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The gaps between occupied sites on linear cuts of two and three dimensional critical percolation
clusters are found to be closely described as statistically independent, with a universal scaling

distribution close to that of positive Lévy flights.

The moments of the mass distribution of Lévy

flights obey {m*)/(m)* = k![[(e + 1)J*/T (ke + 1), where « is their fractal dimension. Our data
on linear cuts of critical percolation clusters are consistent (within the numerical error bars) with these
predictions. The property of statistical independence of the gaps characterizes the lacunarity of the

percolation clusters as being neutral.

PACS numbers: 64.60.Ak, 05.70.Jk, 61.43.Hv

Nature contains many random fractal structures [1], and
much effort has been devoted to identifying good ways
to characterize them and to divide them into universality
classes. The fractal dimension D, which describes the
scaling of the mass M within a volume of size L, via
M = LP, provides one such characteristic. However,
many different structures share the same value of D
but look very different from each other ([1], Chaps. 34
and 35 [2,3]). A more detailed characterization involves
cutting a fractal structure which is embedded in a d
dimensional Euclidean space with a one dimensional line.
Self-similarity implies that the mass of the fractal dust
of points on the linear cut scales as m = AL®, where
a =D —d+ 1 <1 is the fractal dimension of the cut
[1]. Although the exponent « characterizes the scale in
all the measurements, the amplitude A depends on the
process (A is not the same for all fractals for which
the cut has dimension «), fluctuates among different
random realizations and between different linear cuts,
and may even oscillate as a function of InL for a given
realization [4]. These variations result from the presence
of empty holes of different sizes, and are associated with
the concept of lacunarity [1].

A nontrivial consequence of self-similarity is that the
moments of m scale as

(m*y = upL*®, (1

with the unifractal exponents ke and with u, = (A%).
The cumulants (A*). and, particularly, (Am?)/{m)* =
(A%)./{AY* = pa/pi — 1 have been used to quantify
mass lacunarity: large (small) values of this ratio corre-
spond to a less (more) uniform mass distribution [1,4].
Fractal models with small mass lacunarity have been
shown to relate to standard analytic continuations of
Euclidean dimensions [3].

Starting from a point on the line which belongs to the
structure, consider the length of the nearest gap, that is,
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the distance 7; to the next such point along the line, and
similarly the lengths ¢; between consecutive more distant
gaps. By a general theorem on fractals, the distribution
of t; is Pr{; > t} ~ t~% ([11, p. 78). Our simulations on
critical percolation clusters, presented below, confirm this
prediction. Lacunarity involves the complete distribution
of points along the linear cut, including the possible in-
terdependence between successive gaps. Statistically in-
dependent gaps characterize the Lévy dust (stopovers of a
positive Lévy flight that always moves to the right). This
case was selected [2,3.6] as defining a neutral lacunar-
ity, i.e., the boundary between high and low lacunarity,
as reflected, e.g., by negative and positive antipodal corre-
lations, respectively [3]. Since the gap lengths of fractal
dusts have infinite expectation, correlation is not usable
in their study and special methods were brought to bear.
For critical percolation clusters, a test of antipodal corre-
lations [3] favored asymptotic independence, which was
approached slowly (from the negative side) as the system
size increased. The goal of this Letter is to report two
additional tests that support the notion that a cut through a
critical percolation cluster is modeled well by a Lévy dust
of dimension &« = D — d + 1, where D is the fractal
dimension of the cluster. Just like Lévy dusts, critical
clusters exhibit long range correlations. Therefore, the
investigations in [3] and in this paper demonstrate an im-
portant new feature of the correlations present in perco-
lation clusters: within small deviations— which may be
due to sampling fluctuations (e.g., averages being domi-
nated by rare events), slow finite size convergence or
other systematic errors—they are compatible with inde-
pendent gaps. This conclusion yields a variety of quanti-
tative predictions involving the distributions of these gaps.

To study dependence, we renormalize the gaps by
putting g successive gaps together. The length of a “g
gap” i8 x, = ) ;-1 1; = g, and we consider the proba-
bility N,(s) that x, = s. If the {t;}’s were independent
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identically distributed random variables, then a gener-
alization of the central limit theorem implies that, for
q,s > 1, N,(s) approaches a stable distribution [7,8] de-
scribed by the scaling form

N,(s) = (yg) VoF,[(s — 8¢) (yg)"V/*],
Asigs s ) N2

Here, the scale factors y and § are nonuniversal, but F,
is a universal scaling function determined completely by
the fractal dimension o. When the independent variables
t; have a finite variance, then the central limit theorem
yields the Gaussian distribution, i.e., Eq. (2) with & = 2.
In contrast, for self-similar (fractal) dusts with « < 1,
Ni(s) decays with the power law s~¢~!. In this case we
expect N, also to decay as s~%~! for sufficiently large s,
and to have some nontrivial structure when s becomes of
order q”“ {7 8]. Speciﬁcally, in this case one has
S l)k 1
Folu) = — Z A

TU

sin(rka)T(ka + Du~*e,

3
where I'(x) is the gamma function. These results also
imply that, for a stable distribution, the mass amplitudes
A obey the Mittag-Leffler distribution [6,9] with the
universal amplitude ratios

Ap = ue/pf =R [T(a + DI/ Tha +1). @)

The present Letter considers critical percolation clus-
ters, at the percolation threshold p., which have become
an excellent test ground for studying physics on random
fractal structures [10]. Two of the present authors have
measured the antipodal correlations in two dimensional
(2D) percolation clusters, and found them to be slightly
negative and decaying to zero for large samples [3]. This
decay was interpreted as indicating asymptotic neutral la-
cunarity. However, this measurement is somewhat indi-
rect; a much clearer check of the dependence along the
linear cut is obtained by comparing the mass distribution
with the predictions based on stable distributions for the
reference positive Lévy flight. The present Letter reports
on measurements of N,(s) and of the A;’s for linear cuts
of critical percolation clusters in two and three dimen-
sions; they turn out to be closely described by Eqgs. (1)-
(4). This is strong evidence that consecutive steps along
linear cuts of such clusters are indistinguishable from in-
dependent. Thus it seems that the universality class of
stable distributions, which includes the Lévy flights, can
also describe critical percolation clusters. This opens the
possibility of using this universal distribution to calculate
other percolation properties.

Our numerical work began by testing Egs. (1) and (4).
We generated the percolation clusters at p. using the
Leath algorithm [11], starting with a single occupied site
in the center of the lattice of size (2Lmax + 1)¢, and
continuing the growth until the cluster touched one of the
boundaries. In order to generate large statistics, several
lines, both horizontal and vertical, were analyzed for each
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realization of the cluster, collecting data only for those
horizontal (vertical) lines for which the point at x = 0
(v = 0) (zeroth incident) was occupied. For each such
line we counted the mass m as the number of the occupied
sites within a linear segment of length L, but excluding
the zeroth incident point.

Figure 1 shows the average mass for cuts on the square,
triangular, and 3D simple cubic lattices, at criticality (that
is, for p, = 0.592746 [12], 0.5, and 0.3116 [10], respec-
tively), as a function of the linear size L (lattices with
300012 and 1025° sites). Except for finite size effects
when L approaches L., the data are consistent with
Eq. (1), and the slopes agree with & = D — d + 1 for
percolation clusters, for which one expects the asymptotic
values D = 91/48, 2.53 in 2D, 3D [10], as shown by the
dashed lines. Quantitative measurements of the logarith-
mic local slopes allow errors of =0.006 and =0.02 on the
measured a’s. Since we believe in the asymptotic value
D — d + 1, we attribute this scatter to numerical
fluctuations, e.g., due to finite sampling. Similar behavior,
with exponent ke, was observed for the higher moments
of the mass, confirming the unifractal mass distribution of
the cuts (data not shown).

The analysis of the moment ratios A; turned out to be
complicated because of the finite size effects: we need to
extrapolate both L and L,y to infinity, keeping the ratio
L/Lax very small. In practice, both 1/L and L/Lyay are
finite, and the competition between them results in “U”-
shaped curves when the data for A; are plotted as a func-
tion of 1/L (as done in the insets in Fig. 2). We analyzed
these data assuming Ai(L,Lyax) = Ap + ap/L* +
bi(L/Lyax); this simple scaling predlcts that the minima
scale as min[Ax(L, Lmax)] = Ag + a;L %, where z =
xy/(x + y). We find our data to be compatible with
the theoretically reasonable values x = y = 1 and there-
fore also with z = 1/2. For example, the extrapolation
of A, using z = 1/2 is shown in Fig. 2(a) [2(b)] for the
square [triangular] lattice. We also tried several alterna-
tive analyses, and all gave Slr%lag results, leading to
our final estimates of A} = 1.096 = 0.015,
1.26 = 0.04,1.50 £ 0.06 for k = 2,3,4, respectively.
The error bars account for the difference between the
two lattices and especially the spread of the extrapolation
results between the different methods of analysis. The
estimate ranges include the theoretical predictions for the
stable distribution for this value of a [see Eq. (4)]. for
which Ay = 1.108,1.292, 1.561, especially if one notes
that the error bars on « also imply error bars on these

“theoretical” values. (For example, the range of “mea-
sured” « implies values of A, between 1.101 and 1% 114)
Similar analysis of the 3D data gives Ak Pl
1.53°210.04, 290 0:20;6.3+= 05, for 234
again including the moments of the stable distributions:
for @ = 0.53, Eq. (4) yields A; = 1.534,2.957,6.648.
The errors in « again add some uncertainty to the latter
values. Given the difficulties in finite size extrapolation,
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we conclude that our data show no observable deviations
from those of Lévy flights.

We next turn to the distribution N,(s). We first note
that F, (1) &« u=2 ! for u > 1. (This can be seen heuris-
tically, e.g., by assuming a power law decay for F, cal-
culating (gq) = (m) = >0, qN(L)/[X5_, Ny(L)] with
fixed, large L, and requiring that {(m) « L®.) For very
small u, the probability to find g consecutive occupied
sites on the line equals approximately pf , with a combi-
natorial prefactor which may involve a power of ¢ or at
least a multiplicative constant. Keeping only the expo-
nential accuracy, one can write N,(g) = pé. Using the
scaling form of Eq. (2), a change in variables yields the
asymptotics for u < 1,

InFu(u) = —(Cu)?/le= D), (5)

with C = [—In(p.)/y]@ Ve /(1 — ). It is satisfac-
tory to note that these percolation arguments capture es-
sentially the correct asymptotics for the general family of
the stable distributions F, [7,13].
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FIG. 1. Log-log plot of the average mass (dots) versus linear
size L for the (a) square (upper points) and triangular (lower
points) lattices, (b) 3D simple cubic lattice. The dashed lines
in (a) and (b) have slopes 43/48 and 0.53, respectively.

To check Egs. (2) and (3) quantitatively, we calculated
first the distribution N,(s) for percolation cluster cuts
on the square and triangular lattices. Figures 3(a) and
3(b) show the excellent data collapse of N,(s)(yq)'/®
for these systems, as predicted in Eq. (2). Furthermore,
the observed data collapse also supports both asymptotics
as discussed above [in 3D, in Fig. 3(c), the small u
asymptotic form contains an additive constant to Eq. (5),
representing the leading correction to that limit]. In this
figure we have chosen scale and location parameters (6
and y) so that the measured scaling function matches
the stable distribution F,. Indeed, choosing y = 1.8
and § = —045 (y = 3.1, 6§ = —1.7) for the square
(triangular) lattice gives a reasonable fit to F, [see Eq. (3)
and solid lines in Fig. 3]. In particular, the data for the
triangular lattice fit excellently with the stable distribution.
These values of y and & were fixed using the eye, by
choosing the best looking fit with F,. Some quantitative
measure of the quality of the fits, and especially of the
consistency of the theory, can be gained by noting that
the universality of F, implies the universality of the
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FIG. 2. The extrapolation of A, for the (a) square, (b)
triangular lattice, by plotting the minima of A, versus L_l/2.
The insets show the “U”-shaped raw A, plotted versus

1/L for L., = 250, 1000, 8000 (from top to bottom).
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FIG. 3. The scaled distribution (y¢)"/*N,(s), « = D — d +
1, measured from the percolation cluster at p. on the (a)
square, (b) triangular, and (¢) 3D simple cubic lattice. Markers
denote different values of ¢: ¢ = 3,5,...,19 in (a), (b), and
g =3.4,...,11 in (c). Note also different scales in (a), (b),
and (c). The dashed lines show the asymptotic behavior for the
scaling function: the right-hand side line has slope —a — 1,
and the line on the left represents Eq. (5). The solid line is the
stable distribution of Eq. (3).

coefficient C. Indeed, the values of C for the square
(C = 1.43) and triangular (C = 1.37) lattices are within
4% of each other. Furthermore, these values are also
close to the exact value for Lévy flights, C = 1.452.

Our simple cubic lattice results yield similar data
collapse for N,(s), as depicted in Fig. 3(c). The quality
of the data collapse is less good than in 2D, because we
had to use relatively small system sizes (Lpax = 512).
This may also be the reason for the worse agreement
with the stable distribution asymptotics. Despite these
apparent finite size effects the observed data collapse
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for 3D percolation, as well as the fit with the stable
distribution, seems consistent with Egs. (2) and (3).

In conclusion, we find that linear cuts of two and three
dimensional critical percolation clusters have almost inde-
pendent gaps, hence may be described using the same uni-
versal class as positive Lévy dusts, with the corresponding
stable distribution, Egs. (1)—(4). This suggests that the la-
cunarity of percolation cluster is very closely neutral. It
would be interesting to check the conjecture that this neu-
trality is, in fact, exact. We hope that similar methods can
be used to calculate other percolation properties, and that
this Letter will stimulate similar studies on other fractal
structures, and more numerical and theoretical work di-
rected to understanding the origin of this independence.
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