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THE process of diffusion-limited aggregation (DLA) is a common
means by which clusters grow from their constituent particles, as
exemplified by the formation of soot and the aggregation of
colloids in solution. DLA growth is a probabilistic process which
results in the formation of fractal (self-similar) clusters. It is
controlled by the harmonic measure (the gradient of the electro-
static potential) around the cluster’s boundary. Here we show that
interactive computer graphics can provide new insight into this
potential distribution. We find that points of highest and lowest
growth probability can lie unexpectedly close together, and that
the lowest growth probabilities may lie very far from the initial
seed. Qur illustrations also reveal the prevalence of ‘fjords’ in
which the pattern of equipotential lines involves a ‘mainstream’
with almost parallel walls. We suggest that an understanding of
the low values of the harmonic measure will provide new under-
standing of the growth mechanism itself.

The DLA model of Witten and Sander' captures the essential
fractal aspects of a wide range of physical phenomena®~’, such
as particle aggregation, dielectric breakdown, viscous fingering
and electrochemical deposition. In DLA growth, an ‘atom’
executes Brownian motion until it hits, and becomes attached
to, the curve that bounds a given ‘target’ or ‘seed’. Another atom
is then launched, and the whole process repeats. Initially, the
growth rule and the pattern are very simple, but both become
extremely complex in time. The distribution of hitting points of
the atoms on the boundary of a fixed pattern becomes increas-
ingly irregular and complex with repeated application of the
rules. Simultaneously, the pattern becomes more complex (Fig.
1). Overwhelming evidence from computer simulations'™ indi-

FIG. 1 ‘Cobwebs’ of very low potentials near a
cylindrical cluster of diffusion-limited aggregation.
The vertical cylinder base is to the left.
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cates that these patterns are near self-similar fractals®, meaning
that their complication is about the same at all scales of observa-
tion that are sufficiently above the scale of the atom.

The distribution of the hitting points on the target’s boundary
is the harmonic measure, p (ref. 9). This measure is obtained
by solving the Laplace equation for the (electrostatic) potential,
the boundary of the cluster being put at zero potential and a
‘circle at infinity’ being put at unit potential. The gradient of
the potential at a point P of the boundary defines the harmonic
measure w(P) at P. It is approximated by the potential at the
lattice point nearest to P (ref. 10), and is normalized to add up
to one. The study of the laplacian potentials and their harmonic
measures has been enriched by the example of DLA, because
the process creates its own boundary conditions. The difficulties
encountered in analytical approaches have made DLA a chal-
lenge in theoretical physics®”»''"'* and in pure mathematics.

Figures 1, 2 and 3 show half of one of the many clusters we
have grown on a cylindrical lattice, the initial target being the
cylinder base. The many clusters drawn on a lattice in the original
circle geometry™'°, in which the initial target is a cell in a square
lattice, look similar (see cover figure). The cylindrical cluster
shown in Figs 1-3 was grown to a height equal to its base
L=512, and contains ~30,000 atoms. Once the cluster is
obtained, the custom has been to solve the discrete Laplace
equation'® on the original lattice on which DLA has been grown.
But in the resulting illustrations, the potential cannot be seen
with sufficient resolution in the many narrow ‘fjords’. We there-
fore solved the Laplace equation on a lattice that was twice as
fine. This equation was solved iteratively and the relative compu-
tation error was ~0.01.

Figure 1 and and the cover figure illustrate our first finding.
As is usual in this field®, each atom is coloured to indicate the
time it joined the cluster. In the background, rendered in black,
the potential is above a certain threshold. Elsewhere, the *white-
ness’ of the background increases with —log (potential). The
low-potential zones look like ghostly ‘cobwebs’ extending to
spatial scales larger than the atoms. Many occur in the bottom
of fjords that may be short, but are narrow. Their location is
very sample-dependent, and in many clusters they appear
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between young growing branches positioned near the top of
very large trees. The very bright and localized spots seen in Fig.
1 seem irrelevant to the understanding of the structure of DLA
above the atomic level, and our conclusions do not depend on
their presence or absence.

Figure 2 is another representation of the data in Fig. 1. The
smallest potentials from 107> to 107" are in red, and the
potentials between 107'° and 107'7 are in white. The domains
of lowest potential are conspicuously absent near the base of
the tree.

The rendering used in Fig. 3 is borrowed from the ‘zebra
stripe’ illustrations of the potentials around Julia or Mandelbrot
sets'®. Here, the logarithm of the potential is evaluated in base
b=+10, and odd and even values of the integer part of
—log, (potential) are plotted in black and white. Given two
points not too close to the boundary, one measures the change
in —log,, (potential) by counting ‘doublets’ made of one black
and one white stripe.

There is a stark difference in the structure of the trees formed
by the fjords and those formed by the clusters. The most striking
feature is the abundance of fjords through which the potential
field has near constant width, despite the fractal shape of the
walls. A stack of near uniformly spaced binary stripes provides
a smoothed inner approximation of such a fjord. Rectangular
fjords with parallel walls have been considered (for example,
in ref. 16), but only because they are easy to treat analytically.
Our figures suggest that one could almost characterize DLA
clusters as branching just enough to ensure fjords in which the
potential exhibits a ‘mainstream’ with nearly parallel walls,
including fjords that are narrow and surprisingly long. Our
observations based on zebra striping fit nicely within the mathe-
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FIG. 2 Low-potential regions around part of a
cluster. The smallest value of the growth probabil-
ity occurs at the lowest point of the largest red
domain.

FIG. 3 Equipotential lines around cluster. Each
combination of one black and one white zebra
stripe marks a fall in the potential by a factor of
ten.

matical advances of Carleson and Jones'” concerning Laplacian
potentials around fractal boundaries.

Although the location of the smallest growth probabilities in
DLA does not seem to have been discussed explicitly in the
literature, in our experience there is a widespread expectation
that the lowest potentials should be concentrated near the initial
seed. It is well known, and follows from a theorem by Carleson
and Jones'” that if DLA were exactly self similar, the harmonic
measure would be smallest at the bottoms of the deepest fjords.
The effects we report therefore express deviations from exact
self-similarity. They do not originate from branching hierarchies,
but from the ubiquitous geometric fluctuations, which result in
narrow fjords when branches fail to fan out and instead run in
parallel or tend to close in on each other.

The reasoning behind the expectation concerning the smallest
probabilities is that the initial seed becomes increasingly
‘screened’ as the cluster grows: at each new stage of screening,
the harmonic measure p is multiplied by some random factor
<1, adding some positive term to —log w. This initial step is the
very basis of the original multiplicative multifractals'®. Because
the points near the initial seed are subject to the most stages of
screening, it seems natural to expect them to correspond in all
cases to the largest values of —log w. But this assumes that the
increment of —log u contributed by each stage of screening has
a finite expectation, which is not a safe assumption. On the
contrary, our observation that a few stages of screening can be
as effective as many (because there are minima in short fjords),
combined with extensive numerical work to be reported else-
where, points toward an infinite expectation value for the
increments of —log u in models of DLA. It follows'®!*-2! that
the so called ‘thermodynamic’ distribution function f(«) is
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left-sided. Here a is the Holder exponent, @ = —log p/log L.
We therefore believe that left-sidedness is not a pathology related
to ‘old wood’ near the initial seed, but a genuine aspect of fractal
growth in DLA and hence physically significant. ‘Thermody-
namic’ implies that f(«) is an asymptotic concept. When f(a)
is left-sided, however, the convergence to this asymptote is not
only slow but ‘singular’*®*', meaning that even if a cluster is
very large, its ‘finite size’ f(a) differs in shape from the
asymptote. This issue will be discussed elsewhere.

Much of the research in fractal geometry has been done, and
the results discussed, using graphical representations®. The abil-
ity to graph clusters resulting from DLA and related processes
has been crucial to the progress in this field®. Nevertheless, we
believe that this path deserves to be followed much farther.

Potentials have been plotted before (refs 22-25 and P. Meakin,
unpublished work) but the plots were, in those cases, intended
solely to illustrate already known facts.

Here we have discussed only the observations from a careful
interactive study of the graphics, and some implications for the
theoretical understanding of DLA. Our quantitative analysis of
DLA will be reported elsewhere. Combining the potential field
and the cluster has emphasized the interplay between the two,
revealing new properties, and, we feel, will lead to a better
understanding of fractal growth.

Note added in proof: We have now done the experiments using
‘off-lattice’ aggregates. The results confirm those reported
here. O
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