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Noah, Joseph, and operational hydrology
(M & Wallis 1968)

... were all the fountains of the great deep broken up, and the
windows of heaven were opened. And the rain was upon the
earth forty days and forty nights. Genesis: 6, 11-12.

...there came seven years of great plenty throughout the land of
Egypt. And there shall arise after them seven years of famine...
Genesis: 41, 29-30.

Dedicated to Harold Edwin Hurst

 ✦ Abstract.  This is an introduction to a series of studies concerned with
two about precipitation. We propose the terms “Noah Effect” for the
observation that extreme precipitation can be very extreme indeed, and
“Joseph Effect” for the finding that a long period of unusually high or low
precipitation can be extremely long. While both effects are extremely well-
established current models of statistical hydrology cannot account for
either effect and must therefore be superseded. As a replacement, the
“self-affine” models that we propose appear very promising. They
account particularly well for a remarkable empirical observation due to
Harold Edwin Hurst. ✦

A SERIES OF PAPERS to which this work serves as introduction and
summary shall describe in detail a family of statistical models of
hydrology which we believe adequately account for the Noah and Joseph
Effects. Different papers in the series will be devoted, respectively, to
mathematical considerations, to accounts of computer simulations, and to
analyses of empirical records.
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 INTRODUCTION

The models to be described were advanced in M 1965h{H9} and M & Van
Ness 1968 {H11}. We have extensively tested and developed them and
believe that we have confirmed their soundness. It may be of interest to
note that they are instances of a broad family of “self-affine models.” The
concept of “self-affinity” (without that word) originated in the theory of
turbulence, to which it was long restricted, but has recently proved its
value in the study of a variety of natural phenomena (see, for example, M
1963b{E14}, M 1966b{E19}, M 1967i{N9} and M 1967s).

A word of acknowledgment is appropriate before we proceed. In
investigations of current statistical models of hydrology, one of the most
active groups has been that founded by Professor Harold A. Thomas, Jr.,
at Harvard. Since much that follows is critical of current hydrology, the
authors hasten to express their personal indebtedness to Harold Thomas.
He directed BBM to Hurst's work and to hydrology, and later initiated
JRW to the intricacies of “synthetic hydrology” and simulation.

PARTISAN COMMENTS ON STATISTICAL HYDROLOGY

Current models of hydrology assume precipitation to be random and
Gaussian (i.e., to follow the normal probability distribution, with its “bell
curve” (often called “Galton ogive”), with successive years' precipitations
either mutually independent or with a short-memory. “Independence”
means that a large precipitation in one year has no “after effect” on the
following years. “Short memory” means that all aftereffects die out within
a few years. The classical short-memory mechanism, the Gauss-Markov
process, is a “single lag linear autoregressive model.” In this case,
aftereffects die out in a geometric progression and decrease rapidly. Of
greater generality are the “multiple lag linear autoregressive models.”

One feature common to all these models is that they belong to “the
Brownian domain of attraction”; this is a fundamental notion that we shall
define later. It is our belief that models in the Brownian domain cannot
account for either the Noah or the Joseph Effects. These models underesti-
mate the complication of hydrological fluctuations. That is, the task of
“controlling them by establishing reserves to make the future less
irregular” (to paraphrase the title of Massé 1946) is more difficult than
these models suggest.
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Many models that hydrologists find disappointing (for example,
Yevjevich 1968) happen to belong to the Brownian domain. Therefore, the
significant feature of our sweeping assertion resides in our blanket con-
demnation of all models that belong to the Brownian domain. Since this
condemnation may appear controversial, let us sketch various “patched
up” Gauss-Markov models that have been proposed for the Joseph Effect.
Our point will be that, in effect, such models are contrived to behave “as
if” they actually were outside the Brownian domain.

Some authors, unhappy with the Gauss-Markov model, nevertheless
believe that a description of hydrological reality can be obtained using a
Gauss-Markov process whose parameters slowly vary in time. Such
models must, however, be changed before their consequences have had
time to develop fully. For example, one assumes that, before the sample
average of precipitation has had time to “stabilize” near its expected
value, climatic change has modified that expectation. We view such
models as rather pointless because the usefulness of statistical models lies
primarily in their predictions. Since a changing expected value easily
overwhelms Gauss-Markov fluctuations, a Gauss-Markov hydrological
model cannot be used by itself but only in conjunction with some “master
model” that rules climatic change. The overall model, combining
hydrology and climatology, is far from being of Gauss-Markov form.

Other approaches to hydrological modeling also start with a Gauss-
Markov process, and then introduce modifications that tend to be more
extensive when records are long than when they are short. This is illus-
trated using two examples. The first involves the loose but intuitive idea
of the duration of a drought; the second involves the more rigorous but
less intuitive concept of the Hurst range.

If an independent Gauss or Gauss-Markov process is chosen to fit pre-
cipitation, the duration of the longest drought will be greatly underesti-
mated. Therefore, such processes must be modified to allow for more
durable aftereffects (for example, through “multiple lag” models). One
who considers such modifications as nuisance corrections to a basic Gauss-
Markov process will naturally try to fit all available data with a “minimal”
modified process, having as short a span of after-effects as possible.
However, as the sample duration increases, “unexpectedly” long droughts
are bound to appear. Their appearance shows (after the fact) that the
“minimal” model had attributed a special significance to the longest
sample T that was available when the model was constructed. As the
sample increases, this model must be changed; for example, by increasing
the number of lags.
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“Drought” being an elusive concept, let us proceed instead to the
observed behavior of the “Hurst range,” which is less intuitive but easier
to study. {P.S. 1999. The definition is illustrated in }. One begins by eval-
uating the total capacity R(δ) that a reservoir must have had in order to
perform “ideally” for δ years. Here “ideal performance” means that (a) the
outflow is uniform, (b) the reservoir ends the period as full as it began, (c)
the dam never overflows, and (d) the capacity is the smallest compatible
with (a), (b) and (c). The concept of an ideal dam is of course purely
retrospective, since data necessary to design such a dam are only known
after the fact. However, the past dependence of the ideal capacity upon δ
says a great deal about the long-run behavior of a river on which an
actual dam is to be built.

Postponing qualifications to later papers, {P.S. 1999, by the same
authors, all reprinted in this book}, let us describe a striking discovery that
H. E. Hurst made while examining the yearly discharges of the River Nile
and other geophysical records. In Hurst 1951, 1956, the ideal reservoir
capacity R(δ) was divided by the standard deviation S(δ) of δ successive
discharges. The empirical finding is as follows:

Except perhaps for small values of δ, the rescaled range R(δ)/S(δ) is propor-
tional to δH, where H is a constant between 0.5 and 1.

Hurst judged H to be “typically” near 0.7, but estimates (to be
reported in M & Wallis 1969b{H27}) put H much higher and above 0.85.
This is significant because an independent Gauss model yields
R(δ)/S(δ) ∼ δ

0.5. Gauss-Markov models, “multiple lag” models and all
other models in the Brownian domain give a more complex prediction.
They predict that R(δ)/S(δ) ∼ δ0.5 for large δ, but that R(δ)/S(δ) grows
faster than δ

0.5 for small or moderate δ, which we shall call the “initial
transient.”

In this transient region, a variety of different behaviors may be
obtained. Moreover, many models may lead to the same transient
behavior, which makes them indistinguishable from the viewpoint of pre-
dictions concerning R(δ)/S(δ). Thus, if R(δ)/S(δ) is only available for
1 ≤ δ ≤ T (with T a finite duration), many different models of the
Brownian domain are likely to yield predictions indistinguishable from the
data. However, for δ > T, the Hurst range of every one of these processes
will soon merge into the classical δ0.5 pattern. So far, such a convergence
has never been observed in hydrology. Thus, those who consider Hurst's
effect to be transient implicitly attach an undeserved importance to the
value of T, which in most cases is the largest currently available sample
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size. These scholars condemn themselves to never witness the full
asymptotic development of the models they postulate.

TOWARDS A CHANGE OF DIRECTION IN HYDROLOGICAL
MODELING

Our criticism of hydrological models obtained by “patching up” the
Gauss-Markov process will be further developed in the sequel. But it
should be understood that we expect to put forward an alternative model
that involves few parameters yet manages to represent fully the tremen-
dously complicated hydrological reality. A model having few parameters
can only be a “first approximation.” But the goal of such a first approxi-
mation must be to “capture” the main features of the problem, namely the
Joseph and/or Noah Effects.

To characterize our proposed non-Brownian first approximations, a
loose distinction between “low-frequency” and “high-frequency” phe-
nomena is useful. Using a Gauss-Markov process implies fitting high fre-
quency effects first and worrying about low frequency effects later. We
propose to reverse this order of priorities. Conveniently, the term “low
frequency” applies equally well to a rarely occurring phenomenon, and to
an oscillating phenomenon with a long wavelength.

The concepts of “low” and “high” frequency are, of course, relative.
Natural phenomena cover a continuum. For example, the frequency of
one cycle per day is perceived as very low in turbulence theory and very
high in hydrology. It is also a fundamental frequency in astronomy, so it
may also separate zones in which intrinsically different mechanisms rule
the fluctuations of precipitation. The same argument may hold for the
wavelength of one year.

Another important wavelength is 50 to 100 years, which we shall refer
to as a “lifetime.” This is roughly the horizon for which one designs water
structures and (coincidentally) this is the length of most hydrological
records. This wavelength is of human, not astronomical, origin; it is
purely “anthropocentric.” Whereas precipitation fluctuations of wave-
length near one day or one year may participate in several physical mech-
anisms, those of wavelength near one lifetime are likely to participate in
one mechanism only. Thus, the latter are likely to be simpler.

Now, assume that one seeks an approximation valid over a wide band
of frequencies. It may be convenient first to look for a good fit in some
narrow frequency band, with the hope that the resulting formula will be
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applicable over the wide band. Under these circumstances, the band near
one lifetime, although purely anthropocentric in its definition, constitutes,
in our opinion, a better basis of extrapolation than the band near one year,
which owes its meaning to astronomy.

We realize that a stress on low frequencies results in an emphasis on
idiosyncrasies. But the purpose of hydrological engineering is to guard
against the recurrence of such idiosyncrasies; therefore, one cannot afford
to neglect any available information.

Models in the Brownian domain have long been recognized as appli-
cable in many fields of science, beginning of course with the Brownian
motion of statistical mechanics. As a result, these models' proponents
among hydrologists are often able to identify ready-made answers to the
standard problems. Our proposed approach requires more work, but the
answers appear to be sufficiently better, making this additional work
worthwhile. Moreover, we shall see later in the paper that the concept of
self-affinity will bring true simplicity.

“MILD” AND “WILD” PROCESSES

We are now in a position to give the promised characterization of the
“Brownian domain of attraction,” and of the related meanings for the
terms “mild” and “wild,” as applied to a time series, that is, a function
X(t) of the integer-valued time variable t. We need three results of proba-
bility theory, two of which are classical, and all three of which relate to
averages of T successive terms of X(t).

The first result says that X(t) satisfies the law of large numbers if for
T → ∞ its average tends to a limit EX(t), called the expectation. This law
gives theoretical justification to the common practice of taking sample
averages as estimates of population expectations.

The second result states that X(t) satisfies the more demanding
“central limit theorem” in its original form, which asserts the following:
For large T, the distribution of the average becomes approximately
Gaussian, with a variance tending to zero as T → ∞. This justifies the
common belief that if T is not small, the sample average is likely to be a
good estimate of the expectation. A corollary of this is that, for large T,
even the largest of the T quantities T− 1X(t) contributes negligibly in
relation to the contribution of the “future average” T− 1∑T

t = 1X(t).

The third and final result on the averages of random sequences is
much less well-known but is very important to applications. Letting the
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term “past average”denote the expression T− 1∑0
t = − T + 1X(t), the third basic

result asserts that as T → ∞, the past and future averages are increasingly
close to being statistically independent. For example, the variance of the
difference between them is double the variance of each. It is unfortunate
that this property does not yet have a generally accepted name. If a
natural phenomenon satisfies the hypotheses of all three of these math-
ematical theorems, it is said to belong to “the Brownian domain of
attraction.” We shall also say that the randomness behind the phenom-
enon is “mild.”

Now consider the fractional noises and the approximations thereto
used in M & Wallis 1969c. These processes satisfy both the law of large
numbers and the central limit theorem, but they fail to obey the hypoth-
eses of the third theorem. Such phenomena, and all phenomena that fail
the last two theorems, or even fail all three theorems, will be called
“wild.” For example, the average T− 1∑t

t = 1X(t) may fail to tend to any limit.
Or it may tend to a Gaussian limit, where “past” and “future” averages
fail to become asymptotically independent. This latter circumstance is
important for the hydrologists. One reason resides in the coincidental
equality between the order of magnitude of most past records and the
horizon of most designs (both of which equal one lifetime). A second
reason resides in the fact that, true expectations being unknown, planning
requires the determination of the difference between the expected mean
flow over a future lifetime and the known past average.

It is readily verified that in Gaussian models with a limited memory
the variability is “mild.” On the contrary, the Noah and Joseph effects not
only suggest that hydrological data are “wild” but also express the major
two forms of wild behavior. We shall speak of “Joseph-wild” behavior
when the wettest decade within a century includes an extraordinary
“term” of wet years. We shall speak of “Noah-wild” behavior when a few
of the years within the century witness “floods” so major as to affect the
average precipitation for periods of many years within which the flood
years occurred. Needless to say, a process can be both Joseph- and Noah-
wild simultaneously, a complication that we shall face much later. “Pure
Joseph-wild” behavior will be said to apply when none of the yearly pre-
cipitations during a “wet term,” had it stood alone, would have been
interpreted as a flood.

In practice, the words “wild” and “mild” should not be construed to
suggest a “black-and-white” contrast. Indeed, while the mathematical
results in question refer to asymptotic behavior, science always deals with
finite horizons. Consider, for example, an infinite (nonrandom) time series
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a(t). For the mathematician, the basic distinction is whether the sum
∑∞

t = 1a(t) is finite or infinite. For the scientist, the ultimate convergence of
∑∞

t = 1a(t) is of little importance, unless ∑T
t = 1a(t) is already close to its limit.

Therefore, the concept of “wild” must be considered as allowing for
various degrees of intensity, or for various shades of “greyness.”

THE MARGINAL DISTRIBUTION OF THE YEARLY FLOW

We shall now characterize more accurately the idea of a “pure Joseph-
wild” process. The basic concept here is the “marginal distribution,”
which is defined as the distribution of the values of a process, when one
disregards chronological order. We believe it reasonable to demand that,
when the order of values of a pure Joseph-wild sample is scrambled, one
should be left with a smooth process. Thus, the marginal distribution of
these values will draw a line between, on the one hand, Noah-wild proc-
esses and, on the other hand, processes that are either smooth or pure
Joseph-wild.

The paragon of the pure Joseph-wild is a process with a Gaussian mar-
ginal distribution. To check the applicabilities of the Gaussian marginal dis-
tributions, it is useful to plot the data on “probability paper”, {P.S. 1999: or
its computer equivalents. On that paper, the abscissa is a quantity X
being tested and the ordinate is the expression Pr {X < x} for the Gaussian,
which is called error function. Using those coordinates, large Gaussian
samples yield straight lines. As applied to hydrological data, probability
paper plots show that it is not exceptional for the marginal distribution to
be either nearly Gaussian or highly non-Gaussian.

To stay near the land of Joseph, an example of a nearly Gaussian mar-
ginal distribution is provided by the level of the Nile at the Rhoda Gauge
near Cairo. A highly non-Gaussian example is the annual discharge from
Lake Albert. To find other examples of either behavior, it suffices to
thumb through Boulos 1951. Straight line interpolations are quite accept-
able in certain cases, poor but perhaps bearable in some other cases and
dreadful in still other places. A very familiar example of huge deviations
from the Gaussian distribution is provided by the runoffs due to major
storms, which may appear on histograms as distant “outliers.” Also, high
water levels, which would be considered “millennium floods” if one
extrapolated the tails of the histogram from the body, occur much more
frequently in reality than they should under the Gaussian assumption.
{P.S. 1999. Many persons know this inequality through its manifestation
in finance discussed in detail in M1997E. Under the Gaussian assumption,
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“ten sigma events have a probability of a few millionth of a millionth of a
millionth of a millionth. In fact, they occur all the time in most Financial
records.}

Despite the importance of deviations from the Gaussian, we begin our
investigation of the Joseph Effect by Gaussian processes X(t). By definition,
the joint distribution of the values of such a process at any finite number
of instants is a multivariate Gaussian variable. Such processes will be
examined in the next several sections. Near the end of the paper, highly
non-Gaussian processes with a Noah Effect will be mentioned. (Processes
that are only “locally” Gaussian are studied in M 1969e.)

GAUSSIAN PROCESSES AND THE COVARIANCE

Gaussian processes are known to be fully specified by their covariance
function; if X(t) is of zero mean and unit variance, the covariance C(δ) is
the correlation between X(t) and X(t + δ). (Of course, in the case of
Gaussian variables, zero correlation is identical to independence.) We
want to use the behavior of C(δ) to classify a Gaussian process as smooth
or Joseph-wild. To accomplishing this, we must distinguish between high-
frequency, “short-lag” or “short-run” effects – and low-frequency, “long-
lag” or “long-run” effects. Short-lag effects depend upon the values of
C(δ) for a few small values of δ. Long-lag effects depend upon the other
values of C(δ). We shall now examine this dichotomy in four examples.
The first example is the process of independent increments, whose
covariance C1(δ) satisfies C1(δ) = 0 for all δ ≠ 0. The second example is the
Gauss-Markov process of covariance C2(δ) = exp( − δ /δ2). The last two
examples are the processes of covariances equal to C3(δ) = (1 + δ /δ3)

− 2

and C4(δ) = (1 +
 
δ 

 
/δ4)

− 0.5, respectively, with constant δ2, δ3 and δ4.

The above four covariances differ considerably from each other for
large δ, but C2(δ), C3(δ), and C4(δ) are all smooth and monotone for small
positive δ. Suppose that the sample duration is short, and that the sample
covariance is correspondingly “noisy.” Then the graphs of C1(δ), C2(δ),
C3(δ), and C4(δ) may be undistinguishable not only to the eye but also
from the viewpoint of many tests of statistical significance that examine
each value of δ singly. That is, such statistical tests are liable to indicate
that the differences between the sample covariance and any of the func-
tions C1(δ), C2(δ), C3(δ) and C4(δ) are not statistically significant for most
δ. The statistician could then conclude that all the data will be acceptably
fitted after the short-run data have been fitted. Therefore, the statistician
will advise the hydrologist that there is no evidence that the data were not
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generated by an independent Gaussian process (C1) or a Gauss-Markov
process (C2), or perhaps some other more involved short-memory process.

This would, however, be a rash conclusion. For example, under the
hypothesis that the true covariance is C1(δ), one would expect the relative
proportion of positive to negative sample covariances to be roughly one.
This proportion would be larger under the hypothesis that the true
covariance is C2(δ), still larger if the covariance is C3(δ), and larger yet if
the covariance is C4(δ). Thus, if statistical criteria geared towards low fre-
quency effects can be developed, it is reasonable to expect them to show
the same data to be significantly closer to C3(δ) or to C4(δ) than to C2(δ).

Our need, then, is to enhance long-run properties of a process while
eliminating short-run wiggles. The best procedure to accomplish this is to
integrate or to use moving averages (fancier averages will not be consid-
ered here). Three approaches to long-run effects deserve to be identified.

THE VARIANCE OF CUMULATED FLOWS

The “accumulated flow” since time 1 is defined by ∑t
u = 1X(u) and will be

denoted by XΣ(t). Then, G. I. Taylor's formula (see Friedlander & Topper
1961) can be used to evaluate the variance of the increment

XΣ(t + δ) − XΣ(t) = �
δ

u = t + 1

X(u) = X(t + 1) + ... + X(t + δ).

This variance takes the form

 
Var (δ) = δC(0) + 2�

δ

u = 0

(δ − u)C(u).

This expression immediately introduces a basic long-run dichotomy
based on the values of ∑∞

u = 0C(u) = Λ.

When Λ < ∞, Var (δ) = Var XΣ(t + δ) − XΣ(t) is asymptotically pro-
portional to δΛ, and X(t) is in the Brownian domain of attraction.

When, on the contrary, ∑∞
u = 0C(u) diverges sufficiently rapidly, Var (δ)

grows faster than proportionally to δ and X(t) is not in the Brownian
domain of attraction. For example, C(u) = C4(u) yields Var (δ) ∼ δ

1.5, where
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∼ means “asymptotically proportional to.” More generally, let C(u) ∼ u2H − 2

for large u, with 0.5 < H < 1. Then Var (δ) ∼ δ2H for large δ.

Incidentally, assuming implicitly that Λ = ∑∞
u = 0C(u) < ∞, G. I. Taylor

suggested this infinite sum as a measure of the span of memory or
temporal dependence in a time series. This quantity is widely believed to
be straightforward, but in fact, can be treacherous.

• It is infinite for C4(δ);

• It is finite and easy to estimate in cases like C1(δ) or C2(δ), where
the series ∑∞

u = 0C(u) converges rapidly;

• Finally, it is finite but difficult to estimate in cases like C3(δ),
where the series ∑∞

u = 0C(u) converges very slowly.

BRIDGE RANGE, THE JOSEPH EFFECT, AND HURST'S LAWS

Curiously, empirical data about the behavior of Var (XΣ) in hydrology
have been examined only recently. The first expression to be examined
was a different measure of the overall behavior of a process, namely
R(δ)/S(δ). Here, the sequential range R(δ) was defined earlier to be the
capacity of a reservoir capable of performing “ideally” for δ years, and
S(δ) was defined to be the standard deviation of yearly flow for δ years.
Among Gaussian processes, the dependence of R(δ)/S(δ) upon δ sharply
distinguishes smooth from Joseph-wild processes. This distinction is
already obvious for Joseph's own example of seven years of drought, for
which the ideal reservoir needed to be enormous. If wet and dry years
alternate, then ideal reservoir size decreases. We propose to express this
reduction numerically.

First, consider the case when X(t) is an independent Gaussian process.
When δ is large, it follows that both R(δ) and R(δ)/S(δ) equal 

√
δ  multi-

plied by some “universal” random variable independent of δ. The little
information that is known about those random variables is found in Feller
1951. For the Gauss-Markov process and for other models for which the
memory Λ = ∑∞

u = 0C(u) is finite, the “
√
δ law” remains true, but the multi-

plying random variables are no longer the same.

The case of time series exhibiting the Joseph Effect. Their behavior is entirely
different: the 

√
δ  law fails, as first noted in Hurst 1951, 1956 and Hurst et

al 1965. For hydrological series, as well as for many other natural time
series, R(δ)/S(δ) increases like CδH. Here, C and H are positive constants;
H may range between 0 and 1 and is seldom near 0.5. We shall call this
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empirical finding “Hurst's law.” Moreover, 
√
Var ∆XΣ  is also propor-

tional to δH rather than to δ0.5, as suggested by the usual simple models.
This will be called “Hurst's law for the standard deviation,” or
“Langbein's corollary of Hurst's law” because it was first noted in
Langbein's comments of Hurst 1956.

Strictly speaking, Hurst claimed a more demanding “one parameter δH

law,” R(δ)/S(δ) ∼ (δ/2)H. His reasons for claiming that C = 2− H are unclear
and not convincing. Moreover, it is obvious that separate selection of H
and C ensures a better fit; it also yields a different estimate of H. For
example, Ven Te Chow, in his contribution to the discussion of Hurst
1951, found a case where H changes from 0.72 to 0.87 when C is estimated
separately. Also, we found cases where the best estimate of H is below
0.5, contradicting Hurst's assertion that 0.5 < H < 1. See M & Wallis
1969b{H27} for a revised value of H.

Note also that Hurst's “one parameter (δ/2)H law” has proved dan-
gerous. In some cases it tempted him, as well as others, to estimate H
from a single sample of natural or simulated values of X(t). Such estimates
should be discarded. The revised statement that we use means that the
estimation of H requires many values of δ and, for every value of δ, a
large number of starting points t spread over the total sample of length T.

On the other hand, every specific model of the Joseph Effect, such as
the fractional noise (to be described in the sequel), will yield a relationship
between C and H, whose conformity with experience will test the value of
the model.

SPECTRAL ANALYSIS: PRINCIPLE AND APPLICATION IN
HYDROLOGY

In addition to Var (∆XΣ) and Hurst's range, a third way of looking at low
frequency phenomena is through spectral (or Fourier or harmonic) anal-
ysis. The sole reason to mention it here is because the spectral density of
hydrological records peaks sharply for very low frequencies, as is also the
case for the so-called 1/f noises (M 1967i{N9}). A full discussion of this
topic will be found in Part 2 of M & Wallis 1969a {H12}.
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RELATIONS AMONG THE JOSEPH EFFECT, HURST'S LAW AND
THE GLOBAL BEHAVIOR OF THE COVARIANCE

To account for the observed behavior of Var (δ), R(δ)/S(δ), and the spec-
trum has proved to be a very hard task. For example, perusal of the dis-
cussion of Hurst 1951 demonstrates the desperate expedients to which he
found it necessary to resort, in order to fit his finding within the familiar
universe of simple statistical models. Claiming (incorrectly, as we shall
demonstrate) that there exists no stationary random process with a range
following the δH law, several discussants have suggested either aban-
doning statistical stationarity or invoking nonrandom “climatic” changes.

A more helpful reaction, already mentioned in the partisan comment
at the beginning of this paper, is exemplified in Anis & Lloyd 1953 and
Fiering 1967. These and other authors have constructed stationary
stochastic processes of the usual kind: those in the Brownian domain of
attraction, satisfying ∑∞

u = 0C(u) < ∞ for which both the range and the
standard deviation are proportional to δH over a finite span of values of δ.
But the usual 

√
δ  behavior still applies beyond this span. Thus, the δH

law is, for these authors, a property of what we have called a transient
span. This transient may be made arbitrarily long. But long transients
can only be achieved with complicated processes having a long memory.
For example, Fiering 1967 (p. 85) had to use an autoregressive model with
20 lags (an exorbitant number of lags) to ensure that Hurst's law holds
over the span 1 < δ < 60.

An alternative to this approach is based upon the existence of the self-
affine random processes (see M 1965h {H9}). For these processes, Hurst's
law holds for all values of δ. Even more important from our viewpoint,
which emphasizes low frequency phenomena, is the existence of processes
for which Hurst's law holds for the short run as well as for the long run.
For the standard deviation, this was already proved when we noted in
passing that

√
Var  

 
∆XΣ  ∼ δ

H holds if and only if C(δ) ∼ δ
2H − 2.

The asymptotic behavior ∼ δH can be shown to hold also for the range R(δ) and
the rescaled range R(δ)/S(δ).

This observation is central to our study of the Joseph Effect. Before
examining it more closely, let us show how it can explain the existence of
models in which Hurst's law holds during the initial transient. The key is
that the values of Var (δ) = Var XΣ(t + δ) − XΣ(t)  for δ < T are affected
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only by the values of C(δ) for δ < T. Hence, changes in the covariance for
δ > T pass unnoticed when only the span δ < T is observable. Now
suppose that, starting from the covariance C(δ) = (1 − 10δ)2H − 2, long-lag
covariances (δ > T) are decreased sufficiently to make ∑∞

u = 0C(u) conver-
gent. The result is that the modified process X(t) is “brought back” into
the Brownian domain of attraction. It could even be made into a “mul-
tiple lag” autoregressive model, which is the usual generalization of the
Markov model. For such a modified process, Hurst's law continues to
hold for δ < T and for some time beyond δ = T. In the long run, however,
it will be replaced by the 

√
δ  law. For example, the standard deviation

will equal K
√
δ , with K equal to some (positive and finite) constant. The

value of this constant depends upon the tail selected for the modified
covariance and it is adjustable at will.

We consider the models in which T plays a central role, to be undesir-
able.

DEFINITION OF SELF-AFFINE WILD GAUSSIAN PROCESSES

In criticizing the usual statistical models as applied to hydrology, we do
not underestimate their positive features. In particular, whenever an inde-
pendent Gaussian process is an acceptable approximation, it is unbeatable.
If it is not an acceptable approximation, some of its features deserve to be
preserved. For example, all models in the Brownian domain preserve the
assumptions that the variance and Taylor's scale ∑∞

u = 0C(u) are finite. But
they destroy another property that makes the independent Gaussian proc-
esses particularly convenient to manipulate. We want to express this
property in a form that is indirect but is easier to generalize. The inde-
pendent Gaussian process X(t) is exceptionally convenient because
∑t

u = 1X(u) can be interpolated to continuous times with the help of a “self-
affine” random process B(t), called Brownian motion (also called a
Bachelier process, or a Wiener process). To define self-affinity, one must
consider a portion of B(t), with t varying from 0 to T, and rewrite it as
B(h, T), with h varying from 0 to 1. “Self-affinity” then expresses the fact
that the rescaled function T− 0.5B(h, T) has the same distribution for every
value of T.

From this, one immediately deduces that

√
Var  

 
B(t + δ) − B(t)  = s0.5 and max

0 ≤ u ≤ δ
B(t + u) − min

0 ≤ u ≤ δ
B(t + u) = Cδ0.5,
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where C is a random variable independent of t and δ. These statements
are forms of the δ0.5 law, but they are valid uniformly (that is, for all δ)
rather than asymptotically (that is, for high δ).

By analogy, when studying the laws of Hurst, it is good to know that
more general self-affine processes exist. A Gaussian process X(t), of the
integral BH(t) = ∫t0X(u)du, is Joseph self-affine if the rescaled function
T− HBH(h, T) is independent of T in distribution. That the δH laws apply to
BH(t) can be seen by simple inspection. BH(t) was called “fractional
Brownian motion” by M & Van Ness 1968 {H11}.

Unfortunately, the derivative B′H(t), called the “fractional Gaussian
noise,” is too irregular to be studied directly. Previously, we interpolated
the integral of the independent Gauss process by Brownian motion; now,
we must replace X(t) by BH(t + 1) − BH(t). The covariance of the function
BH(t + 1) − BH(t) is given for δ ≥ 1 by

CH(δ) = Q (δ − 1)2H − 2s2H + (δ + 1)2H

where Q is any (positive and finite) constant. If 1/2 < H < 1 and δ is large,
the covariance is approximated by

CH(δ) =  
 
2H(2H − 1)Q  δ

2H − 2.

This is precisely the form that we proposed to model phenomena obeying
Hurst's law. Clearly, our models are approximations to fractional
Gaussian noise.

IMPLICATIONS OF SELF-AFFINITY

To apply self-affinity, one proceeds in a manner similar to the classical
“dimensional analysis” of fluid and solid mechanics. This similarity is no
accident; hydrology can be considered the low frequency application of
the theory of turbulence, into which self-affinity and dimensional analysis
were introduced by von Kármán and Kolmogorov (see Friedlander &
Topper 1961).

A familiar illustration of dimensional analysis occurs in the study of
water flow in vessels having the same shape but different dimensions and
proportionately different velocities. The calculations need not be repeated.
It suffices to solve all relevant problems once. Solutions to other cases will
be obtained by mere rescaling.
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The application of self-affinity to hydrology follows in the same spirit.
Once one performs the calculations relative to some “reference” horizon,
answers relative to other horizons are obtained by simple rescaling. This
may make it worthwhile, in the case of the reference horizon, to perform
some very lengthy and involved calculations that would not otherwise be
economic. The new hydrology we propose may demand readjustments of
thought. But there is hope that the ultimate outcome of this new
hydrology will be a set of new and better “cookbook recipes.”

&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

 Editorial changes.  “Self-affine” is used in this reprint as a replacement
for “self-similar.” The historical confusion concerning these terms is dis-
cussed in Chapter H1. The original paper characterizes certain random
process as being either “smooth” or “erratic.” Those early and poorly
chosen terms have been replaced by “mild” or “wild,” respectively, fol-
lowing the lead of M 1997E, Chapter E5. The original referred to several
planned publications that did not materialize. Here is a shortened version
of the last section of the original.

Foretaste of the Noah Effect. To explain Hurst's finding, the Noah Effect
is neither necessary nor sufficient. A discussion of the Noah Effect is
several papers removed from the present introductory article, {P.S. 1999.
This discussion was never completed, but this paragraph was not erased}.
Our approach will resemble the methods M 1963b {E14} which are impor-
tant but mostly used to describe the variation of commodity prices. Con-
sider the function XΣ(t) = ∑t

u = 1X(u), with X(u) being the annual flow for
the year u, minus a reference level around which X(u) oscillates. This sum
will be the counterpart of the price of a commodity at the instant t. The
very rapid and large changes typical of the behavior of prices will be com-
pared to floods. Sporadic processes (see M 1967b {N10}) will also be
needed.

How my fruitful collaboration with J. R. Wallis came about. This story
is told in Section 4.3 of Chapter H8.


