
 

PART II: MATHEMATICAL PRESENTATIONS

This part, written specially for this book, incorporates the substance of reports and
memoranda written over the years. Deliberately, the chapters do not follow each
other in strict logical order, and their contents overlap; therefore, they can, to a
large extent, be read independently of each other. The topics of Chapters E5 and
E6 are largely new but concern themes that long influenced my work. The topic
of Chapter E9 is important in practical statistics. The topics of Chapters E7 and
E8 have long traditions plagued with casual, questionable, or erroneous writings.
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E5

States of randomness from mild to wild,
and concentration from the short to the long run

 ✦ Abstract.  An innovative useful metaphor is put forward in this
chapter, and described in several increasingly technical stages. Section 1 is
informal, but Sections 4 and 5 are specialized beyond the concerns of most
readers; in fact, the mathematical results they use are new.

At the core is a careful examination of three well-known distributions:
the Gaussian, the lognormal and the scaling with infinite variance (α < 2).
They differ deeply from one another from the viewpoint of the addition of
independent addends in small or large numbers, and this chapter pro-
poses to view them as “prototypes,” respectively, of three distinct “states
of randomness:” mild, slow and wild. Slow randomness is a complex inter-
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mediate state between two states of greater simplicity. It too splits more
finely, and there are probability distributions beyond the wild.

Given N addends, portioning concerns the relative contribution of the
addends Un to their sum ∑N

1 Un. Mildness and wildness are defined by cri-
teria that distinguish between even portioning, meaning that the addends
are roughly equal, ex-post, and concentrated portioning, meaning that one
or a “few” of the addends predominate, ex-post. This issue is especially
important in the case of dependent random variables (Chapter E6), but this
chapter makes a start by tackling the simplest circumstances: it deals with
independent and identically distributed addends.

Classical mathematical arguments concerning the long-run (N → ∞)
will suffice to distinguish between the “wild” state of randomness and the
remaining states, jointly called “preGaussian.”

Novel mathematical arguments will be needed to tackle the short-run
(N = 2 or “a few”). The resulting criterion will be used to distinguish
between a “mild” or “tail-mixing” state of randomness, and the remaining
states, jointly called “long-tailed” or “tail-preserving.” This discussion of
long-tailedness may be of interest even to readers reluctant to follow me
in describing the levels of randomness as “states.”

In short-run partition, short-run concentration will be defined in two
ways. The criterion needed for “concentration in mode” will involve the
convexity of log p(u), where p(u) is the probability density of the addends.
The concept of “concentration in probability” is more meaningful but
more delicate, and will involve a limit theorem of a new kind. Long-tailed
distributions will be defined by the very important “tail-preservation
criterion” under addition; it is written in shorthand as PN ∼ NP.

Randomness that is “preGaussian” but “tail-preserving” will be called
“slow.” Its study depends heavily on middle-run arguments (N =
“many”) that involve delicate transients. ✦

THE NOTION OF CONCENTRATION being central to the study of firm
sizes and price changes, this chapter is of direct relevance to economics. It
shows that the economics concepts of short, middle and long-run have
unsuspected parallels in probability theory: they suggest a distinction
between different “states of randomness” that should prove useful in
many fields of science, and also involves new mathematical results that
may have enough intrinsic interest to be worth developing.

Section 1 is an informal introduction, close in style to Part I of this
book. The middle part of the chapter is more technical, yet should interest
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many readers. Section 2 is devoted to long-run portioning and Section 3
to short-run portioning. The more specialized Section 4 proposes finer
states of randomness. Section 5 is even more mathematical: it includes a
proof and tackles some problems raised by the moments, and refers to
“the moment problem” of classical mathematical analysis. The economic
implications of short-run and long-run concentration are explored
throughout the book, and serious flaws of the lognormal, in Chapter E9.

Terminology and notation. Once again, a convention is often used in
this book. When there is no loss of intelligibility and the context allows,
words like “Gaussian,” “lognormal,” “Bernoulli,” “Poisson,” and “scaling”
will be used as common names, to avoid endless and tiresome repetition
of the terms “random variable,” “probability distribution,” “probability
density,” or “density.” In addition, the tail probabilities and densities will
be denoted, respectively, by P(u) = Pr{U > u} and its derivative − P′(u), and
PN(u) = Pr{∑N

n = 1Un, > u} and its derivative − P′N(u).

1. BACKGROUND AND INFORMAL PRESENTATION

The Gaussian distribution is often called “normal,” because of the wide-
spread opinion that it sets a universally applicable “norm.” In the case of
the phenomena studied throughout my life and described in this book,
this opinion is unwarranted. In their case, randomness is highly non-
Gaussian, but it is no longer possible to describe it as “pathological,”
“improper,” “anomalous,” or “abnormal.” Therefore, any occurrence of
normal in this book, as synonym of Gaussian, is the result of oversight, and
I try not to think about the second and third syllables of lognormal.

1.1. The ageless competition between scaling and lognormal fit, and a
motivation for introducing the notion of “states of randomness”

The innovation this chapter puts forward has many roots. One responds
to a situation that plagues statistics and is a common reason for its unpop-
ularity and ineffectiveness. All too often, reliable and competent statisti-
cians split into camps that approach the same body of practically relevant
data, and sharply disagree in their analysis. An example that concerns
random variables is the very old disagreement about the distribution of
income. Pareto claimed that it is scaling, and Gibrat, that it is lognormal
(see Section 3 of Chapter E4, Chapter E9, and other chapters of this book).
Current replays of those disagreements bring in random processes and
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they concern the records of price changes (Chapter E1 and Parts IV and V
of this book.)

Could it be that both camps attempt to prove more than their data
allow? Instead of seeking immediately to specify a distribution or a
process by an analytic formula with its panoply of parameters, one should
perhaps first sort out the possible outcomes into a smaller number of dis-
tinct discrete categories. The basic thought behind this classification is
that, while the notion of randomness is unified from the viewpoint of
mathematical axiomatics, it is of great diversity from the viewpoint of sci-
entific modeling and related statistical tools.

Following this line of thinking, fractals led (first in finance and later in
many other fields) to rather bold conclusions. To implement them, it is
useful to inject a familiar metaphor and the terminology that comes with
it. While a unique theory of physical interactions applies to every form of
matter, the detailed consequences of those unique general laws differ
sharply, for example, according to temperature and to whether the inter-
actions are short-range or long-range. This is why physics has to distin-
guish between several states of matter, whose traditional number is three.

I propose in this chapter to argue that a similar distinction should be
useful in probability theory. In the not-too-distant past, every book of sta-
tistics, as well as nearly every scientist engaged in statistical modeling in
economics or elsewhere, used to deal with a special form of randomness,
which will be characterized as mild. It will also be argued that entirely
different states of randomness must be distinguished and faced. There is
wild randomness exemplified by distributions with infinite variance. There
is also an intermediate possibility exemplified by the lognormal: it is slow
randomness – a term deliberately selected to imply what it says.

When faced with a new phenomenon or fresh dataset, the first task is
to identify its state of randomness.

The implication is that, instead of ranging continuously, random vari-
ables are usefully sorted out in discrete categories exemplified by the
Gaussian, the lognormal and the scaling with α < 2. When the random
variables U are defined by Pr(U > u) = P(u), the state of randomness differs
sharply according to how fast the generalized inverse function P− 1

decreases as its argument tends to 0, that is, according to how fast the
moments Uq increase as q → ∞. (To define P− 1 when P(u) is discontin-
uous, one fills each discontinuity by a vertical interval before the coordi-
nate axes are exchanged.)
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The words mild, slow, and wild were chosen to be short and without
competing technical connotations (discounting that everyday usage tends
to view all randomness as wild). The word “state” is also carefully
chosen. Its existing technical connotations denote gases, solids and
liquids; they are strong, but do not compete with the new usage; even
some of its ambiguities are helpful, as I propose to argue now.

To begin with mildness, it is characterized by an absence of structure
and in the case of random processes by a local level of statistical depend-
ence. That is, diverse parts can be modified without much affecting the
whole. Remarkably, the same properties also characterize a gas. Their
importance will be seen in Section 2 of Chapter E8, when discussing the
legitimacy of random-walk models of scaling.

Wildness, to the contrary, will be shown throughout this book to be
characterized by the opposite qualities: presence of structure and long
dependence. Remarkably, the same properties characterize a solid.

Among the long-recognized states of matter, the third and least-well
understood and explained is liquid. Characteristic of both physical liquids
and slow randomness is a surprising degree of uncertainty in the defi-
nition and many technical imperfections. Consider a glass: it behaves
from many viewpoints as a solid, but physicists know that in “reality” it is
a very viscous liquid. This unresolved problem of physical characteriza-
tion has a surprising probabilistic counterpart in the distribution of per-
sonal income, as seen in several chapters of this book.

Nobody would suggest that income distribution is soft and akin to a
gas: it is clearly hard. What remains to be established is whether the
better metaphor is a “real solid,”or a “very viscous liquid.” Pareto's law
presses the claim that income distribution is scaling, therefore like a solid.
Gibrat's writings press the counter-claim that it is lognormal, therefore like
a very viscous liquid. Chapter E9 will set up a case against the lognormal,
and argue that the above disagreement may be of a kind that cannot be
settled by inventing better statistical methods.

1.2 The fallacy of transformations that involve “grading on the curve”

Before describing the criteria that distinguish the different states of ran-
domness, it is necessary to dispose of a view that amounts to considering
all forms of randomness as effectively equivalent. Indeed, scientists faced
with clearly non-Gaussian data are often advised by statisticians to move
on to a transformed scale in which everything nicely falls on the Gaussian
“bell curve.” In schools, the procedure is called “grading on the curve.”
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When pushed to its logical extreme, the underlying procedure leads to
“grading by percentages.” This transforms any U into a uniform random
variable on [0, 1] defined by Pr{I < x} = x. Indeed, a random variable U
defined by Pr{U > u} = P(u) is simply the non-decreasing transform of I
defined as P− 1(I), where P− 1 is defined in Section 1.1.

Unfortunately, transformation ceases to look attractive as soon as one
faces reality. A first complication, beyond the scope of this chapter, con-
cerns sequences of dependent variables: when each variable is made
uniform, the rules of dependence need not transform into anything simple.

A second complication is this: money is additive, but a transform
such as log (money) is not; firm sizes add up to the size of an industry,
but a transform like log (firm size) is not additive. In pedantic terms, con-
crete economics deals with numerical variables that can be added, not with
ordinal variables that can only be ordered.

A third and most important complication is that real-world distrib-
utions are not known exactly, but approximately. That is, a random vari-
able does not come up alone, but as part of a natural “neighborhood” that
also contains other variables viewed as “nearly identical” to it.

Of enormous significance are the neighborhoods that are automatically
implied in every limit theorem of probability theory. For example, to say
that a random variable tends to a limit, is to say that it eventually enters a
suitably defined neighborhood of the limit. In the usual central limit
theorem, the limit is Gaussian, and the neighborhood is defined solely on
the basis of the central bell, disregarding the tails. Cramer's large devi-
ations theory splits the neighborhood of the Gaussian in a finer way that
does not concern the bell, but the tails. The concrete usefulness of a limit
theorem depends initially on whether or not this neighborhood it implies
is a “natural” one from the viewpoint of a specific concrete situation.

Now we can describe the major failing of the transformation of U into
I : it fails to transform the natural neighborhood of U into the natural
neighborhood of I.

Once again, the example of greatest relevance to this book is the
notion that for some data the best methods of statistics conclude that
 log X is practically Gaussian. This means that the observed deviations
from Gaussianity only concern the largest values of X that contribute a
few percent of the whole. Faith in the significance of the Gaussian fitted
to  log X leads to the recommendation that these exceptional values be
neglected or treated as “outliers.” The trouble is that in many cases the
most interesting data are those in the tail! It follows that differences
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between alternative notions of neighborhood are not matters of mathemat-
ical nit-picking.

In the light of these three “complications,” the suggestion that any var-
iable can simply be made uniform or Gaussian by transformation is ill-
inspired and must be disregarded.

1.3 Portioning on the short or the long-run, and three states of
randomness

The proceeding motivation gave one example of each state of randomness.
It is now time to define those states. Before we do so, recall that gases,
liquids and solids are distinguished through two criteria: flowing versus
non-flowing, and having a fixed or a variable volume. Two criteria might
define four possibilities, but “non-flowing” is incompatible with “variable
volume.” Adding in uncanny fashion to the value of our physical meta-
phor, our three states of randomness are also defined by two mathematical
criteria, both deeply rooted in economic thinking. Given a sum of N inde-
pendent and identically distributed random variables, those criteria hinge
on two notions.

Portioning concerns the relative contribution of the addends Un to the
sum ∑N

1 Un.

The concentration ratio of the largest addend to the sum. Loosely
speaking, concentration is the situation that prevails when this ratio is high.
This idea will, later in this chapter, be implemented in at least two distinct
ways. The opposite situation, prevailing when no addend predominates,
will be called evenness.

The issue must be raised separately on the short- and the long-run,
and it will be seen that concentration in the long-run implies concentration
in the short-run, but not the other way around. Hence, the contrast
between concentration and evenness leads to three principal categories.

• Mild randomness corresponds to short- and long-run evenness.

• Slow randomness corresponds to short-run concentration and long-
 run evenness.

• Wild randomness corresponds to short- and long-run concentration.

In mild and wild randomness, the short- and long-run behavior are
concordant; in slow randomness, they are discordant.

Here is another bit of natural and useful terminology.
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• Taken together, the two non-wild states will be said to define
preGaussian randomness, the counterpart of flowing for the states of matter.
An alternative term is “tail-mixing.”

• Taken together, the two non-mild states will be said to define long-
tailed randomness, the counterpart of fixed-volume for the states of matter.
An alternative term is tail-preserving.

Let us now dig deeper, in terms of finance and economics.

Long-run portioning and the distinction between wild and preGaussian ran-
domness. This distinction concerns asymptotics and the long-run. Exam-
ples are the relative size of the largest firm in a large industry, the largest
city in a large country, or the largest daily price increase over a signif-
icantly long period of time. PreGaussian randomness yields approximate
equality in the limit, as expressed by the fact that even the largest addend
is negligible in relative value. By contrast, wild randomness yields undi-
minishing concentration, expressed by the property that the largest relative
sizes remains non-negligible even in very large aggregates.

The mathematical detail of long-run portioning is delicate and found
in standard references, therefore it must and can be summarized. This
will be done in Section 2. Additional information is found in Chapter E7.

Short-run portioning, and the distinction between mild and long-tailed ran-
domness. The cleanest contrast to the long-run is the very short-run repres-
ented by two items. Given two independent and identically distributed
random variables, U′ and U′′, and knowing the value taken by the sum
U = U′ + U′′, what do we know of the distributions of U′ and U′′? We shall
describe U as being “short-run portioned between U′ and U′′, ” and
wonder whether those parts are more or less equal, or wildly dissimilar.

As a prelude, consider two homely examples. Suppose you find out
that the annual incomes of two strangers on the street add to $2,000,000.
It is natural and legitimate to infer that the portioning is concentrated, that
is, there is a high probability that the bulk belongs to one or the other
stranger. The $2,000,000 total restricts the other person's income to be less
than $2,000,000, which says close to nothing. The possibility of each unre-
lated stranger having an income of about $1,000,000 strikes everyone as
extraordinarily unlikely, though perhaps less unlikely that if the total were
not known to be $2,000,000.

To the contrary, the total energy of two sub-systems of a gas reservoir
is evenly portioned: each molecule has one-half of the energy of the two
together, plus a tiny fluctuation. A situation in which most of the energy
concentrates in one subsystem can safely be neglected.
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Rigorous mathematical argument supports the “intuition” that even
portioning is very unlikely in one case, and very likely in the other.
Indeed, the above two stories exemplify opposed rules of short-run por-
tioning. Even short-run portioning will define mild randomness, and con-
centrated short-run portioning will define long-tailed randomness.

Unfortunately, the details of this distinction are not simple. In addi-
tion, short-run portioning is not a standard mathematical topic. The ques-
tion was first raised and discussed heuristically in Section 2.5 of M
1960i{E10} and again in Section V.A of M 1963b{E14}, but, to my know-
ledge, nowhere else. The first full mathematical treatment, which is new,
will be presented in Sections 3 and 5.

The middle-run. Short- and long-run considerations are familiar in eco-
nomics. They are essential, but, to quote John Maynard Keynes, “in the
long-run we shall all be dead.” Economic long-run matters only when it
approximates the middle-run reasonably, or at least provides a convenient
basis for corrective terms leading to a good middle-run description.

Probability theory also favors small and large samples. Samples of a
few items are handled by explicit formulas often involving combinatorics.
Large samples are handled by limit theorems. Exact distributions for
middle-size samples tend to involve complicated and unattractive series or
other formulas that can only be handled numerically on the computer. In
a way, this chapter proposes to bracket the interesting but untractable
probabilistic middle-run between an already known and tractable long-run
and a very different tractable short-run.

Digression concerning physics. The model for all sciences, physics, was
able for a long time to limit itself to two-body or many-body problems,
that is, small or large aggregates. Intermediate (“mesoscopic”) phenomena
were perceived as hard and only recently did they impose themselves and
physics became strong and bold enough to tackle a few of them. In a few
examples (some of which occur in my recent work), it is useful and pos-
sible to distinguish and describe a distinct pre-asymptotic regime of large
but finite assemblies.

2. WILD VERSUS PRE-GAUSSIAN RANDOMNESS: CLASSICAL
LIMIT THEOREMS DEFINE CONCENTRATION IN THE LONG RUN

This Section is somewhat informal, the technical aspects being available in
the literature, and/or taken up in Chapter E7.
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2.1 Introduction to long run portioning

Probability theory solved long ago the problems of the typical size of the
largest of N addends, relative to their sum, and the problem of distrib-
ution around the typical size. The most basic distinction is based is the
boundedness of the second moment. Of the many possibilities that are
open, the following are the most important.

At one extreme, the addends are bounded, and the concentration is
∼ 1/N. As N → ∞, concentration converges to 0. This last conclusion also
holds when EU2 < ∞. Since the inequality EU2 < ∞ is generally taken for
granted, most scientists view the notion of concentration for large samples
as completely solved by probability theory. In particular, one of the justi-
fications of the role of the Gaussian in science is closely patterned after its
role in the “theory of errors,” as practiced around 1800 by Legendre and
Gauss. It is taken for granted that each chance event is the observable
outcome of a large number of separate additive contributions. It is also
taken for granted that each contribution, even the largest, is negligible
compared to the sum, both ex-ante (in terms of distributions) and ex-post
(in terms of sample values). The economists' technical term for this
premise is “absence of concentration in the long-run,” and here it will be
called “evenness in the long-run.” This premise is widely believed to hold
for all independent and identically distributed addends. In other words,
identity of ex-ante distributions of the parts is believed to lead to evenness
of ex-post sample values.

This common wisdom claims to solve one of the problems raised in
this chapter. Observed occurrences of concentration are viewed as tran-
sients, or possibly the result of strong statistical dependence between
addends.

In fact, and this is the main theme of this chapter and of the whole
book, the common wisdom is simply mathematically incorrect. As sketched
in Section 1.3 and discussed in this section, portioning in the long-run can
take two distinct forms: even, with concentration converging to 0 as
N → ∞ and concentrated, with the largest addend remaining of the order of
magnitude of the sum.

This distinction largely relies on standard results of probability theory.
This book discusses its impact in economics in many places, including in
the reprints on income distribution and price variation, and Chapter E13
concerned with firm sizes.
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2.2 Alternative criteria of preGaussian behavior

The prototype of mild randomness is provided by the “thermal noise” that
marks the difference between the statistical predictions of the theory of
gases and the non-statistical predictions of the older thermodynamics.
Thermal noise consists in small fluctuations around an equilibrium value.
For the “astronomically” large systems that are the (successful) physical
analogs of the economic long-run, those fluctuations average out into rela-
tive insignificance. If such a system is divided into many equal parts, the
energy of the part with the highest energy is negligible compared to the
energy of the whole.

Informal statement. More generally, the form of randomness this book
calls preGaussian is defined by limit asymptotic properties that are best
stated as follows.

• The fluctuation is averaging, or ergodic. The law of large numbers
(LLN) shows that sample averages converge asymptotically to population
expectations.

• The fluctuation is Gaussian. The central limit theorem (CLT) shows
that the fluctuations are asymptotically Gaussian.

• The fluctuation is Fickian. The central limit theorem also shows that
the fluctuations are proportional to 

√
N , when N being the number of

addends. For random processes, an alternative, but equivalent statement
(less well-known but essential) is that events sufficiently distant in time
are asymptotically independent.

More formal questions and answering statements.

Question: Take the sequential sum ∑N
n = 1Un for a sequence of inde-

pendent and identically distributed random variables Un, 1 ≤ n < ∞. Is it
possible to choose the sequences AN and BN and define the notion of “con-
verges to”, so that AN{∑N

n = 1Un − BN} converges to a limit?

An answer that defines preGaussian behavior: Under certain conditions
described in numerable textbooks, a choice of AN and BN is possible in two
distinct ways:

The choice of AN = 1/N and BN = 0 yields the law of large numbers, in
which the limit is EU, that is, non-random.

The choice of the Fickian factor AN ∼ 1/
√
N  and BN = NEU yields the

central limit theorem, in which the limit is Gaussian, that is, random. It
follows that ∑N

n = 1Un is asymptotically of the order of 
√
N .
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The notions of attraction and universality. In many contexts, physicists
have no confidence in the details of their models, therefore distrust the
models' consequences. An important exception is where the same conse-
quences are shared by a “class of universality,” that also includes alterna-
tives that differ (not always slightly) from the original model. Although
the word universality is rarely used by probabilists, the basic idea is very
familiar to them. For example, few scientists worry about the precise
applicability of a Gaussian process, because the Gaussian's domain of
attraction is very broad, and slight changes in the assumptions provoke
slight deviations in the consequences drawn from the model. The domain
of universality of attraction to the Gaussian includes all U satisfying
EU2 < ∞, but also some cases when EU2 diverges slowly enough.

2.3 Exceptions to preGaussian behavior

The preGaussian domain of universality is broad, but bounded. The prop-
erties of being averaging, Gaussian, or Fickian may fail. The failure of any
of these properties defines the wild state of randomness.

Failure occurs when the population variance, or even the expectation,
is infinite, when the dependence in a random process is not “short-range”
or local (contrary to the locality of the Markov process) but “long-range”
or global, or when total probability must be taken as infinite. Most
notably, the scaling variables with α < 2 satisfy EU2 < ∞, and are not pre-
Gaussian.

Wild randomness and practical statistics. The preface quoted the editor's
comments on M 1963b{E14} found in Cootner 1964. They, and countless
other quotes by practically-minded investigators, some of them scattered
throughout this book, show that non-averaging, non-Gaussian, and/or
non-Fickian fluctuations were long resisted and viewed as “improper” or
even “pathological.” But I realized that many aspects of nature are ruled
by this so-called “pathology.” Those aspects are not “mental illnesses”
that should or could be “healed.” To the contrary, they offer science a
valuable new instrument. In addition, a few specific tools available in
“pure mathematics” were almost ready to handle the new needs. The new
developments in science that revealed the need for those tools implied that
science was moving on to a qualitatively different stage of indeterminism.

The editor's comments in Cootner 1964 also noted that, if it is con-
firmed that economic randomness is wild, some tools of statistics will be
endangered. Indeed, tools developed with mild randomness in mind
become questionable in the case of slow randomness. As a rule with
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many exceptions, they are not even close to being valid for wildly random
phenomena, such as those covered by my models of price variation.

Sketch of the domains of universality of attraction to nonGaussian limits. To
be outside of the Gaussian domain of attraction or universality is a great
complication. In particular, each value α < 2 defines its own domain of
universality. In addition, in sharp contrast to the width of the domain of
the Gaussian, each of those domains is extremely narrow and reduces to
the variables for which Pr{U > u} ∼ u− αL(u), where L(u) is logarithmic or at
most slowly varying in the sense that for all h, limu →∞L(hu)/L(u) = 1. The
term L(u) is largely a nuisance, and we shall not invoke it unless neces-
sary.

If Un is in the domain of universality of α < 2, the limit is a random
variable called L-stable, which is widely discussed and used in the papers
reprinted in this book.

In the absence of slowly varying term L(u), the choice of AN is
AN = N1/α for all α, therefore UΣ

N is asymptotically of the order of N1/α. The
choice of BN is NEU when 1 < α < 2, and 0 when 0 < α < 1.

2.4 Comments on the middle-run and slow randomness

Adding new evidence that the world is not a simple place and science is
more difficult than mathematics, the limit theorems of probability do not
really matter, unless they also help describe the middle-run. Unfortu-
nately, the middle-run is complicated, hence the existence of a third
“middle” state did not fully impress itself on my work until a recent
careful look at its foremost example, the lognormal (Chapter E9). Since
industrial concentration is incontrovertible (see Chapter E13), the very fact
that the lognormal is continually proposed to model industrial concen-
tration means that it cannot really be counted as mild. What is it?

On the long-run, it is indeed averaging, Gaussian and Fickian, there-
fore, preGaussian. In the middle-run, however, its “nice” asymptotic
properties are irrelevant and give no hint of the fact that the strict
lognormal yields a “very erratic” sample averages. The statistician who is
invited to examine those averages, and not the distribution itself, should
conclude that those averages behave “as if” the addends were wild. In
other words, a more correct interpolate of the middle-run behavior is
obtained if one does not start with the lognormal, but a wild approxi-
mation to the lognormal. For actual data that are neither exactly
lognormal nor exactly wild, my long-term goal has been to develop view-
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points and techniques that illuminate the middle-run and can be used as
the starting point for improvements.

3. MILD VERSUS LONG-TAILED RANDOMNESS:
CONCENTRATION IN THE SHORT RUN, CONVEXITY OF  log p(u)
AND THE TAIL PRESERVATION RELATION PN(u) ∼ NP(u)

Section 2 divides all forms of randomness into wild – defined by concen-
trated long-run portioning, and preGaussian – defined by even long-run
portioning. Our next goal is to subdivide this second category into two
categories to be called mild and long-tailed. This will be done in stages.

• A first criterion will be based on concentration in mode; it is very
simple, but has many flaws.

• A more intrinsic second criterion of wider applicability will be
based on asymptotic concentration in probability. It will lead to the “tail-
preservation” relation PN(u) ∼ NP(u).

The term slow, is justified by arguments that cast doubt on the accepta-
bility of slow random models in scientific work. It is best to phrase those
arguments in the specific context of the lognormal distribution. This will
be done in Chapter E9.

The tail-preservation relation is not, in itself, new to probability
theory, since it occurs in the classical “extreme value problem.” Indeed,
let the random variables Uj(1 ≤ j ≤ N) be independent and identically dis-
tributed, with the tail probability P(u), and let P∼N(u) be the tail probability
of U∼N = max (Uj). It is well-known that 1 − P∼N(u) = {1 − P(u)}N. In the tail
where P(u)�1 and P∼N(u)�1, we find in all cases that P∼N ∼ NP.

However, the material that follows does not concern the extreme value
problem, it merely injects some considerations relative to extreme values
into the classical study of sums. A striking consequence is that, in this
new context, the tail preservation relation for sums holds for some, but not
all, probability distributions. By ceasing to hold universally, it ceases to be
a trivial property; instead, it takes up a central role in a fundamental dis-
tinction between one state of randomness (mild) and the other states taken
together (long-tailed.)

3.1 The doubling convolution and the short-run portioning ratio

As agreed, we denote the common probability density of
U′ and U′′ by p(u). The probability density of U = U′ + U′′, denoted p2(u), is
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given by the doubling convolution p2(x) = ∫p(u)p(x − u)du. When u is
known, the conditional probability density of u′ is given by the following
expression, to be called “portioning ratio”

 

p(u′)p(u − u′)
p2(u)

.

The denominator is a constant and it remains to study the numerator.

 Min (U′, U′′) and  max (U′, U′′) can be compared in many different
ways. The conditional expectation of U′, knowing U = u, is of no help,
since it is always u/2, and the conditional expectation of min(u′, u′′) is not
given by any manageable expansion.

To the contrary, it is often easy to study the location of the most prob-
able values of min(u′, u′′) and max(u′, u′′), which statisticians call “modes.”
Those locations lead to a criterion based on the convexity of log p(u),
which will serve to define “concentration versus evenness in mode.”

The mode is of little use in probability, but in this instance turns out
to be surprisingly close to being satisfactory. Indeed, a more searching
stage of this study shows that, under suitable additional assumptions, the
integral ∫p(u′)p(u − u′)du′ is dominated by values the conditional density
p(u′)p(u − u′) takes in intervals near the modes, while the remaining inter-
vals have a negligible contribution. The underlying mathematical theorem
concerns concentration “in probability,” but in some cases also holds in
the “almost sure” sense.

The proof of this basic theorem also yields the fundamental “tail-
preservation criterion” written in shorthand as PN ∼ NP. In due time, the
assumption of the basic theorem are bound to be improved. Therefore, I
propose to define “long-tailedness” as meaning “tail-preserving.”

3.2 Sufficient criterion of evenness or concentration “in mode”: the
graph of  log p(u) is cap- or cup-convex for sufficiently large values of u

In many important cases, the maximum of the product p(u′)p(u − u′) occurs
either near u′ = u/2, or near u′ = 0 and u′ = u. Take logarithms and write

∆(u) = 2 log p


u
2


 − [ log p(0) + log p(u)].

When the convexity of log p(u) is uniform for all u, the sign of ∆(u) is
independent of u.
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• The case when the graph of log p(u) is cap-convex, like the
typographical sign 

⋂
. In that case, the portioning ratio is maximum for

u′ = u/2, and portioning is even in terms of the mode.

• The boundary case when the graph of log p(u) is straight. In that
case, the addends are exponential, and the portioning ratio is a constant.

• The case when the graph of log p(u) is cup-convex, like the
typographical sign 

⋃
. In that case, the portioning ratio is minimum for

u′ = u/2 and portioning is concentrated in terms of the mode.

Distributions with uniform convexity of log p(u) suffice to show that
the distinction between mild and long-tailed randomness cannot be identi-
fied with the distinction between even and concentrated short-run por-
tioning.

3.3 Simple examples of uniform convexity

Every Poisson always yields even short-run portioning in mode. When
p(u) = e− γγu/u!, the convexity of log p(u) is that of log u!, which is cap-
convex all u > 0. The portioning ratio is

 

p(u′)p(u − u′)
p2(u)

= e− γe− γ

e− 2γ
γu′γu − u′

(2γ)u
u!

u′!(u − u′)!
.

The non-constant third term is a binomial coefficient that peaks at u = u/2
if u is even, and at (u±1)/2 if u is odd. At those points, the portioning
ratio p(u′)p(u − u′)/p(u) has a maximum. Even portioning was to be
expected: the Poisson distribution rules the number of points of a Poisson
process that fall in an interval of given length.

Every Gaussian yields even short-run portioning in mode. Here, log p(u)
is essentially − u2, which is cap-convex uniformly for all u. The portioning
ratio is

1√
2π

exp
 
 


− u2

2

 
 


1√
2π

exp




− (u − u′)2

2





1√
2π

exp




− u2

2





= 1√
π

exp




−  
u′ − u

2
 


2


.

Thus, a Gaussian is evenly partitioned with a Gaussian “error-term”
for which variance is 1/2, that is, does not depend on u.
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Every scaling yields concentrated short-run portioning in mode for all α.
When p(u) = αu− α − 1 for u > 1, log p(u) is cup-convex uniformly for all
u > 1. The same is true of log p(u) + log p(x − u), and the portioning ratio
is

1  
2

u′ − α − 1(u − u′)− α − 1

u− α − 1
.

It is cup-convex and largest for u = 1 and u = x − 1.

The family p(u) = exp( − uw), is split, the nature of short-run portioning
being dependent on the sign of w − 1. The convexity of log p(u) is, again,
uniform for all u > 0, but here it depends on the sign of w − 1. Portioning
is even for w > 1 and concentrated for w < 1. The family exp ( − uw) is
often praised in the literature for the ability of one analytic expression to
account for very different behaviors, according to whether w > 1 or w < 1.
This versatility can also be interpreted in a negative light, as a form of
insensitivity to profound differences.

3.4 The lognormal and other examples of non-constant convexity of log
p(u); mixed rules of short-run portioning

For many usual distributions, the graph of log p(u) is cap-convex for all u.
But a bell where the graph of log p(u) is cap-convex is often flanked by
one or two tails where the graph is cup-convex. In those mixed cases,
portioning depends on u : it is even for u near the mode (i.e., where p(u) is
largest) and concentrated for large u. Let us examine a few examples.

The Cauchy. Here,

p(u) = 1
π(1 + u2)

and p2(u) = 1
2π(1 + u2/4)

.

Here the convexity of log p(u) changes for u = ±1. Hence, portioning is
in mode even for u < 2, and concentrated for u > 2.

The “Cournot” (positive L-stable density with α = 1/2). Here,

p(u) = 1√
2 π

e− 1/2uu− 3/2, and p2(u) = 2√
2 π

e− 4/2uu− 3/2.

The lognormal. If EU = 1, there is a single parameter σ2/2, and
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log p(u) = − log (σ

√
2π ) − log u − ( log u + σ

2/2)2

2σ2
.

Here, the convexity of log p(u) changes when log u0 = 1 − 3σ2/2.
Hence, portioning is even when u < 2u0, and concentrated when u > 2u0.
When σ2 is large, so that the lognormal is very skew, the bell lies almost
entirely to the left of EU = 1 and its total probability is small. Portioning is
then most likely to be concentrated and the non-mild character of the
lognormal is obvious. When σ2 is small, so that the lognormal is near-
Gaussian with a small tail added, the bell includes EU = 1 and its total
probability is near 1. Portioning is then most likely to be even, and the
lognormal may seem mild.

Note. This example raises an issue of wider applicability. Ostensibly,
portioning in the case N = 2 is a short-run notion. But in the case of near-
Gaussian lognormals, concentration only occurs in very large assemblies.

The log Bernoulli eB. This is the exponential of a Bernoulli; it has a finite
upper bound exp(max B), therefore the limit arguments concerning u → ∞
have no meaning for it. As the sum of two addends approaches 2
exp(maxB), the portioning between the addends necessarily becomes even.

3.5 The problematic gamma family p(u) = uγ − 1e− u/Γ(γ); portioning in
mode is even for γ > 1 and concentrated for γ < 1

The concentration in mode based on the convexity of log p(u) proves
unreasonable in the case of the gamma distribution. In that case, U′ + U′′
is a gamma of parameter 2γ, hence

 

p(u′)p(u − u′)
p2(u)

=
Γ(2γ)

[Γ(γ)]2

u′γ − 1(u − u′)γ − 1

u2γ − 1
.

The exponential special case γ = 1 marks the boundary between two
opposite rules of portioning in mode.

When γ > 1, portioning in mode is even and the maximum at u/2
becomes increasingly more accentuated as γ → ∞. For integer values of γ,
this result was to be expected, because the resulting gamma is the sum of
γ independent exponential variables, therefore becomes increasingly close
to Gaussian.

When γ < 1, to the contrary, portioning in mode is concentrated.
However, this behavior is not due to the tail behavior of the gamma, rather
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to its behavior near u = 0. The tail is shorter in the cap-convex case γ < 1
than in the cup-convex case γ > 1.

In summary, the gamma shows the need of a criterion of “mildness”
that goes beyond the convexity of log p(u).

The multiplicative character of concentration in mode is the gamma case.
For the gamma, W = U′/U is independent of u, and has the beta density

Γ(2γ)[Γ(γ)]− 2wγ − 1(1 − w)γ − 1.

Therefore, the fluctuating term can be described as multiplicative.
Now apply the same argument formally to the asymptotically scaling.
The concentration ratio converges to w− α − 1(1 − w)− α − 1. This limit is non-
integrable near w > 0 and w = 1, implying that for the scaling, w → 0 or 1
as u → ∞. The underlying reason is that in the scaling case, the distrib-
ution of min(u′, u − u′) is independent of u for large u, hence the fluctu-
ating term is not multiplicative but additive.

3.6 Evenness and concentration “in probability,” and the criterion
p2(u) ∼ 2p(u) of tail preservation under addition as defining
long-tailedness

The study of concentration in mode has the virtue of extreme simplicity.
The results are surprisingly adequate, but exceptions must be avoided
without artificiality. The smallness of the number of exceptions is largely
serendipitous, because the criterion based solely on the maxima of
p(u′)p(u − u′) is an extraordinarily crude one. The real question is more
searching: is the relative value U′/u likely to lie in a suitably narrow
neighborhood of the maximum or maxima?

Definition of short-run concentration in probability. This definition is
geared to the case when there is concentration in mode, that is,
p(u′)p(u − u′) is maximum for u′ near 0 and u′ near u. In that case, given a
value of u∼ that satisfies u∼ < u/2 and may depend on u, one can split the
doubling convolution in three parts, as follows

p2(x) = ⌠⌡
x

0
p(u)p(x − u)du = 




⌠
⌡

x∼

0
+ ⌠⌡

x − x∼

x∼
+ ⌠⌡

x

x − x∼




p(u)p(x − u)du

= IL + I0 + IR.
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I propose to describe p(u) as short-run concentrated in probability if it is
possible to select u∼(u) so that the middle interval (u∼, u − u∼) has the fol-
lowing two properties as u → ∞.

• The relative probability in the middle interval Io/p2(u), tends to 0.

• The relative length of the middle interval (u − 2u∼)u does not tend to 0.

This second requirement opens two sub-possibilities.

• When p(u) is only moderately long-tailed, the relative length of the
middle interval tends to 1. The density p(u)p(α − u) concentrated arbi-
trarily tightly around its mode. Concentration in probability is replaced
by a stronger property: almost sure concentration.

• When p(u) is extremely long-tailed, the relative length of the middle
interval tends to a limit, or may have a lower bound > 0 and an upper
bound < 1.

The “tail-preservation criterion.” Section 5.1 will insure that short-run
concentration in probability prevails when log p(u) is smoothly varying,
decreasing and cup-convex and its derivative p′(u)/p(u) tends rapidly
enough to 0 as u → ∞.

In addition to concentration in probability, the same proof yields a
very perspicuous criterion, namely p2(u) ∼ 2p(u). In terms of the tail proba-
bilities P(u) and P2(u) of U and U′ + U′′, this criterion reads

P2(u) ∼ 2P(u).

More generally, writing P(u) and PN(u) for the tail probabilities of U and
of a sum of N variables with the same distribution, one obtains

PN(u) = NP(u).

This criterion expresses that the tail behavior of U is preserved under
finite addition. The notion of tail preservation, first introduced in M
1960i{E10}, recently turned out to be related to classical and seemingly
unrelated considerations in classical “fine mathematical analysis,” to be
described in Section 5.

Rescaling of tails and a property of scaling distribution. When the tail is
asymptotically scaling as in the case of the L-stable distributions, the tail
conservation relation acquires a special meaning. It shows that

 “scale of U” = “scale of U′ × 21/α.”



E5  ♦ ♦ ... AND CONCENTRATION FROM THE SHORT TO THE LONG RUN 21

This result also holds when p(u) = u− αL(u), where L(u) is slowly
varying, that is, it satisfies L(hu)/L(u) → 1 for all h > 0) as u → ∞.

Tail conservation holds for lognormals, but fails to have this special
meaning. Lognormality is not preserved by addition.

3.7 Mild randomness and mixing behavior when  log p(u) is cap-convex

To appreciate the meaning of the criterion PN ∼ NP, let us examine cases
where it does not hold.

The borderline exponential case. Here, ∑N
n = 1U is a gamma variable; there-

fore as u → ∞, PN/P does not tend to the constant N, but increases like
uN − 1.

The case of evenness in mode. When the convolution integrand
p(u)p(x − u) has a maximum at u = α/2, the tail of p2(u) is little affected by
the behavior of p(u) in the tail. But it is greatly affected by its behavior
part-way through the tail. The result is that PN/P can increase very fast.
In the Gaussian case with EU = 0, when N�1, PN/P ∼ 1/[

√
N P], which

grows very fast as u → ∞. Instead of tail preservation, one encounters an
interesting “mixing” behavior whose intensity can be measured by the rate
of growth of PN/P.

3.8 Portioning and the tail-preservation relation PN ∼ NP, when N is a
small integer above 2

In an equilateral triangle of height u, the distances from a point P to the
three sides add up to u, therefore can represent u′, u′′ and u0 in the por-
tioning of the sum u = u′ + u′′ + u0 into its contributing addends
u′, u′ and u0. When the U are exponential, the conditional distribution of P
is uniform within this triangle. When U is mild, the conditional distrib-
ution concentrates near the center. When U is short-run concentrated in
probability, the conditional distribution concentrates near the corners.

The same distinction holds for N = 4, 5 etc.... It is of help in gaining a
better understanding of the problematic gamma family. The γ exponent of
a sum of N gammas is Nγ, which exceeds 1 as soon as N > 1/γ. Therefore,
U can conceivably be called mild if ∑N

n = 1U has a cap-convex log pN(u) for
all N above some threshold. Starting with γ = 2k, where k is a large
integer, evenness decreases until γ = 1. There, a boundary is crossed and
portioning becomes increasingly concentrated.

However, as N → ∞, an altogether different classification takes over, as
seen in Section 3.
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Next, consider portioning of a sum of four addends U1 + U2 + U3 + U4
into two sums of two addends U1 + U2 and U3 + U4. Indeed, even when
 log p(u) is cup-convex for all u, one part of the graph of  log p2(u) is bell
shaped. In the scaling case, the bell continues by a cup-convex tail. In the
gamma case with 1/2 < γ < 1, the tail is cap-convex.

A seeming paradox of immediate practical importance: when PN(u) ∼ NP(u),
the cup-convexity of log PN(u) for large u is preserved for all N; this is true both
when U is wild and when it is preGaussian. Taking the word “addends” as
model, “limitands” is a self-explanatory term for “items” that are made to
tend to a limit. The items may be sets, graphs of functions, or analytic
expressions. Let P(Ln) and P(L) be properties of each limitand Ln and the
limit L = limn →∞ , respectively. The “intuition” that P(L) = lim n →∞P(Ln) is
often wrong. It used to be that it only failed for artificial mathematical
counter-examples, but no longer. Define LN as the graph of the function
log pN(u) relative to the sum of N long-tailed random variables U and the
property P(LN) as asserting that, for all N, the graph LN is cup-convex for
large u. Two possibilities are open: When U is wild, this convexity prop-
erty is indeed preserved in the limit; However, when U is slow, this prop-
erty fails in the limit, since the limit is the graph of log p(u) for the
Gaussian.

4. A MORE REFINED TENTATIVE SUBDIVISION, YIELDING SEVEN
STATES OF RANDOMNESS

The criteria stated in Section 1 and elaborated in Sections 2 and 3 leave
open many conceptual and practical “details.”

4.1 The boundary between mild and long-tailed and “borderline mild”
randomness

Sections 3.3 to 3.6 and Section 4 imply that the exact separation between
the mild and the long-tailed states of randomness is not unique, and
depends upon the definition selected for the notion of concentration.
Within the problematic gamma family (Section 3.6), the convexity of
log p(u) defines a different boundary for each value of N. Granted this
fuzziness, one may as well accept the existence of a transitional state
between proper mildness and proper long-tailedness.
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4.2 Extreme randomness

Wild randomness was characterized by the fact that the largest of many
addends is of the same order of magnitude as their sum. But it is possible
for concentration to be even more extreme. In the example of the tail
probability P(u) = 1/ log u, concentration converges to 1 as N → ∞;
asymptotically, it becomes absolute. The same is true whenever P(u) is a
“slowly varying function,” in the sense that, for all
h > 0, limu →∞ P(hu)/P(u) → 1. Those P(u) define a state of randomness
beyond the wild. I never encountered it in practice.

4.3 The contrast between localized and delocalized moments

Take a hard look at the formula EUq = ∫∞0 uqp(u)du. For the scaling, the

integrand is maximum at the trivial values 0 or ∞. But in non-trivial
cases, the integrand may have a sharp global maximum for some value u∼q
defined by the equation

0 = d
du

(q log u + log p(u)) =
q
u − d log p(u)

du
.

The dependence of u∼q on q is ruled, once again, by the convexity of
 log p(u).

• When  log p(u) is rectilinear, the u∼q are uniformly spaced.

• When log p(u) is cap-convex, u∼q/q is decreasing; that is, the u∼q are
increasingly tightly spaced.

• When  log p(u) is cup-convex, u∼q/q is increasing; that is, the u∼q are
increasingly loosely spaced.

However, knowing u∼q is not enough; one must also know uqp(u) in the
neighborhood of u∼q. The function uqp(u) often admits a “Gaussian” approx-
imation obtained by the “steepest descents” expansion

 log [uqp(u)] = log p(u) + qu = constant − (u − u
∼

q)
2σ

∼ − 2/2
q .

When uqp(u) is well-approximated by a Gaussian density, the bulk of EUq

originates in the “q-interval” defined as [u∼q − σ∼ q, u
∼

q + σ∼ q].

The usual typical examples yield the following results. The Gaussian
q-intervals greatly overlap for all values of σ. The Gaussian's moments
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will be called delocalized. The lognormal's q-intervals are uniformly spaced
and their width is independent of q; therefore, when the lognormal is suf-
ficiently skew, the q-interval and the (q + 1)-interval do not overlap. The
lognormal's moments will be called uniformly localized. In other cases,
neighboring q-intervals cease to overlap for sufficiently high q. Such
moments will be called asymptotically localized.

The notion of localization involves an inherent difficulty. Working in
the “natural” scale is essential to problems involving addition, but here it
is irrelevant. That is, it suffices to show that uqp(u) has a good Gaussian
approximation in terms of either u or any increasing transform v = y(u).

Example of the density exp( − uw). Here, q = wu∼w
q , hence,

∆u∼q = u∼q − u∼q − 1 ∼ q1/w − 1; in addition, σ∼ − 2
q = wqu∼− 2

q , hence, σ∼ q ∼ q1/w − 1/2. It
follows that σ∼ q/∆u∼q ∼

√
q . That is, the q-intervals overlap for all values of

w. (The same result is obtained using the free variable v = log u. )

Example of the density exp[ − ( log u)w]/u. The expression uqp(u)du, if
reexpressed in the variable V = log U, becomes exp[ − (vw − qv)]. One
finds

v
∼ ∼ (q/w)1/(w − 1) and ∆v

∼
q ∼ w− 1/wq(2 − w)/(w − 1),

and

σ
∼

q ∼ w − 1
2(w − 1)

(w − 1)− 1/2q(2 − w)/2(w − 1).

It follows that σ∼ q/∆v∼q ∼ q(w − 2)/2(w − 1). When w > 2, all the moments of
U are delocalized. When w ≤ 2, they are localized. In the lognormal case
w = 2, σ∼ q/∆v∼q is a constant that → 0 as w → ∞ and in the case beyond the
lognormal, w < 2, σ∼ q/∆v∼q decreases as q → ∞.

4.4 A tentative list of seven states of randomness

We see that the “slow” state between mild and wild splits into distinct
states. Altogether, we shall face seven states of randomness, which we
now list, together with examples. Alternative criteria involve the rate of
increase as function of q of the moment EUq or the scale factor [EUq]1/q.)

• Proper mild randomness. Short-run portioning is even for N = 2.
Examples: the Gaussian, the distribution P(u) = exp( − uw) with w > 1, and
the gamma density − P′(u) = uγ − 1 exp( − u)/Γ(γ) with γ > 1.
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Mild randomness is loosely characterized, either by P− 1 increasing near
x = 0 no faster than  log x 

 
, or by [EUq]1/q increasing near q → ∞ no faster

than q.

• Borderline mild randomness. Short-run portioning is concentrated for
N = 2, but becomes even when N exceeds some finite threshold. Examples:
the exponential P(u) = e− u, which is the limit case of the preceding non-
Gaussian examples for w = γ = 1, and more generally the gamma for γ < 1.

• Slow randomness with finite and delocalized moments. It is loosely char-
acterized, either by P− 1 increasing faster than log x  but no faster than
 log x 

 1/w
, with w < 1, or by [EUq]1/q increasing faster than q but no faster

than a power q1/w. Examples: P(u) = exp( − uw) with w < 1, and
P(u) = exp[ − ( log u)λ] with λ > 2.

• Slow randomness with finite and localized moments. It is loosely charac-
terized by either P− 1 increasing faster than any power log x

1/2
 but less

rapidly than any function of the form exp( log x
γ
) with γ < 1, or by

[EUq]1/q increasing faster than any power of q, but remaining finite. Exam-
ples: the lognormal and P(u) = exp[ − ( log u)λ] with λ ≤ 1.

• Pre-wild randomness. It is loosely characterized either by P− 1

increasing more rapidly than any functions of the form exp( log x
γ
) with

γ < 1 but less rapidly than x− 1/2, or by [EUq]1/q being infinite when
q ≥ α > 2. Examples: the scaling P(u) = u− α with α > 2. The power Uq

becomes a wild random variable if q > α/2.

• Wild randomness. It is characterized by EU2 = ∞, but EUq < ∞ for
some q > 0, however small. Examples: the scaling P(u) = u− α with α < 2.

• Extreme randomness. It is characterized by EUq = ∞ for all q > 0.
Example: P(u) = 1/ log u.

4.5 Aside on the medium-run in slow randomness: problems of
“sensitivity” and “erratic behavior”

In the slow state of randomness, the middle run poses many problems.
The case of the lognormal is investigated in Chapter E9, to which the
reader is referred. A more general discussion begins in a straightforward
fashion, but is too lengthy to be included here.

5. MATHEMATICAL TREATMENT OF THE TAIL PRESERVATION
CRITERION PN ∼ NP, AND ROLE OF LONG-TAILEDNESS IN
CLASSICAL MATHEMATICAL ANALYSIS
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This Section, more mathematical in tone than the rest of this chapter,
begins with an important proof and then digresses on some definitions
and references.

5.1 Theorem: the tail-preservation criterion p2 ∼ 2p and short-run (N = 2)
concentration both follow when the function log p(s) is decreasing and
cup-convex and has a derivative that tends rapidly to 0 as s → ∞
Let us repeat the definition of IL, I0 and IL:

p2(u) = ⌠⌡
u

0
p(s)p(u − s)ds = 




⌠
⌡

u∼

0
+ ⌠⌡

u − u∼

u∼
+ ⌠⌡

u

u − u∼




p(s)p(u − s)ds

= IL + I0 + IR.

Bounds on IL = IR. To establish concentration in probability, it suffices
to prove that, as s → ∞, I0/I → 0 but 1 − 2u∼/u does not tend to 0 . But we
shall prove a far stronger result, namely that IL = IR can be approximated
by p(s), in the sense that, given ε > 0, one can select u∼ so that, for large
enough u,

(1 − ε)p(u) < IL = IR < (1 + ε)p(u).

The assumption that p(u) is decreasing yields the following bounds valid
for all u∼.

p(u)⌠⌡
u
∼

0
p(s)ds ≤ IL = IR ≤ p(u − u

∼
)⌠⌡

u
∼

0
p(s)dx ≤ p(u − u

∼
).

The desired lower bound of IL = IR is achieved if ∫u
∼

0 p(s)ds > 1 − ε. This
inequality will follow automatically from the fact that the upper bound
will require that u∼ → ∞ with u.

The desired upper bound is insured if p(u − u∼)/p(u) ≤ 1 + ε. Assuming
ε�1, this reads log p(u − u∼) − log p(u) < ε. Assume that
g(s) = − (d/ds) log p(s) exists and → 0 as s → ∞. Then the desired upper
bound requires u∼ < εg(u). The condition that g(s) → 0 insures that u∼ → ∞
with u, therefore insures the validity of the lower bound to IL = IR.

Examples: The scaling cases p(u) ∼ u− α − 1 yields u∼/u < ε/(α + 1), a con-
stant. The cases p(u) ∼ exp ( − uw) yield u∼ < εu1 − w/w, which increases
with u , while u∼/u < εu− w/w decreases. Now assume that L(u) is slowly
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varying, which means that, for every µ, we have L(µu)/L(u) → 1 as
u → ∞, and consider the density p(u) ∼ exp ( − u/L(u)); the fact that this
density is cup-convex implies that L(u) → ∞; the resulting densities p(u)
yield u∼ < εL(u), which again increases while u∼/u decreases.

Finally, let us check that in the problematic gamma case, the desired
upper bound is not available. This case is an example of
p(u) = exp [ − u − L(u)]; the fact that this density is cup-convex, again
implies L(u) → ∞. Now, u∼ decreases as u → ∞, albeit slowly. Therefore,
the lower bound fails to hold, and the approach is not effective.

Upper bound on I0 . Because of the cup-convexity of p(s)p(u − s), one
has

I0 < (u − 2u
∼
)p(u

∼
)p(u − u

∼
).

The condition u − 2u∼ ≤ u, and the selection of an upper bound for IL = IR
have already insured that p(u − u∼) ≤ p(u)(1 + ε); hence

I0 < (1 + ε)p(u)[up(u
∼
)].

Return to the example of p(s) considered in discussing the upper
bound for IL = IR. Aside from p(s) = exp( − u/L(s), they yield up(u∼) → 0, as
u → ∞. The example p(s) = exp [ − uL(s)] is more complicated and depend
on L(s). Indeed, as s → ∞, log [up(u∼)] ∼ log u − εL(u)/L[εL(u)] behaves
like  log u − εL(u). This expression may converge to − ∞, as for example
when L(u) = ( log u)2; in those cases I0 → 0. But this expression may also
converge to + ∞; in those cases, it does not yield, it is a bound of I0, and
more detailed study is needed to tell whether I0 → 0. Obviously the issue
is far from settled, but this is not the place to pursue the finer study of the
domain of validity of the concentration in probability theory.

5.2 A digression: complications concerning the moments, the moment
problem, and roles of long-tailedness in classical analysis

Thus far in this chapter, the finiteness of the moments was important, but
their actual values and this behavior of EUq as q → ∞ were barely men-
tioned. In the slowly random case with EUq < ∞, this behavior of EUq is a
genuinely hard problem. It is even a topic in what is called “fine (or
hard) mathematical analysis” that repeatedly attracted the best minds.
Unfortunately, the pure mathematical results are not of direct help to
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users: the complications that attract the mathematicians' interest prove to
be a burden in concrete uses.

Convergence of the Taylor expansion of the characteristic function, and a
related alternative definition of long-tailed randomness. It is widely taken for
granted that the characteristic function (Fourier transform)

ϕ(s) = Eeisu = ⌠⌡
∞

0
eisup(u)du

always has the Taylor expansion

ϕ(s) = Eeisu = �iqsq = �iqsq EUq

q!
.

When lim q
√
EUq/q!  exists, this limit is the inverse of the radius of conver-

gence of this Taylor series. (When there is no limit, limit sup q
√
EUq/q!

always exists and is the inverse of the radius of convergence.)

For the exponential, the series expansion does indeed represent the
analytic function ϕ(s) = ∑iqsq = 1/(1 − is). The radius of convergence is 1,
and γ(s) = EeisU.

For the Gaussian ϕ(s) = exp( − 2σ2s2). Here, EUq = 0 if q is odd and
EUq = q!/2(q/2)! if q is even. The formal Taylor expansion has an infinite
radius of convergence, defining exp( − 2σ2s2) as an “entire function.”

But the lognormal yields lim sup q
√
EUq/q! = ∞. The function γ(s)EeisU

is well-defined, but its formal Taylor series fails to converge for s ≠ 0.

There is a strong temptation to dismiss those properties of the
lognormal as meaningless mathematical blips. But they could also provide
yet another alternative definition of long-tailed randomness. To do so, it
is useful, when q

√
EUq/q ! becomes infinite for q ≥ α, to also write lim sup

q
√
EUq/q! = ∞. When this is done, the criterion

lim supq
√
EUq/q! < ∞ versus lim supq

√
EUq/q! = ∞

is a criterion of mild versus long-tailed randomness.

The moment problems and additional possible definitions of long-tailed ran-
domness. The following questions were posed by Thomas Stieltjes
(1856-1894). Given a sequence Mq, does there exist a measure U (a gener-
alized probability distribution) such that EUq = Mq? If U exists, is it
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unique? Stieltjes 1894 gave the lognormal as one of several examples
where U exists, but is not unique. (See also p. 22 of Shohat & Tamarkin
1943). This property was rediscovered in Heyde 1963, recorded in Feller
1950 (Vol 2, 2nd edition, p. 227), and mentioned in studies of turbulence,
including M 1974f{N15}, without suggesting any practical consequence.

The the available partial criteria are either sufficient or necessary, and
are not the same on the line and the half-line. Loosely speaking, each
known criterion is a way to distinguish between short and long-tailedness
the murky border region around mild randomness. The same is true of
the criteria encountered in the theory of “quasi-analytic” functions. Some
criteria are worth mentioning:

Krein implicitly defines long-tailedness by the convergence of
J = ∫∞0 log p(u)(1 + u2)− 1du. Koosis 1988-92 is a two-volume treatise that
describes many problems where the conditions J = − ∞ and J > − ∞ are,
respectively, the correct ways of expressing that the density p(u) is short or
long-tailed. Krein's definition is far more general than the convexity of
 log p(u). It is also a little more restrictive, because of the difference it
makes between the forms − u/ log u and − u/( log u)2 for  log p(u).

Carleman implicitly defines long-tailedness by the convergence of
C = ∑(EUq )− 1/(2q). For a distribution on the positive half-line to be deter-
mined by its moments, a sufficient condition is C = ∞. When U is
bounded, EUq = (umax )

Q, therefore C = ∞. The exponential or the Gaussian
also yields C = ∞. But C < ∞ holds for the scaling and the lognormal.

To conclude, my doubling criterion P2 = 2P is a new addition to an
already overflowing collection. Who knows, perhaps this newcomer may
add fresh spice to an aging mathematical game, or conversely.


