaps unconsciously, related to the notion of statistical suffi-
ciency. As is well-known, the sample average is sufficient for the expecta-
tion of a Gaussian, meaning that added knowledge about the individual
values in the sample brings no additional information. This is true for
estimating the expectations of the Gaussian but not in general. I always
believed, in fact, that sample moments pushed concision to excess. This is
why my old papers, beginning with M 1963b{E14}, did not simply eval-
uate a q-th moment, but made sure to record a whole distribution.

3.3 The lognormal's sequential sample moment

Given a set of N = max n data and an integer q, the sequential qth sample
moment is defined by

Sq(n) = 1
n �

n

m = 1

Uq
m.

The question is how Sq(n) varies as n increases from 1 to N = max n.

For the lognormal Λ and near-lognormals with EUq < ∞, we know that
Sq(n) does converge to a limit as n → ∞. But Section 3.4 will show that the
sample sizes needed for reliable estimation of the population moments
may be colossal, hence impractical. For reasonable sample sizes, conver-
gence is erratic. With a significant or even high probability, the sample
moments will seem to vary aimlessly, except that, overall, they appear to
increase.

The key fact is that, for large enough q, the event that Uq
m < EUq has a

very high probability, hence also the event that Sq(n) < EUq. Colossal
sample sizes are needed to allow Sq(n) to reach up to EUq.

The nature and intensity of those difficulties depends on skewness. In
the limit σ�1 and EΛ = 1, one has µ = σ2/2, hence µ �1 and
Λ = exp [σ(G − µ)] ∼ 1 + σ(G − µ). That is, Λ is near Gaussian, and one
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anticipates sample moments converging quickly. Low-order moments
confirm this anticipation. However, Λq being also lognormal, the qth
moment of one lognormal is the sample average of a less skewed one.
Since a large enough q makes the parameters σq = qσ and µ = − q2σ2/2 as
large as desired, Λq become arbitrarily far from being Gaussian.

That is, every lognormal's sufficiently high moments eventually misbe-
have irrespective of the value of σ. Since the moments' behavior does not
depend on q and σ separately, but through their product qσ, we set q = 1,
and study averages for a lognormal having the single parameter σ.

3.4 The growing sequence of variable “effective scaling exponents” that
controls the behavior of the sequential moments of the lognormal

The scaling and lognormal distributions are best compared on log-log
plots of the tail densities, but those plots are complicated. To the contrary,
the log-log plot of the density are very simple and give roughly the same
result. An effective α exponent α∼(λ) is defined by writing

d
dλ

log p(λ) = d
dλ

 
 


− log(σ
√
2 ) − log λ − (log λ − µ)

2σ2

 
 


= − 1 − log λ − µ

σ2
= − α∼(λ) − 1.

After reduction to EΛ = 1,

α∼(λ) =
log λ − µ

σ2
= 1

2
+

logλ

σ2
.

From Section 2.2.2, the values of λ that contribute most to EΛq satisfy
 log λ ∼ µ∼ q = σ2(q − 1/2), hence yield an effective α∼(q) ∼ q. For example, the
range corresponding to q = 1 yields an effective α∼(q) ∼ 1. Within a sample
of finite size N = max n, one can say that the behavior of the sequential
Sq(n) is not affected by the tail of the density, only by a finite portion, and
for the lognormal that finite portion corresponds to an effective α∼  that
grows, but slowly.

The existence of an effective α∼  follows from the localization of
moments. An effective α∼  is not defined for the Gaussian, or can be said to
increase so rapidly that small samples suffice to make it effectively infinite.
By contrast, the scaling distribution has a constant α∼ , which is the true α.
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We know that a scaling X makes specific predictions concerning the
distribution of sequential sample moments, and those predictions are
simple and identical in the middle and the long-run. When the q-th popu-
lation moment diverges for q > α, the sequential moment Sq(n) has no limit
for n → ∞, but the renormalized form N− q/α∑Xq

n tends in distribution to a
L-stable variable of exponent α/q and maximal skewness. In particular,
median  

 
N− 1∑Xq

n  is finite and proportional to N− 1 + q/α, and the scatter of
the sample q-th moment, as represented by the ratio of Xq

n to its median,
also tends in distribution to a L-stable random variable.

Why inject the wildness of infinite population moments into a dis-
cussion in which all moments are actually safe and finite? Because the
very same behavior that some authors used to describe as “improper” is
needed to predict about how the sequential moment of the lognormal
varies with sample size. While this behavior is practically impossible to
obtain from direct analytic derivations, it is readily described from a repre-
sentative “effective” sequence of scaling distributions.

For small N, the sample Sq(n) will behave as if the lognormal
“pretended” to be scaling with a very low α, that is, to be wild with an
infinite EΛ, suggesting that it will never converge to a limit value. For
larger samples, the lognormal mimics a scaling distribution with 1 < α∼ < 2,
which has a finite EΛ, but an infinite EΛ2. As the sample increases, so
does the effective α∼(λ) and the sample variability of the average decreases.
It is only as λ → ∞, therefore α∼(λ) → ∞, that the lognormal distribution
eventually acknowledges the truth: it has finite moments of all orders,
and Sq(n) ultimately converges. Those successive ranges of values of λ are
narrow and overlap when σq is small, but are arbitrarily wide and non-
overlapping when σq is large.

But where will the convergence lead? Suppose that Λ is not exactly,
only nearly lognormal. The qualitative argument will be the same, but the
function α∼(λ) will be different and the ultimate convergence will end up
with different asymptotics.

Sequential sample moments that behave erratically throughout a
sample are often observed in data analysis, and must be considered a fact
of life.


