
 

Translated from Comptes Rendus (Paris) 278A, 1974, 289-292 & 355-358 N16

Iterated random multiplications and
invariance under randomly weighted averaging

•Chapter foreword. First mention of the Legendre transform in the
context of multifractals. This paper's original had few readers: it was in
French, was overly concise, and appeared to be a summary of M
1974f{N15}.

Actually, it was written after M 1974f{N15} and went beyond it on
several accounts. Most significantly, as mentioned in Section N2.2, this
paper includes for the first time an argument that became the basis of my
approach to multifractals: Indeed, an argument reproduced in French in
Chapter N2, Section 5.5.1, injected the function “f(α)” and the Legendre
transforms via the Cramèr theory of large deviations of sums of random
variables. This method preceded the alternative approach due to Frisch &
Parisi 1985 and Halsey et al. 1986. Details are found in Chapter N2 and
the Annotations on Section 21 of this chapter. •

 ✦ Abstract.  The iteration of random multiplications yields new random
functions that are interesting theoretically and practically. For example,
they represent intermittent turbulence, M 1974f{N15}, and the distribution
of minerals. This paper also generalizes the stable random variables:
Lévy's criterion of invariance under non-random averaging is replaced by
the criterion of invariance under randomly weighted averaging. ✦

1. Construction of a multiplicative measure

Consider a sequence of “weights” W, which are independent and iden-
tically distributed random variables (i.i.d. r.v.'s). We shall write
F(w) = Pr {W < w}. The base is a given integer b > 1, the first b weights are
denoted by W(i1), 0 ≤ i1 ≤ b − 1, the following b2 weights by W(i1, i2). etc.
Let t be a real number in the interval ]0, 1], expanded in base b in the form
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t = 0, i1, i2, ... Starting from X′0(t) ≡ 1, the sequence of random densities
X′n(t) will be defined iteratively as

X′n(t) = W(i1)W(i1, i2)...W(i1, i2, ..., in).

Let Xn(t) = 
∫t0

X′n(s) ds. We shall primarily study the random function (r.f.)
X∞(t) = limn →∞ Xn(t). However, in the case where X∞(t) itself is degen-
erate, we shall instead study Y∞(t) = limn →∞ Yn(t), where Yn(t) = Xn(t)/An
and An is an appropriate normalizing non-random sequence.

This construction is closely related to the construction of the limit
lognormal random functions, M 1972j{N14}. These functions are of the
form

L∞(t) = limn →∞Ln(t),

where log L′n(t) is normal. In the interesting case, L∞(t) is non-degenerate
and singular. A general procedure to construct log L′n(t) consists in
decomposing it into a sum of random functions log L′n + 1(t) − log L′n(t),
each with a bounded spectrum. Unfortunately, the theory of L′∞(t) is far
removed from the familiar theories of Kolmogorov and Yaglom, and the
theory of L∞(t) presents formal difficulties that the present construction is
designed to avoid.

 Remark.  When b = Γ2, with an integer Γ > 1, the construction generalizes
to the case where t is a vector of co-ordinates t′ ∈ ]0, 1] with t′ = 0, i′1, i′2, ...
and t′′ ∈ ]0, 1] with t′′ = 0, i′′1, i′′2, ... In this case, each in is a vector whose
coordinates i′n and i′′n are integers that range from 0 to Γ − 1.

2. Special cases: birth-and-death and symmetric binomial

The most interesting case (considering the number of applications and the
precision of theorems) is when F(0) = 0 and 0 < EW < ∞; in this case, we
assume that EW = 1. Every case where EW < 0 can be reduced to a case
where EW > 0 by replacing An by ( − 1)nAn.

A second case is interesting because it reduces to a classical theory.
When W is binomial, with Pr {W = 1} = p > 0 and Pr {W = 0} = 1 − p > 0,
bX1(1) is the sum of b i.i.d. r.v.'s of the form W(i1); b2X2(1) is obtained by
replacing every term of bX1(1) by a r.v. which has the same distribution as
bX1(1). Consequently, bnXn(1) results from a birth-and-death process for
which the number of descendants in each generation is given by the r.v.
bX1(1). Classically, if pb > 1, the ratio
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bnXn(1)
[bEXn(1)]n = 

Xn(1)
pn

converges almost surely (a.s.) towards a non-degenerate limit.

 Conclusion.  If 0 < EW < ∞, we expect to encounter problems involving
a.s. convergence.

A third case that also goes back to a classical theory occurs when W is
binomial with Pr {W = 1} = Pr {W = − 1} = 1/2. This case brings back the
central limit theorem: for Bernoulli variables the ratio bnXn(1)/

√
bn  con-

verges in distribution to a reduced Gaussian limit, the r.v. Xn(1)bn/2 being
independent.

 Conclusion.  If EW = 0, we expect to encounter problems involving con-
vergence in distribution.

3. Fundamental recursion rule between distributions

One has the relation:

Xn + 1(1) = b− 1 �
b − 1

g = 0

WgXn, g(1),

where the r.v.'s Wg and Xn, g are independent, and, for every g,

Pr {Wg < w} = F(w) and Pr {Xn, g(1) < x} = Pr {Xn(1) < x}.

4. Fundamental invariance (fixed point) property of the limit measure

If X n(1)/A n converges in distribution towards Y∞(1), one must have

limn →∞
An + 1

An
= A (0 < A < ∞),

and one has the following identity between distributions:

Y∞(1) = �
b − 1

g = 0

[Ab− 1Wg] Y∞, g(1),
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where the Wg and Y∞, g are independent, and, for all g,

Pr {Wg < w} = F(w) and Pr {Y∞, g(1) < y} = Pr {Y∞(1) < y}.

It is easy to rewrite the above invariance in terms of the characteristic
function of Y∞(1).

 Remark.  The invariance that defines Lévy stability corresponds to the
special case where the Wg are identical real numbers. The above invari-
ance implies a functional equation in Pr {Y∞(1) < y}. Its solutions depend
on both F(w) and b. Some are given by the construction of Section 1; the
problem of the existence of other solutions remains open.

{P.S. 1998. Additional solutions were discovered in Durrett & Liggett
1983 and Guivarc'h 1987, 1990. See the Scientific Comment on Sections 5 and
17 at the end of the Chapter.}

5. Statement of the fundamental martingale property

Let EW = 1; for all t, Xn(t) is a martingale. For all finite n and integer q > 1,
EXq

n(t) > 0.

6. Condition for convergence of martingales

Let EW = 1. For every integer h > 1, the necessary and sufficient condition
for 0 < limn →∞EXq

n(t) < ∞ is EWq < bq − 1.

7. Conjectured generalization of the result in Section 6

The result of Section 6 is expected to hold for all real q > 1.

8. Two sufficient conditions of convergence

Let EW = 1. In order for Xn(t) to converge almost surely, two sufficient (not
mutually exclusive) conditions are as follows: (a) F(0) = 0 (b) EW2 < b {P.S.
1996, meaning that the martingale is positive and of bounded variance}.
When this second condition holds, X∞(t) does not reduce to 0, and the
equation of Section 4, with A = 1, has at least one non-degenerate solution,
namely X∞(1).

 Proof.  Theorem on convergence of martingales (see for example Doob
1953).



N16  ♦ ♦ ITERATED RANDOM MULTIPLICATIONS 5

9. Conjectured generalization of the result in Section 8

The condition EW = 1 is sufficient in order for Xn(t) to converge almost
surely.

10. Positive weights: definitions of the exponents qcrit and β

When F(0) = 0 and EW = 1, let

qcrit = max{1, sup [q:EWq < bq − 1]} and D = 1 − EW logb W.

When F(0) = 0, let

τ(q) = logb[EWq/bq − 1] = logbEWq − (q − 1).

{P.S. 1996. Today, τ(q) is usually denoted by − τ(q) }. This function τ(q)
is convex, and τ(1) = log EW = 0, so that the quantity qcrit is the larger of 1
and of the second zero of τ(q). Formally, D = − τ′(1).

When F(0) = 0 and τ(0 + ) > 0, let β be the value of q for which the
straight line adjoining 0 to [β, τ(β)[ has no other points in common with
the graph of τ(q).

Proposition concerning qcrit

The condition qcrit = ∞ holds if and only if W < b.

 Remark.  We will see that, as long as qcrit = ∞, the X∞ are regular meaning
that, Eq

∞ < ∞ for all q. If 1 < qcrit < ∞, the X∞ are irregular. When D < 0, the
X∞ are degenerate. The case D = 0 remains to be studied.

11. Proposition concerning qcrit and the convergence of moments

Let F(0) = 0, EW = 1 and qcrit > 2. Then EXq
∞(t) = limn →∞ EXq

n(t) for all
q < the largest integer < qcrit.

 Proof.  Again this follows directly from the classical theorem on the con-
vergence of martingales. (P.S. 1996. A misprint in the original was
corrected}.
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12. Conjectures concerning the generalization of Section 11

(A) Let F(0) = 0 and EW = 1. In order for X∞(t) to be non-degenerate, and
for the equation of Section 4 to have a non-degenerate solution with A = 1,
it is sufficient that qcrit > 1.

(B) Furthermore, in this case, EXq
∞(t) = limn →∞ EXq

n(t) holds for all
q < qcrit.

13. Proposition concerning divergent moments

Let F(0) = 0, EW = 1 and qcrit > 1. If X∞(t) is nondegenerate, EXq
∞(t) = ∞ for

all q > qcrit.

 Proof.  It suffices to take t in the form b− n, and then to limit the study to
t = 1. Then, for all q > 1, Section 4 gives EXq

∞(1) > b1 − qEWqEXq
∞(1). If q > qcrit,

this requires either EXq
∞(1) = 0, which is excluded, or EXq

∞(1) = ∞, which is
thereby proven.

14. Remark on related multiplicative measures

When F(0) = 0, X′∞(t) generalizes the Besicovitch measure. This is the non-
random singular measure {P.S. Today, it is mostly called multinomial.}
one obtains when the weights W(i1) are not random, but imposed in
advance, and satisfy

W(i1, i2, ..., in) = W(in).

It is convenient to assume that the attainable values of W are all different,
the probability pj of each value wj being 1/b, with ∑b − 1

j = 0 wj/b = 1. The
Besicovitch measure rules the distribution of numbers for which the
“decimals” in base b have the probabilities πj = pjwj.

To generalize, we shall proceed in several stages. First, while keeping
the W(i1) fixed, let their sequence follow a randomly chosen permutation.
Next, allow the values of the W(i1) to vary – and in particular let the
number of possible values vary – while imposing on them the following
sequence of “conservation relations:”
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�
b − 1

i1 = 0

W(i1) = b, �
b − 1

i2 = 0

W(i1, i2) = b for all i

�
b − 1

i3 = 0

W(i1, i2, i3) = b for all pairs (i1, i2) ...

The resulting measure – which has been considered by Yaglom (see M
1974f{N15}) – can be called “microcanonical.” Finally, generate the W inde-
pendently, thereby obtaining X′∞(t). The possibility of degeneracy does not
appear until this last step. However, when t is generalized to be multidi-
mensional, degeneracy may already appear in one-dimensional sections.

15. A weak limit law yielding a box dimension

Let F(0) = 0 and EW = 1. For all ε > 0, there exists an n0(ε) > 1 such that, for
all integer n > n0(ε), one can write Xn(t) = Yn(t) + Zn(t). In this represen-
tation, Yn(t) is very small, that is to say EYn(1) < ε. As to Zn(t), it varies
only on a small portion of the intervals of the form kb− n < t ≤ (k + 1)b− n,
that is, a number whose expectation is much less than (1 − ε)bn(D + ε).

 Proof.  It is postponed until Section 19.

16. Corollary: a condition for degeneracy

Let F(0) = 0, EW = 1 and D < 0. In this case, X∞(t) = 0 almost surely, and the
equation of Section 4, with A = 1, has no non-degenerate solution that
could be constructed by the method of Section 1.

 Proof.  If D < 0, and for n sufficiently large, (1 − ε)− 1bn(D + ε) <
√
ε . From

this it follows that Pr {Zn(1) > 0} <
√
ε . Moreover, Pr {Yn(1) ≥

√
ε } ≤

√
ε . It

follows that limn →∞ Pr {Xn(1) > 0} = 0.

 17. Conjecture

Let F(0) = 0, EW = 1 and D < 0. Then the equation of Section 4, with A = 1,
has X = 0 as its only solution.

{P.S. 1998: See the P.S. at the end of section 4}.

18. Conjectured strong limit law concerning Hausdorff dimension

Let F(0) = 1, EW = 1 and D > 0.
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(A) Define N(a,b,t,n) as the number of weights W in the sequence
W(i1), W(i1, i2), W(i1, i2, ... , in) that satisfy a ≤ W ≤ b. In a sense that remains
to be specified, the domain of variation of X∞(t) is characterized by
limn →∞ n− 1N(a,b,t,n) = ∫ba fw dF(w).

(B) The Hausdorff dimension of said domain of variation is almost
surely equal to D.

 Remark.  In the case when W has b distinct possible values wj with the
probabilities b− 1, the clause (A) above resembles the strong classical law
for the probabilities πj = wj/b, and the dimension in clause (B) becomes
− ∑πj logbπj, which is formally identical to the dimension of the
Besicovitch measure (see Billingsley 1967).

19. Proof of the “ box dimension” weak law stated in Section 15

The main idea of the proof is easily expressed in the finite case where
Pr {W = wj} = pj, with ∑pj = 1 and EW = 1, hence ∑πj = 1, with πj = pjwj.
Denoting by n ψj the number of times that wj appears in the product that
defines X′n(t), one has

X′n(t) = ∏wn ψj
j .

The hypothesis EX′n(t) = (EW)n = 1 yields

�n!⎛ 
⎝∏(n ψj)!

⎞ 
⎠
− 1

∏wn ψj
j pn ψj

j = 1.

When the πj are interpreted as probabilities, this last equality is simply the
multinomial expansion of (∑πj)

n = 1. A theorem (Billingsley 1967) that is
used in some proofs of the weak law of large numbers. It states that,
given ε > 0, there exists a n0(ε) so that for n > n0(ε), the terms of the expan-
sion of (∑πj)

n can be classified as follows:

•in the first class, 2 ψj − πj < n− 1/2
√
πj(1 − πj)  holds for all i′,

•the sum of all the terms in the second class is < ε.

A fortiori, the first class satisfies

 

 
�(ψj − πj) logbπj < �(ψj − πj) logbπj < n− ½ � logbπj 

√
πj(1 − πj) .
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For large enough n, this last quantity is < ε. It follows that the values
of X′n(t) in the second class are contained between bn(H − ε) and bn(H + ε), with

H = �πj logbwj = EW logbW.

It is easily established that H > 0. The probability of each of these X′n(t) is
contained between (1 − ε)b− n(H + ε) and (1 − ε)b− n(H − ε). Finally, noting that
]0, 1] divides into bn equal intervals on which X′n(t) is constant, the
number of those intervals for which X′n(t) is of the second class is at most

(1 − ε)bn(1 − H + ε) = (1 − ε)bn(D + ε).

The case where W is not bounded is treated through bounded approx-
imations. In the case where log W is Gaussian, the direct verification is
easy.

20. The case EW = 0: choice of An to insure convergence in distribution

Only some formal results are available. When EW2 < ∞, one can insure
that An = 1 by normalizing W so that EW2 = b. Define

q
∼
crit = max{1, sup [q : EWq < bq − 1]},

where q is an even integer > 2. Two cases must be distinguished.

From q∼crit = ∞, which implies  
 
W < b, it follows that

0 < limn →∞ EXq
n(t) < ∞ when q is an even integer, and limn →∞ EXq

n(t) = 0
when q is an odd integer. One may conjecture that Xn → X∞, with
EXq

n(t) → EXq
∞(t), and that the limit X∞ is a symmetric r.v..

When q∼crit < ∞, the moment of order q < q∼crit converges either to a limit
that is both > 0 and < ∞, or to a limit that is identically 0. The moments of
even order q > q∼crit converge to infinity; the moments of odd order q > q∼crit
can either tend to infinity or oscillate while moving away from 0, which
raises problems. In the former case, one can conjecture that Xn → X∞, just
as above.

21.The probability distribution of X′

{P.S. 1998. This translation is limited to the middle part of Section 21 of
the French original, namely to the part reproduced photographically in
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Chapter N2. See the Comments on Sections 10 and 21 in the Annotations
appended to this chapter.} We use an inequality in Chernoff 1952 that
requires E( log W) < ∞, but allows EW = ∞. Writing − logbAn = αn and neg-
lecting complicating slowly ranging factors that do not affect the present
argument, the Chernoff inequality takes the form

Pr { log [X′n(kb− n)b− n] ≥ − αnlogb} ∼ b− nC(α),

where

− C(α) = Inf {αq + log
b
E(W/b)

q} = − 1 + Inf [τ(q) + qα].

22. {P.S. 1998. See the Comment on Section 10 in the Annotations appended
to this chapter.}

23. Hyperbolically distributed weights

Let F(0) = 0 and Pr {W > w} = w− γL(w), where L(w) is a slowly varying func-
tion for w → ∞. When γ > 1, we have either α > 1 with α ≤ γ, or
β < 1 with β ≤ 1. When γ < 1, we have β < 1 and β ≤ γ. It was not unex-
pected that X∞ is at least “as irregular” as W. But it was surprising that
W∞ could be strictly more irregular, or that X∞ could be irregular when W
is regular. An example where X∞ and W are of precisely the same level of
irregularity (α = γ) occurs when L(w)( log w)2 tends very rapidly (as
w → ∞) towards a sufficiently small limit. {P.S. 1998. This section was
translated without being thought through.}

24. Conjecture concerning the case when F(0) = 0 but τ(0 + ) > 0

The behavior of X goes beyond the above theorems and conjectures. An
example is when Xn is ruled by the birth and death process of Section 2.
When p < 1/b, one has Xn(1)/pn → 0 a.s., and there can be no sequence An
such that Yn → Y∞, with a non degenerate Y∞. It is conjectured that this
conclusion holds whenever F(0) = 0 and τ(0 + ) < 0.

25. Final remark: all the features of Y∞ investigated above are
determined by the geometry of the graph of τ(q)

When D > 0, the moments of X∞(t) and the dimension of its set of concen-
tration are ruled by different features of φ(q) or of W. The same holds for
the covariance of X′∞(t), which can be shown to be ruled by τ(2).
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&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

The French original is made up of two papers, presented to the Académie
de Sciences on November 19, 1973 by Szolem Mandelbrojt.

 Editorial changes.  Section titles were overly terse in the original. To help
orient the reader, many were made more explicit without special mention
to that effect. Other cases where the original is not followed closely is
marked as {P.S. 1998}. The notation was updated: the original denotes the
present b by C, the present q by h, the present τ(q) as f(h), the present qcrit
by α, the present α by Τ, and the present b− C by e− Q. This change of base
eliminates typographical clutter and brings out the co-dimension function
C(α) = 1 − f(α), be discussed in a Comment directed to the Legendre trans-
form.

How this paper came to be written. M 1972j{N13} and M 1974f{N14}
include and/or imply a host of conjectures of a purely mathematical
nature. For example, they involve an informal box dimension for the set
on which an arbitrarily large proportion of a total multiplicative measure
concentrates. (The meaning of this box dimension was not fully clarified
until M 1995k). It was natural to go further and conjecture that these
quantities were also the dimensions in the sense of Hausdorff-Besicovitch,
but the proofs turned out to be elusive.

As described in an Annotation to Chapter N13, I brought the matter up
with Jean-Pierre Kahane; he and his then student Jacques Peyrière soon
confirmed several of my conjectures relative to the base-bound case. They
also advised me to restate my work for the mathematicians. This is how
the present chapter came to be written.

 Literature.  The most important follow-up articles are Peyrière 1974,
Kahane 1974, Kahane & Peyrière 1976{N17}, Ben Nasr 1987, Durrett &
Liggett 1983, and Guivarc'h 1987, 1990. When referred to jointly, the last
three are denoted by DLG.

Generalization to the case when the weights Wg in the recursion of
Section 3 are not independent. Dependence between weights affects
neither the evaluation of τ(q) nor the derivation of f(x) by using the
Cramer theory of large derivation. Durrett and Liggett 1983 and Ben Nasr
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1987 show that the same theorems continue to hold. This generalization is
important in M 1991k, 1995k, which deal with sample estimates of τ(q).

The tail behavior Pr{X∞ > x} = x− qcrit. This behavior, conjectured in M
1974f{N15}, follows directly from Sections 11 to 13. Proofs of my conjec-
ture were provided by DLG and Guivarc'h.

Scientific comment on the quantity β defined in Section 10. Let f(α) > 0
for some αs but f(α) < 0 in the interval from α*min, to α*max, where
α*min > αmin and α*min < αmax. If so, β is defined and is identical to α*min

Alternative and equivalent definitions of α*min and α*max, involve the
narrowest “fan” that is contained between two half lines that start at the
point of coordinates q = 0 and τ(q) = τ(q) = 0 and contains the graph of
τ(q). The quantities α*min and α*max are the slopes of the half-lines that
bound this narrowest fan.

M 1991k and M 1995k vindicated (belatedly) the usefulness of the
quantity β by showing that the quantities α*min and α*max play an impor-
tant role on their own terms. Indeed, for certain purposes, the only part
of f(α) that matters corresponds to positive fs. Correspondingly, the part
τ(q) that matters is between the abscissas q*max and q*min, where the graph
of τ(q) touches the half lines of slopes α*min = β and α*max.

However, those roles of β were not known to me in 1974 and the role
attributed to it in the French original of M 1974c was incorrect. In addi-
tion, the discussion of β was very confused, and to translate it fairly
would be difficult and pointless. Therefore, Section 22 and large portions
of Section 21 were omitted in this translation.

Scientific comments on Sections 4 and 17. The need to distinguish
between two forms of cascade: direct (interpolative) and inverse
(extrapolative). Lévy's semi-stable distributions. DLG closed the issue
raised at the end of Section 4 and showed the conjecture in Section 17 to
be incorrect. When F(0) = 0, EW = 1 and D < 0 – and also under milder
restrictions – the functional equation introduced in Section 4 has addi-
tional solutions. These solutions have infinite expectations, and are not
obtained by the measure-generating multiplicative scheme in Section 1.
The functional equation of Section 4 continues to interest mathematicians.

Recall that my multiplicative scheme generates a measure proceeds to
increasingly small eddies. Thus, it can be called an “interpolative” or
“direct” cascade that roughens a uniform measure. To the contrary, the
remaining solutions of the functional equation, as obtained by DLG, are
obtained by an extrapolative inverse cascade. This cascade reinterprets the
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fundamental recursion rule of Section 3 as being a smoothing multiplicative
scheme that proceeds to increasingly large eddies.

The inverse cascade. It is worth repeating here a few lines from M
1984e, Section 3.2.2. This and the preceding chapters show that in
studying fractal measures relevant “to noise and turbulence, it is not only
inevitable but essential to introduce a process of renormalization some-
what analogous to Lévy's semi-stability. And the somewhat analogous
(though different) indeterminacy and complication are present in the
resulting random variables, and are concretely very important. The key
ingredient in this more general renormalization is to replace ordinary
addition by randomly weighted addition. The weights are a semi-infinite
array of independent identically distributed r.v. with row index n and
column index i, namely W(n, i). Now we start with X(n1, 1) ≡ 1, and the
first step of renormalization is to form the array
X*(n2, 2) = ∑W(n1, 1)X(n1, 1) with the sum carried over the indexes n1 of the
form n, followed by an integer between 0 and b − 1. Of the many classes
of W that have been examined, the simplest, and only class characterized
by W ≥ 0, and

〈
W

〉 
= 1 was studied [ before 1984 ]. The proper second

step in renormalization is then X(n2, 2) = b− EX*(n2, 2), and 
〈
X(nk, k)

〉
≡ 1.

The first object of study is, then, the fixed-point random variable
X = limk →∞ X(nh, k) that is invariant under renormalization.

The second object is to interpolate X(nk, k) into a random function
X(n1, k), and to compare the contributions to X(n1, k) from the addends
X(n1, k) = X(n1, k) − X(nn − 1, k) that originate in the little cubes.“

On the unstable solutions discovered by DLG. The contrast between
“direct” and “inverse” cascades is familiar in the study of turbulence. In
statistical physics, my physicist co-authors near-always build up large
structures from atoms, while mathematicians prefer an interpolative
“direct” cascade. Thus, the description reproduced in the preceding para-
graphs took it for granted that the inverse and the direct cascades are
completely equivalent. Such is not the case in the present instance.

The existence of inverse cascade fixed points means that, given the W,
one can “load” the X(n, 1) in such a way that the X(n, k) have the same
distribution for all k. Moreover, the tail of this distribution satisfies
Pr{X(n, 1) > α} ∼ α− qcrit. Finally, if, and only if, the X(n, 1) have essentially
the same tail behavior as the fixed point, the distribution of X(n, k) con-
verges to the fixed point distribution. This tail behavior characterizes the
fixed point's domain of attraction.
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An important feature of the new fixed points of the smoothing trans-
formation found by DLG is that they are unstable. When the distribution
being smoothed fails to be very specifically matched to the smoothing
operation, its smoothed form ceases to converge to a non trivial limit.
Unstable solutions may well be of no interest in physics.

Scientific comment on Section 20 and the generalization of the multipli-
cative processes to multipliers that may be negative. This Section gives
very formal results on an important topic that is only now coming into its
own. It corresponds to the multifractal functions sketched in Chapter N1,
which oscillate up and down. I hope to develop my preliminary findings
further and present them in a suitable forthcoming occasion.

Scientific comment on Section 21 and the Legendre transform. Section 21
was the first statement of the thermodynamical formalism of τ(q) and f(α).
As mentioned in Chapter N2, Frisch & Parisi 1985 and Halsey et al 1986
made this formalism familiar to many scientists. The present τ(q) is my
old – τ(q), and the present f(α) is my old 1 − C(α). That is (but – once
again – in 1974 I did not state it in these terms), C(α) is simply the fractal
co-dimension corresponding to the dimension f(α).

My first encounter with Chernoff 1952 and the Cramèr theory of large
deviations was in a paper on coding, M 1955t, Section 4.2; the mathematics
behind codes and measures is often the same.

The Cramèr theory naturally leads to the Legendre transform
Inf [τ(h) + hα] but this use of the Cramèr theory in the study of the
multifractals did not become fully understood until many years after this
paper. The valuable core of the original Section 21 was placed among
statements that concern the quantity β defined in Section 10, were not
thought through, and were not translated.

Let me end by restating an important remark implicit in Chapter N2,
Section 1.7: the Cramèr theory does not restrict the range of values of
C(α). For some αs, this function may well satisfy C(α) > 1, leading to
f(α) < 0. This remark has led to extensive discussion in M 1989c, 1989ge,
1990r, 1991k, 1995k and other papers to be collected in M1998L.


