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Rank-size plots, Zipf's law, and scaling

 ✦ Abstract.  Rank-size plots, also called Zipf plots, have a role to play in
representing statistical data. The method is somewhat peculiar, but
throws light on one aspect of the notions of concentration. This chapter's
first goals are to define those plots and show that they are of two kinds.
Some are simply an analytic restatement of standard tail distributions but
other cases stand by themselves. For example, in the context of word fre-
quencies in natural discourse, rank-size plots provide the most natural and
most direct way of expressing scaling.

Of greatest interest are the rank-size plots that are rectilinear in log-log
coordinates. In most cases, this rectilinearity is shown to simply rephrase
an underlying scaling distribution, by exchanging its coordinate axes. This
rephrasing would hardly seem to deserve attention, but continually proves
its attractiveness. Unfortunately, it is all too often misinterpreted and
viewed as significant beyond the scaling distribution drawn in the usual
axes. These are negative but strong reasons why rank-size plots deserve
to be discussed in some detail. They throw fresh light on the meaning
and the pitfalls of infinite expectation, and occasionally help understand
upper and lower cutoffs to scaling. ✦

THIS LARGELY SELF-CONTAINED CHAPTER covers a topic that goes
well beyond finance and economics and splits into two distinct parts.
Hence, the points to be made are best expressed in terms of two definite
and concrete contexts. The bulk is written in terms of “firm sizes,” as
measured by sales or number of employees, but would be unchanged if
firm sizes were replaced by such quantities as city populations. The
second context to be invoked, word frequencies, warrants a digression
from this book's thrust , if only because the straightness of a log-log rank-
size plot is explained most readily and simply in that context.
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Restatement of the probabilists' notation. A capital letter, say U, denotes
a quantity whose value is random, for example the height of man or the
size of an oil reservoir selected at random on the listing of the data. The
corresponding lower case letter, say u, denotes the sample value, as meas-
ured in numbers of inches or in millions of barrels.

1. INTRODUCTION

1.1 Rank-size plots for concrete quantities

A concrete random variable is a quantity that is measured on an
“extrinsic” or “physical” scale. Humans are measured by height, firms by
sales or numbers of employees, and cities by numbers of inhabitants. More
generally, statistical quantities such as “height” and “number of
inhabitants” are originally defined in a non-stochastic context. Their phys-
ical scale serves to rank those random variables by increasing or
decreasing value, through either F(u) = Pr{U ≤ u} or the tail distribution
P(u) = 1 − F(u).

The concrete reality that underlies the notions of F(u) and P(u) can be
also represented in the following alternative fashion. The first step is to
rank the elements under investigation by decreasing height, size, and
number. The largest item will be indexed as being of rank r = 1; the
largest of the remaining items will be of rank r = 2, and so on. The second
step is to specify size, or any other suitable quantity Q, as a function of
rank. One way to specify the distribution of a random quantity is to
specify the corresponding function Q(r).

By definition, Q(r) varies inversely with r : it decreases as r increases.
Granted the possibility of more than one item of equal size, Q(r) must be
non-increasing. This is the counterpart of the fact that F(u) and P(u) are
non-decreasing and non-increasing, respectively.

Special interest attaches to the positive scaling case, when the assertion
that Q varies inversely with r can be strengthened to the assertion that Q is
proportional to the inverse  of r, or perhaps that log Q varies linearly with
log r. Unfortunately, some careless rank-size studies confuse different
meanings of “inverse variation.”

1.2 “Static” rank-frequency plots in the absence of an extrinsic scale

The occurrence of a word in a long text is not accompanied by anything
like “a human's height” or “a city's number of inhabitants”. But there is a
simple and beautiful way out. Even when extrinsic “physical” quantities
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are not present, every random event involves at least one intrinsic quan-
tity: it is the event's own probability.

Thus, in the case of word frequencies, rank-size does not involve the
usual functions F(u) and P(u), but begins with a function Q(r) that gives
the probability of the word whose rank is r in the order of decreasing
probabilities. To some authors, this looks like a snake biting it's tail, but
the paradox is only apparent and the procedure is quite proper. In the
scaling case, log Q varies linearly with log r.

Furthermore, this ranking happens to be justified a posteriori in the
theory of word frequencies introduced in M 1951, sketched in Section 1.2.4
of Chapter E8, and developed in M 1961b. That theory introduces a quan-
tity that is always defined and often has desirable additivity properties
similar to those of “numbers of inhabitants;” it is the function – log p,
where p is a word's probability. By introducing − log p, the ranking based
on frequency is reinterpreted as conventional ranking based on − log p
viewed as an intrinsic random variable. In practice, of course, one does
not know the probability itself, only an estimate based upon a sample fre-
quency.

There are strong reasons to draw attention to a wide generalization of
my derivation of the law of word frequencies. One reason is that it may
bear on the problem of city population via a reinterpretation of the central
place theory. A second reason is that this generalization involves a phe-
nomenon described in the next section, namely a built-in crossover for low
ranks, that is, frequent words and large city population. The reader inter-
ested in the derivation is referred to M 1995f, and the reader prepared to
face an even more general but old presentation is referred to M 1955b.

1.3 Distinction between the terms, Zipf distribution and Zipf law

The term “Zipf law” is used indiscriminately, but the concepts behind this
terms distribution and law are best kept apart. The fairest terminology
seems to be the following one.

Zipf distribution will denote all instances of rank-size relation Q(r) such
that, with a suitable “prefactor” Φ, the expression

Q(r) ∼ Φr− 1/α

is valid over an intermediate range of values of r, to be called scaling
range. This range may be bounded by one or two crossovers, rmin ≥ 1 to
rmax ≤ ∞, to which we return in Section 1.7. Allowing crossovers automat-
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ically allows all values of α > 0. When α < 1, the scaling range need not,
but can, extend to r → ∞ with no crossovers; when α ≥ 1, the scaling range
is necessarily bounded from above.

Zipf emphasized the special case α = 1. If so, Q(r) does not only vary
inversely with r but varies in inverse proportion to r. In the special case
of word frequencies, Zipf asserted α = 1 and Φ = 1/10, which are very
peculiar values that demand rmax < ∞.

Zipf law will denote all empirical cases when the Zipf distribution is
found to hold.

1.4 Zeta and truncated zeta distributions

“Zeta” and “truncated zeta” distributions are the terms to be used to
denote exact statements valid for all values of r.

The zeta distribution. When α < 1, hence 1/α > 1, the function

ζ(1/α) = �
∞

s = 1

s− 1/α.

is the mathematicians' Riemann zeta function. This suggests “zeta
distribution” to denote the one-parameter discrete probability distribution

p(r) = r− 1/α

�
s = 1

to∞s− 1/α
= r− 1/α

ζ(1/α)
= Φr− 1/α.

In the coordinates log r and log p(r), the zeta distribution plots as an
exact straight line of slope − 1/α. Clearly,

⌠
⌡

∞

1
s− 1/αds = α

1 − α
< �

∞

s = 1

s− 1/α < 1 + ⌠⌡
∞

1
s− 1/αds = 1

1 − α
.

When α is near 1, the two bounds are close to each other.

Under the zeta distribution, the relative size of the largest firm is
ζ− 1(1/α). The joint share of the r largest firms is
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ζ− 1(1/α)�
r

s = 1

s− 1/α.

The ratio: sum of sizes of firms of rank strictly greater than r, divided
by the size of the r-th firm, is

 
 

�

∞

s = r + 1

s− 1/α
 
 

r1/α.

As r increases, the sum in braces becomes increasingly closer to the inte-
gral ∫∞r x− 1/αdx, and the preceding ratio becomes

r(1 − 1/α)r1/α

(1/α − 1)
= rα

(1 − α)
.

Truncated zeta distribution. When α < 1 and V > − 1, define

ζ(1/α, V) = �
∞

s = V + 1

s− 1/α = �
∞

1

(r + V)− 1/α.

I use the term “truncated zeta distribution” to denote the two-
parameter discrete probability distribution

p(r) =
(r + V)− 1/α

ζ(1/α, V)
= Φ(r + V)− 1/α.

Plotted in the coordinates log r and log p(r), the tail is straight, of
slope − 1/α, as in the truncated zeta distribution, but this tail is preceded,
for small ranks, by an appreciable flattening that extends to values of r
equal to a few times V.

1.5 Dynamic evolution of a rank-size plot as the sample-size increases

The considerations in Sections 1.1 and 1.2 are called static because they
concern a fixed sample. Some sort of dynamics enters if the rank-size plot
is continually updated as data are drawn from this sample. Let us show
that the examples of Section 1.1 and 1.2 behave very differently from that
viewpoint. In other words, the commonality of structure that seems to be
implied by the term Zipf law is misleading.
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Firms. Create an increasing sample of firms from an industry by
picking them at random. One approximation is to follow a list ordered
lexicographically. As the sample develops, the largest firm will repeatedly
change, and a given firm's rank will increase as new firms flow in. The
rank-size plot will grow by its low rank end. Furthermore, however long a
list of prices may be, it is certainly finite. Therefore, as the sample size
increases, the straightness of the rank-size plot must eventually break
down at the high-rank end. Additional reasons for breakdown will be
examined in the next sub-section.

Words. By way of contrast, increase a sample of words by reading a
scrambled text, or perhaps a book by James Joyce. The most probable
word will soon establish and maintain itself and other words' rank will
gradually settle down to those words' probabilities. Experience suggests
that in most cases the number of distinct words is so extremely high, that
fresh words keep being added as the sample increases. Therefore, the
rank-size plot will grow at its high rank end.

1.6 Large estimated values of α are not reliable, hence not significant

The scaling range from (rmin, Qmax) to (rmax, Qmin). might be reported in the
form of a “number of decades,” defined as the decimal logarithm of either
of two ratios, namely log10(Qmax/Qmin) or log10(rmax/rmin). When α ∼ 1, the
two ratios are close to each other. When α is large and 1/α is small, the
two ratios differ significantly. One is tempted to report the larger of the
two values, log10(rmax/rmin), but the proper value is the smaller. The
reason is that the intrinsic quantity is not r but Q. The issue is discussed in
Chapter E3.

For example, consider the reports of phenomena for which 1/α = 1/4
holds over a seemingly convincing range of 2 decades in terms of r.
Restated in terms of Q, this range reduces to an unconvincing one-half
decade.

1.7 The many forms taken by the crossovers

The difference Section 1.5 draws between the cases of firms and words is
essential from the viewpoint of the width of the scaling ranges from
(rmin, Qmax) to (rmax, Qmin). Let us run through a few examples.

Personal income. Scaling was observed by Pareto and is discussed in
several chapters of this book. But scaling breaks down for large values of
the rank, because small incomes do not follow a scaling distribution. There
is also an operational reason for breakdown: small incomes are neither
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defined nor reported with accuracy. As a result, the log-log rank-size plot
is expected to cross-over for high values of r into a near-vertical portion.
Once again, however, and this is important to the discussion of incomes in
this book, the evidence suggests that scaling holds for unboundedly large
incomes, implying a straight log-log plot for small ranks. An exception is
that the straightness is not expected to hold for r = 1, because, as Section
3.2 will show, the largest value U(1, N) is expected to have extraordinarily
high sample scatter.

Firms. This notion breaks down into artificiality and irrelevance for
very small sizes, because of legal reasons to register or not to register.

City sizes. Both ends of the graph are affected by artificiality, for
example by political boundaries that represent nothing worth studying
quantitatively.

Word frequencies. As already mentioned, Section 1.2.4 of Chapter E8
describes my reasons why one should expect word frequencies to follow
Zipf's law in the form Q(r) ∼ Φr− 1/α. But those reasons rely on limit
theorem of probability and say nothing about small values of r. In
general, the model yields unrelated values of α and Φ, which fail to satisfy
the equality Φ− 1 = ζ(1/α) that is characteristic of the zeta distribution.
When such is the case, a crossover is inevitable. One can define a cor-
rection factor V by the relation

Φ− 1 = ζ(1/α, V),

and use as approximation the truncated zeta expression

Q(r) = Φ(r + V)− 1/α.

In the context of word frequencies, this relation is often referred to as the
Zipf-Mandelbrot law.

Summary. All told, the expectation that one or both ends of the curve
will cross over implies that the estimation of α must often neglect the
values of very low or very high rank.

Analytic expressions for the behavior of a non-scaling distribution beyond the
scaling interval: limitations to their usefulness. Many specialists in curve-
fitting insist that one can account for crossovers by replacing a linear log,
log plot, by the plot of a second-order polynomial. When the second
order is not enough, one moves to a polynomial of higher order.
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A different approach is suggested by a different tradition that is very
strong both in physics and in economics (where it goes back to Pareto; see
(Chapter E2, Section 3.3). In that tradition, one multiplies r− 1/α by
r− 1/α exp( − βr), or perhaps by a factor that varies more slowly than an
exponential, such as r− 1/α/ log r.

Those “all-purpose” traditional corrective terms may improve the fit,
or broaden the range in which a single formula prevails. But they are not
useful, in my judgement, and draw attention away from the impact of
approximate straightness. The only corrective terms I find valuable are
not those imitated from physics, but those suggested by theory.

1.8. The power of words and pictures

Words are powerful. Probabilists who now speak of distribution used to
speak of law, which sounds or “feels” more impressive. “Scaling” distrib-
ution and “power-law distribution” are neutral terms that do not seek
mystery and do not promise much in common between the various occur-
rences of scaling. By contrast, experience shows that “Zipf's law” is a
repulsive magnet to professional students of randomness, but an attractive
magnet for non-professional dabblers of all kind. The same is true of “1/f
noise,” a term that necessity often forces me to both use and fight. Its
near-synonym “self-affine function” makes no ringing statement, but expe-
rience proves that “1/f noise” suggests a single underlying phenomenon,
which happens to be very far off the mark.

Zipf's law as attractor. Zipf 1949 put forward the bold claim that
scaling is the “norm” for all social phenomena, while for physical phe-
nomena the “norm” is the Gaussian. His claims created quite a stir when
I was a post-doc at MIT, in search for unusual facts to investigate.

In 1953, I gained durable praise from linguists for having shown that a
straight rank-size plot for word frequencies is devoid of meaning for lin-
guistics; there is nothing in it for syntax or semantics. However, Zipf's
law proved interesting in probabilistic terms and (as told in Chapter 42 of
M 1982F{FGN}) somehow started me on a path that led, first, to finance
and economics, and eventually to fractals.

Zipf's law as repeller. Very different is the conventional conclusion,
already mentioned in Chapter E4, that is recorded in Aitchison & Brown
1957. On pp. 101-2, we read that “A number of distributions are given by
Zipf, who uses a mathematical description of his own manufacture on
which he erects some extensive sociological theory; in fact, however, it is
likely that many of these distributions can be regarded as lognormal, or



E7  ♦ ♦ RANK-SIZE PLOTS, ZIPF'S LAW, AND SCALING 9

truncated lognormal, with more prosaic foundations in normal probability
theory.” This statement proves two things: a) Aitchinson and Brown did
not feel it necessary to check; b) they did not know what they were
talking about. Few other technically competent persons knew.

As I write in 1997, the “bad vibes” that overselling had created in the
nineteen fifties are forgotten, and Zipf's law is again oversold as a fresh
and mysterious key to complexity or to a “linguistic” analysis of DNA
structure. Those old dreams should crawl back in some hole.

2. FAST TRACK FROM A SCALING DISTRIBUTION TO A
STRAIGHT RANK-SIZE PLOT

The themes of this section will be discussed again rigorously in Section 3.

2.1 From scaling to straight rank-size plots

The quantity U is called scaling when one has the relation

Pr{U ≥ u} = probability that U ≥ u = P(u) ∼ Fu− α.

α is called scaling exponent, and F is a numerical prefactor that includes a
scale factor. The sign ∼ expresses that the relation is valid only for large
values of u. Scaling does not exclude negative values of u, but this
chapter does not dwell on them.

Assimilating the relative number of cases to a probability, a sample
made of N independent drawings from a scaling distribution yields

Nr {U ≥ u} ∼ NFu− α.

The quantity Nr {U ≥ u} becomes the rank r of an item in the ordering by
decreasing frequency, population or income. Once again, the biggest firm
has rank r = 1 and size U(1, N), the second biggest has rank r = 2 and size
U(2, N), etc..

Plotting this expression on transparent paper and turning the sheet
around the main diagonal of the axes will yield u as function of r,

u(r, N) = F− 1/αr− 1/αN1/α.
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Diagrams are not neutral, and different presentations of the same set of
data emphasize one thing or another. The eye tends to be drawn to the
top of a figure. In the plot of Pr{U > u} ∼ u− α, this position contains the
many cases where u is small, while the other cases hide in the tail. In the
plot of u ∼ r− 1/α, the opposite is true. When the values of u that matter
most are the few largest ones, they are seen best in rank-size plots.

2.2 Relative size, the prefactor and criticality of the exponent α = 1

Careful discussions of the rank-size relation consider the relative size

uR(r, N) =
u(r, N)

�
N

s = 1

u(s, N)

.

We shall write

UR(r, N) = Φr− 1/α.

This formula involves a new prefactor Φ for which a numerical value
is often reported with no comment. This implies the belief that Φ is inde-
pendent of N. This strong statement is not obvious at all, in fact, it
expresses a specific and unusual property. An essential role of this
chapter is to tackle the case where the scaling range continues to umax = ∞,
and to give necessary conditions for the prefactor Φ to be independent of
N. One condition is that the exponent should satisfy α < 1. Another con-
dition is 1 < α < 2 combines with EU = 0. In all other scaling cases, we shall
see that Φ is a decreasing function of N.

3. CAREFUL DERIVATION: FROM A SCALING DISTRIBUTION TO
A STRAIGHT RANK-SIZE PLOT

This Section begins informally and becomes rigorous thereafter.

3.1 Typical absolute size as function of rank

A) Select the unit of “firm size” so that the tail distribution is

Pr{U ≥ u} = P(u) ∼ u− α,
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and take a random sample of N firms. A “typical value” of the number of
firms larger than u is the expectation

r(u, N) = Nu− α.

B) Exchange the role of variable and function, rank the firms in
decreasing order of size, and define U(r, N) as the size of the r-th largest
firm in this ranking. Inverting the preceding function for a group of N
firms, the number of those of size U(r, N) or larger, will “typically” be

r ∼ NU(r, N)− α.

C) Draw N firms independently from the same scaling distribution
and rank them as in B). For given r, a “typical value” of U(r, N) will be

u(r, N) = (N/r)1/α = N1/αr− 1/α.

3.2 Rigorous results replacing the “typical” values in Section 3.1

The standard statistical theory of extreme values confirms that, as the
number of firms in an industry increases, the size of the largest increases
proportionately to N1/α. The precise results are as follows.

Theorem concerning weighting by N1/α. (Many references, including Arov
& Bobrov 1960, Formula 19). As N → ∞, the sampling distribution of the
ratio U(r, N)N− 1/α converges to the truncated gamma distribution

limN →∞Pr
 
 


U(r, N)

N1/α
< x

 
 


= 1
Γ(k)

⌠
⌡

∞

x− α
zr − 1e− zdz.

The most probable value of U− α(r, N)/N is r − 1, giving some legiti-
macy to U ∼ (r − 1)− 1/α. More importantly,

limN →∞E
 
 


[U(r, N)]q

Nq/α

 
 


=
Γ(r − q/α)

Γ(r)
when r >

q
α , and = ∞ otherwise .

Double asymptotics. As N → ∞ and r → ∞, the Stirling formula yields

E{[U(r, N)]qN− q/α} ∼ r− q/α.
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For q = 1, this Stirling approximation for r → ∞ agrees with the
“typical value” u(r, N). Moreover, as N → ∞ and r → ∞, the variability
factor EU2/(EU)2 − 1 tends to 0; more generally, U(r, N)N− 1/α becomes for
all practical purposes non-random. This was implicitly taken for granted
in the heuristic argument of Section 2, and has now been justified.

Preasymptotic behavior. The Stirling formula is not a good approxi-
mation until very large values of r are reached.

When α is estimated from the low range portion of the plot, there is a
clear statistical bias. It is due to averaging of U(r, N) for fixed r, therefore
represents a self-inflicted complication due to the use of rank-size plots.

The fact that E{U(r, N)} = ∞ for r < 1/α is unfortunate; it is avoided
using the following result.

Theorem concerning weighting by U(1, N). (Arov & Bobrov 1960, formula
21) As N → ∞, the sampling distribution of the ratio U(r, N)/U(1, N) con-
verges to

limN →∞Pr
 
 


U(r, N)
U(1, N)

< x
 
 


= 1 − (1 − xα)r − 1.

It follows that

limN →∞E
 
 






U(r, N)
U(1, N)





q 
 


=
Γ(1 + q/α)Γ(r)

Γ(r + q/α)

As r → ∞,

limN →∞E
 
 






U(r, N)
U(1, N)





q 
 


∼ Γ
1 +

q
α


r− q/α.

For q = 1, this formula agrees with the ratio of “typical values”
u(r, N)/u(1, N), except for the prefactor Γ(1 + 1/α) which is greater than 1,
and implies that U(r, N)/U(1, N) remains scattered even when it is large.
Since the variability of U(r, N) tends to 0 as r → ∞, the variability of
U(r, N)/U(1, N) solely reflects the scatter of N1/α/U(1, N). Of course, the
moments of N1/α/U(1,N) follow from the fact that N− 1/αU(1, N) follows
the Fréchet distribution Pr{X < x} = exp( − xα).

Clearly,
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limN →∞Pr
 
 






U(r,N)
U(1,N)





α

> y
 
 


= (1 − y)r − 1,

hence,

limN →∞E
 
 


U(r, N)
U(1, N)

 
 


α

= 1
r .

This means that E{U(1, N)− α} is near 1. The sizes of firms of low rank
are very sample dependent, hence are not necessarily close to their typical
values. To avoid this variability, it is best to take a different point of com-
parison.

Weighting U(r, N) by the cumulative size of the firms of rank higher than r.
From the rank-size argument, the ratio of the sizes of the r′ largest firms
and the r′′ largest firms is approximately equal to

1 + ... s− 1/α + ... r′− 1/α

1 + ... s− 1/α + ... r′′− 1/α
.

This expression is the same as for the zeta distribution. It varies con-
tinuously with α; for α near one, and large r′ and r′′, its order of magni-
tude is log r′/ log r′′.

3.3 Additional considerations

Logarithmic plots. Log-log plots involve the expectation of
log[U(r, N)]/ log[U(1, N)] rather than of [U(r, N)/U(1, N)]α. This change
brings no difficulty as long as r is not too small: U(r, N) clusters tightly
around its own expectation, which validates the approximation

E
 
 


log U(1, N)
log U(r, N)

 
 


∼ E[ log U(1, N)]
E[ log U(r, N)]

=
EV(1,N)
EV(r,N)

,

where V(r, N) is r-th largest among N exponential variables V = logeU.

Visual estimation of α from the rank-size plot on doubly logarithmic paper.
Despite the encouraging values of the various expected values reported in
this section, the small r sampling distributions of U(r, N)/U(1, N) are
usually too scattered for complete statistical comfort. As the term of com-
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parison, it is better not to use the size of the largest firm but rather a firm
of rank as large as practical; the larger, the safer. This feature bears on the
problem of the estimation of α. The usual procedure is to fit a straight line
to the tail of log U(r, N) considered as a function of log r, and to measure
the slope of that line. When this is done, the points of rank 1, 2 or 3 are
too sample-dependent, and should be given little weight. The resulting
informal procedure can be approximated in several stages.

The first approximation would be to choose two values of r (say r′′ = 5
and r′ = 20 ), and draw a line through the corresponding points on a
doubly logarithmic graph; the sampling distribution of this estimator of
alpha could be derived from the second theorem of this section.

A second approximation is to choose two couples (r′, r′′) and fit a
straight line to 4 points. The sampling distribution would no longer be
known exactly because the U(r, N) are so defined that they do not provide
independent information about α, but the precision of estimation naturally
increases with the number of sampling points. The commonly practiced
visual fitting amounts to weighting the estimates corresponding to various
couples (r′, r′′), thus eliminating automatically the outlying estimates and
averaging the others. It would be desirable to formalize this procedure
and informal visual fitting should be studied more carefully, but it does
not deserve its shady reputation.

3.4 Total industry size when U > 0 : contrast between the cases α > 1
(hence EU < ∞) and α < 1 (hence EU = ∞)

The size of the industry is the sum of the sizes of the N firms it contains,
∑N

s = 1Us. While the arguments in Sections 3.1 and 3.2 hold for all α, it is
now necessary to distinguish between α > 1 and α < 1.

D1) The case when α > 1, hence EU < ∞. Firm size being positive, EU > 0,
and “common sense” and the tradition of practical statistics take it for
granted that the law of large numbers hold, so that the total industry size is
approximately N times the expected size of a randomly selected firm.

D2) The case when α < 1, hence EU = ∞. The inequality EU < ∞ cannot
and must not be taken for granted: it fails when the random variable U is
scaling with α < 1. Many authors describe this feature as being
“improper,” and failed to face it. But it is not improper, and must be
faced.

Applied blindly to the case EU = ∞, the law of large numbers claims
that the total industry size is approximately infinite. This ridiculous result
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shows that one can no longer rely on common sense that is based on
expectations.

Heuristically, if expectation is replaced by a different “typical” value,
the total industry size is the sum of the above-written typical values
u (r, N)

�
N

s = 1

u(s, N) = N1/α�
N

s = 1

s− 1/α.

The most important feature is that the customary proportionality to N has
disappeared. For very large N, it must be replaced by proportionality to
N1/α. For moderately large N,

u
∼
N1/α�

N

s = 1

s− 1/α ∼ u
∼
N1/α[ζ(1/α) − N1 − 1/α

1/α − 1
] = u

∼
[ζ(1/α)N1/α − α(1 − α)− 1N].

Because of α < 1, the factor in N1/α grows faster than the factor in N.

3.5 Relative shares when U > 0: contrast between α > 1 and α < 1; when
α < 1 and N → ∞, Φ has a limit and the largest addend does not become
relatively negligible

The two paths started in Section 3.3 continue in profoundly different fash-
ions.

E1) The case α > 1. As N → ∞, (due to point C), the r -th largest firm
increases proportionately to the power N1/α, and (due to point D1)) the
sum of all firm sizes increases proportionately to N.

UR(r, N) ∼ N1/αr− 1/α

NEU
= N− 1 + 1/αr− 1/α.

As N → ∞, this ratio tends to zero. This is a familiar and widely used
property; for example, the relative size of the largest of N Gaussian, expo-
nential, Poisson, Gamma, or lognormal variables becomes negligible.

E2) The case α < 1. Heuristics. As N → ∞, both the r-th largest firm
(due to point C)) and the sum of all firm sizes (due to point D2)) increase
proportionately to the power N1/α. It follows that the relative share of the
r-th largest firm behaves roughly like
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uR(r, N) = r− 1/α

�
N

s = 1

s− 1/α

.

When size is measured by the work force, the preceding relation gives
an estimate of the probability that a worker chosen at random is an
employee of the r-th firm.

E3) The case α < 1, continued. Rigorous results. Given its significance,
the argument yielding uR(r, N) must be scrutinized carefully. This
assumption that the numerator and denominator are statistically inde-
pendent as N → ∞ is false, but the conclusion is correct. Darling 1952
shows that UR(1, N) indeed has a distribution that is asymptotically inde-
pendent of N. The formulas look forbidding and are not needed here,
therefore, were put in the Appendix.

3.6 Comments

Chapter E9 will study the lognormal distribution, and show that this chap-
ter's uncomfortable conclusion can be “papered over” by asserting that the
observed facts concern an ill-defined “transient”, but it is better to face it
squarely. Against the background of the usual practical statistics, the fact
that it is possible for Φ to be independent of N is astounding. The usual
inference, once again, is that when an expression is the sum of many con-
tributions, each due to a different cause, then the relative contribution of
each cause is negligible. Here, we find, not only that the predominant
cause is not negligible, but that it is independent of N.

The reader may be reminded of the distinction that Chapter E5 makes
between mild, slow, and wild fluctuations. Most scientists' intuition having
been nourished by examples of mild randomness, the preceding conclusion
is wild and “counter-intuitive,” but it will not go away.

APPENDIX A: THEOREMS CONCERNING LONG-RUN
CONCENTRATION FOR THE WILD SCALING DISTRIBUTIONS

Theorem (Darling 1952). There exists a family of distribution functions,
G(1, α, y), a special case of the distributions G(r, α, y) which will be exam-
ined later, such that
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(A) if 0 < α < 1, limN →∞Pr







�
N

n = 1

Un − U(1, N)

U(1, N)
≤ y





 

= G(1, α, y).

(B) if 1 < α < 2, limN →∞Pr







�
N

n = 1

Un − NE(U) − U(1, N)

U(1, N)
≤ y





 

= G(1, α, y).

(C) if 1 < α < 2 and EU ≠ 0, one has, in addition

limN →∞Pr

 
 
 
 


�
N

n = 1

Un

U(1, N)
≤ yu

∼
N− 1 − 1/α

 
 
 
 


= exp { − [y/E(U)]α}.

The distribution G(1, α, y) cannot be written as a simple analytic

expression but its characteristic function G
∧

(α, z) is known. It is as follows:

If 0 < α < 1, G
∧

(α, z) = 1

1 − α⌠
⌡

1

0
(eizs − 1)s− (α + 1)ds

= 1

eiz⌠
⌡

1

0
eiszs− αds

 

If 1 < α < 2, G
∧

(α, z) = 1

− 1 + izα
(α − 1)

− α⌠
⌡

1

0
(eisz − 1 − isz)s− (α + 1)ds

.

The essential thing about G is that it does not reduce to the degenerate
value 0 as is the case in the distributions cited in Section 5, but has finite
and non-vanishing moments of all orders. It is important to note the fol-
lowing: when 1 < α < 2, then NE(U) must be subtracted from ∑Un in
order to make its expectation even to zero. If 0 < α < 1, one finds

E

 
 
 
 


�
N

n = 1

Un − U(1, N)

U(1, N)

 
 
 
 


= α
1 − α

.



18 RANK-SIZE PLOTS, ZIPF'S LAW, AND SCALING ♦ ♦ E7

Theorems (Arov & Bobrov 1960). These theorems generalize the results
in Darling 1952 to firms of ranks 2, 3, etc.. We have the following:

If 0 < α < 1, limN →∞Pr







�
N

n = 1

Un − U(1, N) − ... − U(r, N)

U(r, N)
≤ y





 

= G(r, α, y),

where the distribution G(r, α, y) relates to the sum of r independent
random variables, each following the law of distribution G(1, α, y); in par-
ticular, its expected value is rα/(1 − α),

If 1 < α < 2, limN →∞Pr







�
N

n = 1

Un − NE(U) − U(1, N) ... U(r, N)

U(r, N)
≤ y





 

= G(r, α, y).

APPENDIX B: TWO MEASURES OF CONCENTRATION AND THEIR
DEPENDENCE ON THE FINITENESS OF EU AND EU2

To establish the usefulness of the rank-size rule and of the preceding
heuristics, it is good to examine their bearing on existing techniques of sta-
tistical economics.

B.1 An index that measures inequality by a second moment

Herfindahl proposed the following statistical index of inequality

H = �
N

s = 1





U(s, N)

�Un





2 
≤ 1.

This index has no independent motivation, and we shall see that its
behavior is very peculiar. It is odd that it should ever be mentioned in
the literature, even solely to be criticized because it is an example of
inconsiderate injection of a sample second moment in a context where
even the existence of expectation is controversial. Three cases must be dis-
tinguished.
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The case where EU2 < ∞. For large N, the law of large numbers applies
to both U and U2 and yields

H ∼ NEU2

N2(EU)2
= 1

N
EU2

(EU)2
.

The ratio EU2/(EU)2 is a normalized second moment, and H is expected to
depend inordinately on the sample size N, in a way that is inextricably
intertwined with its dependence on the distribution.

The case where EU = ∞, in particular where U is scaling with 0 < α < 1.
For large N, the law of large numbers applies to neither U nor U2. To
obtain a first order of magnitude of H, one can take the heuristic step that
uses the rank-size argument. This yields

H ∼ H
∼

= ( a constant )�
N

1

s− 2/α



�

N

s = 1

s− 1/α




− 2

.

As N → ∞, this ratio tends to the positive and finite limit

H
∼

(α) = ( a constant )ζ(2/α)ζ− 2(1/α).

When α is close to 1, which is the value claimed for firm sizes,

H
∼

∞(α) ∼ (a constant )ζ(2/α)(1 − α)2.

The values of H do not depend much on N, but it amplifies the statis-
tical fluctuations around the rank-size typical value.

The case when EU < ∞ but EU2 = ∞, in particular when U is scaling and
1 < α < 2. According to the rank-size argument, Herfindahl's index is of
the order of N− 2 + 2/α and tends to 0 as N → ∞.

According to reports, Herfindahl's index is taken seriously in some
publications. This is hard to believe.

B.2 Lorenz curves

As a measure of concentration, Lorenz proposed the function
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L(x) =
�
xN

s = 1

U(s, N)

�
N

s = 1

U(s, N)

.

This function yields the proportion L(x) of the total size as function of
the proportion x of the number of firms, starting from the largest. It is
taken for granted that the function L(x) is obtained by a simple transfor-
mation from the size distribution F(u) = Pr{U ≤ u}, and that the graph of
L(x), to be denoted by �, is visually “more telling” than either the graph
of F(u) or the corresponding rank frequency graph Q(r).

Skeptics respond that Lorenz curves emphasize a concept of inequality
that involves the whole distribution and may be very misleading because
the data in the bell of the distribution are frequently very incomplete.
However, Lorenz curves also encounter a more serious theoretical
objection. Indeed, it seems to be implicitly assumed that � only depends
as the degree of concentration within a sample, not on the sample size N.
Let us show that this implicit assumption is correct when EU < ∞, but not
when EU = ∞. For scaling distribution, the implicit assumption is correct
for α > 1 but not for α < 1.

A) For distributions with moments of all orders, Lorenz curves are
theoretically unobjectionable. But their reputation for being visually
telling is undeserved.

Indeed, in terms of P(u) = Pr{U > u}, the number of firms of size
greater than u is NP(u) and their share of the sum of all firm sizes is
− N∫∞u sdP(s). One can therefore write relative numbers and relative shares
as functions of u as follows:

x = P(u) and L(x) = − ⌠⌡
∞

u
sdP(s).

This means that both x and L(x) are independent of N, and define a
curve �. When N is small, the sample Lorenz curve will be made up of
segments of straight line; but it will tend towards the well-defined limit �
as N → ∞.

For example, if U is scaling with α > 1, P(u) ∼ u− α and the curve
behaves as follows near the point L = 0; x = 0:
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x(L) ∼ u− α ∼ [(α − 1)α− 1L]α/(α − 1); or L(x) = α(α − 1)− 1x(α − 1)/α.

This behavior has an unfortunate by-product: � may be well-defined
independently of L, yet fails to deliver on its promise of being “visually
telling.” Indeed, if α − 1 is small, a large number of derivatives of the
function x(L) vanish at the point x = 0, meaning that the curve � has a
contact of very high order with the axis x = 0. On computer-drawn Lorenz
curves, the exact order of this contact is not at all clear to the eye. As to
old-time draftsmen, they near-invariably destroyed any evidence of contact
by drawing Lorenz curves with a slope that is neither zero nor infinite
near x = L = 0.

B) When U is scaling with α < 1, sample Lorenz curves are unjustified
and misleading, because they are greatly dependent on sample size.
Indeed, we know that the relative share of the r largest firms is inde-
pendent of N. Therefore, any prescribed ordinate L(x) will be achieved for
an abscissa x that tends towards zero as N → ∞. This means that for
0 < α < 1, the sample Lorenz curve will tend towards the “degenerate”
limit made up of the lower edge and the right edge of the unit square.
Hence, the sample curves for finite N will not be representative of any-
thing at all. In particular, sample Lorenz curves will depend even more
critically upon the thoroughness with which small firms have been tabu-
lated.

When U is scaling near the borderline value α ∼ 1, the convergence of
� to its degenerate limit is very slow, which makes � especially mis-
leading.


