Fractals and the
Geometry

of Nature

) it B. Man '

Guided by the mathematics underlying a recently

revived family of “monstrous” geometric shapes,

computer drawing machines are producing realistic

representations of some familiar but grossly irregular
patterns in nature.

Before beginning to understand what fractals are, one should know what
they look like. The reader is therefore asked to begin this article with a
careful examination of its illustrations and to read the captions only after
the introduction below.

Now pay special attention to figure 1, at right. It does not represent what
it may seem to. It is neither a photograph of a landscape on the Earth, the
Moon, or any other planet, nor is it a painting by a science fiction artist. None
of the illustrations in this article represents any actual facet of nature, and
none is what is ordinarily called a work of art. All are guaranteed 100%
geometric fakes. They are computer-generated and computer-plotted repre-
sentations of selected members of the family of purely geometric shapes
called fractals.







Figure 1 (overleaf): a fractal
landscape that never was.
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Fractal geometry can imitate nature

The illustrated fractal shapes are really very simple in the sense that every
one of their details has been deduced unambiguously from a few lines of
instruction given to the computers that drew them. These shapes are ex-
tremely involved, however, and are strikingly unlike anything in the familiar
discipline of classical geometry, or “Euclid.” The new fractal geometry that
they exemplify is very different from Euclid. Especially conspicuous is the
fact that the number of dimensions, or dimensionality, of a fractal may be
a fraction. This idea is by no means “geometry fiction” but part of a chapter
of mathematics that is classical but was obscure until recently for lack of
widely interesting applications.

The applicability of fractal geometry in describing some grossly irregular
and fragmented facets of nature is so strikingly evident from the illustra-
tions that it is reasonable to wonder why it had not been heard of before
1975, when this author’s first comprehensive publication on fractals intro-
duced the term and marked the founding of the discipline. For, had it been
founded earlier, though doubtlessly under a different name, it would have
filled an obvious need for describing some of many conspicuous natural
patterns—including the shapes of mountains, coastlines, and clouds—at
which the straight lines, circles, ellipses, squares, and other components of
classical geometry are almost completely inept.

The answer is a hard-to-believe tale of extreme self-delusion on the part
of many great minds over a full century. “Fractional dimension” and several
other basic components later to be fitted into the system of fractal geometry
had been known to mathematicians and to a few scientists and philosophers
since the period 1875-1925 but were knowingly left to remain as unrelated
odds and ends of specialized consequence. No one favored them with careful
attention because they were believed to deserve none; hence no one even felt
the need of a word to denote them.

Some unexpectedly simple shapes

Before touching again on history, it will be helpful to contrast some fractal
shapes with those in Euclid. The circle, the square, the sphere, and the cube
are the very simplest Euclidean shapes because, position aside, one needs
only one parameter to describe any of them; say, a diameter or a diagonal
length. Any alternative parameter is merely a fixed multiple of the one
chosen as a base. A circle is simpler than a square because it involves fewer
position parameters. A rectangle, an ellipse, or several circles strung shish-
kebab style involve only two parameters. In addition, it is obvious that each
of the parameters required by these examples is a scale of length.

This last feature leads to a strong temptation to identify the notions of
scale and of parameter and to conclude that a geometric shape which is
simple to describe must also involve few distinct scales of length. However,
fractal illustrations suffice to demonstrate that this temptation has no merit
at all. To take an example, the fake mountain view in figure 1 includes
identifiable hills and hillocks of every conceivable scale, between barely
perceptible ones and ones that nearly fill the picture. If the picture were
more finely grained, an even wider range of hill sizes would be seen. On the
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other hand, only three parameters suffice to identify this mountain scene
within a certain colossal “portfolio” of alternative scenes to which it belongs.
(Not counted are the parameters that control the angles of lighting and of
observation.) Furthermore, only one of the three parameters is related to
length: it doubles when altitudes of the landscape double.

The second parameter, denoted D, is the most interesting and the most
important one. In the case of surfaces it lies between two and three. Its most
obvious role in the construction of these landscapes is to control the relative
numbers of large and small hills: when D is close to two, the scene has a
huge hill with tiny pimples, while when D is close to three, the scene
contains many middling hills with barely a trace of a large one. The term
denoted by D is “fractal dimension,” which demands some explanation. D
differs from the standard view of dimension as the number of distinct
coordinates needed to specify a point in space. For instance, on a straight
line one needs but a single coordinate to identify a point; on a plane or a
landscape one needs two coordinates. The notion of dimension, however, has
more than one meaning, and fractals are characterized by the fact that
different definitions of dimension yield distinct numerical values. (This issue
is discussed further in the box on pp. 176-177.)

The third and last parameter, called “random seed” or “chance,” is best
thought of as a scene’s page number in the portfolio of alternatives men-
tioned above. The notion of chance in this sense is a subtle one. Ordinarily
a game of, say, 1,000 coin tosses is viewed as a sequence of 1,000 indepen-
dent chance events, each the outcome of one coin toss. But one can also
imagine that there exists somewhere a big book of 2!°% pages (a number
greater than 1 followed by 300 zeros), in which the progress of each possible
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Figure 2: a fractal attractor.




Figure 3: the Koch snowflake and a
snowflake sweep.

outcome of 1,000 coin tosses is recorded on a separate page. Thus, any game
of 1,000 tosses can be specified by selecting a page in this book. The parame-
ter of chance is simply the page number so selected. Landscapes are a more
complicated story, but again the computer program responsible for such
fractals as figure 1 has a finite number of conceivable outcomes. The specific
figure that one obtains depends on a number that one gives in advance,
called “seed,” which can be viewed as a page number in a virtual portfolio
of different landscapes.

Some of the preceding assertions may be clarified by examining their
counterparts in the case of other fractals—notably of the snowflake curve
in figure 3 on p. 173. Whereas a computer that is programmed to draw a
circle will perform that single task and then stop, a typical fractal-drawing
computer is programmed to loop endlessly. In other words, after it has
performed a simple task assigned to it and has finished drawing a curve with
a limited amount of detail, it immediately starts again to perform the same
task on a smaller scale of length, thus adding more detail—and so on to
infinity. The ratio r between the scales involved in successive stages enters
into the principal parameter, D, characteristic of such pattern-generation
loops. For the snowflake curve this parameter is 1.26; for variants of the
snowflake it lies between one and two and is again a fractal dimension.
Endless looping is the trick that makes it possible for geometric shapes that
involve many scales of lengths to be counted among the simplest in geome-
try. Thus, the product of an interrupted loop that stops after a finite number
of steps is, paradoxically, less simple than that of an endless loop: to be able
to know when to stop, the drawing program must include an additional
signal; i.e., one more parameter, such as a counter or a smallest scale.

It will be noticed that in loop-generated fractals, successive scales of
length fall in a discrete, geometric sequence. This is an undesirable and
unnatural feature in most cases in which one seeks a faithful model of
nature, but it vanishes in such other fractals as fake mountains, whose
scales are continuously governed by the chance parameter. When a loop is
absent, a shape is typically extremely smooth. When a purely repetitive loop
is present, a shape is typically extremely rough and irregular and in some
cases also fragmented into separate islandlike pieces. These extremes hap-
pen to be much simpler than intermediate shapes of moderate irregularity.

Taming the mathematical monsters

This author’s search for a word to denote the fake mountains, loop-gener-
ated curves, and their kin eventually led to coining the term fractal. The
word is related to the Latin verb frangere, which means “to break.” In the
Roman mind, frangere may have evoked the action of breaking a stone, since
the adjective derived from it combines the two most obvious properties of
broken stones, irregularity and fragmentation. This adjective is fractus,
which led to fractal. Eventually this author proposed a precise definition of
the mathematical term fractal set (see box). The etymological kinship with
“fraction” is also significant if one interprets “fraction” as a number that lies
between integers. Indeed, a fractal set can be considered as lying between
the shapes of Euclid.
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3a: four stages in the construction of the Koch snowflake

3b: four stages in the construction of a snowflake sweep

3¢: rounded approximations of 3a and 3b, superposed



Figure 4: map of a country that
never was.

The reason for coining the term fractal and founding fractal geometry
was well stated by Freeman J. Dyson in the journal Science:

“Fractal” is a word invented by Mandelbrot to bring together under one heading a
large class of objects that have [played an] . . . historical role . . . in the development
of pure mathematics. A great revolution of ideas separates the classical mathematics
of the 15th century from the modern mathematics of the 20th. Classical mathematics
had its roots in the regular geometric structures of Euclid and the continuously
evolving dynamics of Newton. Modern mathematics began with Cantor’s set theory
and Peano'’s space-filling curve. Historically, the revolution was forced by the discov-
ery of mathematical structures that did not fit the patterns of Euclid and Newton.
These new structures were regarded by contemporary mathematicians as “pathologi-
cal” They were described as a “gallery of monsters,” kin to the cubist painting and
atonal music that were upsetting established standards of taste in the arts at about
the same time. The mathematicians who created the monsters regarded them as
important in showing that the world of pure mathematics contains a richness of
possibilities going far beyond the simple structures that they saw in nature. Twen-
tieth-century mathematics flowered in the belief that it had transcended completely
the limitations imposed by its natural origins.

Now, as Mandelbrot points out [ in his book, Fractals] . . . nature has played a joke
on the mathematicians. The 19th-century mathematicians may have been lacking in
imagination, but nature was not. The same pathological structures that the math-
ematicians invented to break loose from 1Sth-century naturalism turn out to be
inherent in familiar objects all around us in nature.

Thus, the theory of fractals is not properly an application of 20th-century
mathematics, but the sudden revival and belated blooming of odds and ends
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not intended to become a theory. In the 20th century more so than in
preceding ones, mathematics is influenced and often dominated by the
search for generality for its own sake. The results that this search achieves
(for example, the properties true of all curves) are typically of little use in
science. Science had exhausted the old curves of Euclid and was in dire need
of new ones, but it needed curves that are sufficiently special to have inter-
esting properties subject to comparison with natural phenomena. Math-
ematics of intermediate generality created around 1900 involved a cache of
curves and other shapes that the “mainstream” had leapfrogged much too
hastily, and fractal geometry is the new discipline that is being built around
this cache.

The fact that mathematics, viewed by its own creators as “absolutely
pure,” should respond so well to the needs of science is striking and surpris-
ing but follows a well-worn pattern. That pattern was first set when Jo-
hannes Kepler concluded that, to model the path of Mars around the Sun,
one must resort to an intellectual plaything of the Greeks—the ellipse. Soon
after, Galileo concluded that, to model the fall of bodies toward the Earth,
one needs a different curve—a parabola. And he proclaimed that “the great
hook [of nature] . . . is written in mathematical language and the characters
are triangles, circles and other geometric figures . . . without which one
wanders in vain through a dark labyrinth.” In the pithy words of Scottish
biologist D’Arcy Thompson: “God always geometrizes.” With the advent of
fractal geometry, the meanings of further geometric “characters” have been
revealed, and a few more pages of the great book of nature have become
understandable.

Selected facets of fractals are discussed below in descriptions of the
illustrations and in a separate box.

Figure 1: a fractal landscape that never was

In order to determine the degree of validity of a scientific principle, scientists
seek formulas that follow from this principle and compare them with em-
pirical formulas derived from actual observations. The correspondence be-
tween the fractal model used to generate this mountainous relief and real
mountains can be shown to be surprisingly excellent given the model’s
simplicity. By contrast, other mathematical models of landscape that com-
pete with fractal landscapes lead to drawings remote from reality.

This figure is an example of an unsystematic, or random, fractal. Formally
itis a “truncated fractional Brownian surface” of fractal dimension D = 2.3.
The word truncated simply means that at all points where the mathematical
model called for altitude below some threshold value labeled as zero, the
altitude was arbitrarily reset to zero. In the illustration these points appear
as depressions filled with water. The meaning of the word fractional is
technical; it refers to a smoothing operation applied to a markedly rough
surface, called a Brownian surface, to make it more in conformity with a
natural Earth landscape. The word Brownian calls attention to the fact that
each vertical cross section of a Brownian surface is a Brownian function:
very nearly a random walk that steps up or down with equal probability
independently of its past steps.
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Self-similarity and fractal dimension
A straight line segment has a property that is self-evident but deserves to
be set out as the basis of a later generalization. Given any integer N, a
segment of length L is the sum (union) of N straight segments of length
r = L/N, each of which can be obtained from the original segment by a
similarity of ratio r, with an appropriate focal point. In the same vein a
square of side L is the same as the sum of N? squares of side r = L/N, each
of which can be obtained from the original by a similarity of ratio . The line
segment and the square are therefore described as being self-similar enti-
ties, and all line segments and squares are simply reduced or enlarged
replicas of each other. In Euclid, all self-similar shapes are deducible to the
above examples; hence self-similarity is not an especially useful notion.
Fractals, however, can be self-similar in a truly overwhelming variety of
ways. For example, each third of the snowflake curve in figure 3 is self-
similar. It is made of four replicas of itself reduced in the ratio r = !/a.

For the rare self-similar figures in Euclid it is easy to see that the ratio
D = log N/log (!/r)—i.e., the logarithm of N divided by the logarithm of
1/r—is identical to the figure’s dimension, which is one for curves like
straight lines and circles and two for planar domains like the interior of a
square. The same ratio also deserves to be considered for fractal self-similar
shapes. But the values it yields are most surprising. For the snowflake curve,
D =log 4/log 3 = 1.26. .., which is a fraction! And for the snowflake sweep
in figure 3, a more general formula (slightly more involved than a ratio of
logarithms and applicable when the reduction ratios of the parts are not all
the same) yields D = 2, which reflects the property of the planar domain
that the curve fills rather than its curvelike nature.

More generally, the property of a geometric shape that is revealed by D
is something that one may informally call “heft.” Progressing from shapes

Figure 2: a fractal attractor

The boundary of the blue-colored region in this illustration, meant to con-
trast with the previous one, is an example of a very systematic (though very
complex) fractal curve. The rationale behind it involves dynamic physical
systems. A physical system may have a stable attractive point, meaning a
point to which it converges in due time and to which it returns if disturbed.
For example, a marble tossed into an upright funnel will tend toward a
stable point at the funnel's neck. A physical system may also have a stable
attractive cycle; say, a circle or an ellipse. The planets and satellites of the
solar system, for instance, have established stable, nearly elliptical orbits
around their parent bodies. However, dynamic systems whose attractors are
points or near circular cycles or other Euclidean shapes are exceptions, and
the behavior of most dynamic systems is incomparably more complicated.
Viewed in terms of fractal geometry, a remarkable finding by the math-
ematicians Henri Poincaré (circa 1885) and Pierre Fatou and Gaston Julia
(circa 1918) can be expressed by saying that, save for certain simple excep-
tions, attractors are fractals.
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of lower dimension to those of higher dimension, a square is heftier than
a line segment, and a cube heftier than a square. From the viewpoint of heft,
fractals prove by simple construction that a shape can well lie between
standard values of dimension.

But heft does not exhaust all the nuances of dimension. For example, the
top third of the snowflake curve has the same kind of connectedness that
a straight line segment has: if a few points are deleted from it, it breaks into
disconnected pieces. Consequently, mathematicians say that for both the
straight line and the snowflake curve the topological dimension is one. It is
apparent that this value coincides with the number of coordinates needed
to identify a point on either of these curves. The mathematician Georg
Cantor, however, demonstrated that identifying dimension with numbers of
coordinates is a treacherous notion, and modern mathematics prefers to
stress the topological facet of dimension. In a similar manner, instead of
noting that a plane or a landscape requires two coordinates in order to
identify a point on it, mathematicians stress that both figures possess a
topological dimension of two because either can be disconnected by deleting
curves from it.

It should be clear that dimension is a notion more delicate than first
appearances would indicate. Its dissection into distinct facets is of practical
significance, and the author therefore was led to define a fractal set (the
entire family of fractal shapes) as being a mathematical set such that D is
greater than the topological dimension, Dy In mathematical symbols,
D > Dy. To describe fractals requires a number of different parameters, but
the topological dimension, Dy, and the fractal dimension calculated as
log N/log (!/r), or by more general formulas when needed, are the crucial
parameters.

Among the many reasons why this finding remained little known (and
interest in this topic waned for half a century) is that the original papers
are difficult and devoid of illustrations: fractal attractors are very difficult
to draw. The few examples laboriously produced about 1885 keep being
reproduced seemingly without recognition that they are incorrect and quite
misleading. Drawing fractals is a task for computer graphics, as exemplified
by the figure, which is excerpted from a varied and extensive collection
developed in the course of the author’s most recent research.

Figure 3: the Koch snowflake and a snowflake sweep

While the main display for these figures is shown in 3c, the more sober
figures 3a and 3b give a clearer idea of the constructions. In order to con-
struct the snowflake (3a), a shape derived by H. von Koch, one begins with
an equilateral triangle with sides one unit long. Next, one attaches to the
external middle of each side an equilateral triangle of side r = '/3. Then one
attaches to the middle of each side a triangle of side r %, and so on. The “skin”
of the snowflake is called a snowflake curve. A striking characteristic is that
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Figure 5: fractal clouds that
never were.

its ultimate length is infinite: each time a new series of triangles is attached,
the skin’s length is multiplied by /. A related fact is that the curve has no
tangent at any point. For example, try to draw a tangent at a corner point
by drawing the chord which joins this point to another point on the curve
that moves increasingly close to the first. It is apparent that this chord
oscillates endlessly (within an angle of 30°) without even settling down to
a limit one would call a tangent to the snowflake curve.

Is not a curve that has infinite length and is devoid of tangents too bizarre
for words or for applications? The theory of fractals advances and defends
the opposite view, as is discussed below in figure 4.

In order to construct the snowflake sweep (3b), a curve devised by the
author, one starts with a string of length one. Then one stretches and pulls
it into a 13-segment shape, called the generator, that fills a regular triangle
reasonably uniformly and in any event passes at a distance that is less than
'(2v3) = 0.2886 . . . from any point in the triangle. Then one stretches and
pulls each segment of this generator into a reduced-size version of the
whole, thus filling a star hexagon more uniformly than in the preceding
stage, by a curve that passes at a distance less than /12 from any point in
this hexagon. And as one repeats the same stretching and pulling, the con-
struction converges to a curve that comes infinitely close to any point within
the snowflake (3a) described above.

The fact that a curve can be contrived to fill an area of a plane was first
demonstrated by Giuseppe Peano using a different example. Yet, granted
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that one can achieve such a monstrous goal in theory, is it not clear that the
outcome cannot be anything but extravagant and contrary to all intuition?
The theory of fractals shows otherwise. As evidence, figure 3¢ shows varia-

tions of stages of construction of the snowflake curve and snowflake sweep,
each being smoothed out by replacing every line segment by an arc, namely
/6 of a circle. In the variant stages of the snowflake curve, these arcs all bow
inward, but in the snowflake sweep stages they bow toward the side along
which the next stage of construction will occur. In the resulting pattern one
may well find it possible to sense branching trees, licking tongues of fire, and
other familiar patterns of nature. In particular, if narrower lines are laid
along the middles of the red-colored “fingers,” one obtains a branching
pattern bearing a strong resemblance to river networks. And this similarity
emphasizes the basic requirement of a river network that drains some area
effectively: that its cumulative shore should pass within a very small dis-
tance of every point of the area to be drained.

(The second stage of rounded approximation in figure 3c awaits a “fractal-
man” to adopt it as his symbol.)

Figure 4: map of a country that never was
This illustration is made up of selected contour lines of a fractional Brown-
ian relief constructed along the same principle as figure 1.

How long is the coast of Britain? This is a deceptively simple question to
which the curves in figures 3 and 4 call attention. There is no need to seek
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Figure 6: a seven-headed Poincaré
fractal curve.



Figure 7: one-eighth of a sky that
never was (above right). In the
accompanying map (above) the
celestial sphere centered on the Earth
is projected on a plane. Shaded
portion corresponds to the illustrated
region of fractal sky.

the answer in an encyclopedia, because a little thought shows that the only
sensible answer is “it depends.” For example, when the length is measured
by walking a compass or dividers along a coastline it is obvious that the result
of the measurement depends on how far apart the legs are set: the less
broadly they are opened, the better they take account of fine details of
coastline and the longer the coastline length they yield.

If a coastline’s shape extends to endlessly small detail by self-similarity
(t.e., if the irregularity of a coastline segment of any size is the same as that
of a segment of any other size), then as the dividers’ opening tends to zero,
the total measured length will tend to infinity. This behavior exemplifies a
surprisingly common phenomenon. When mathematicians concluded about
a century ago that the seemingly simple and innocuous notion of “curve”
hides profound difficulties, they thought that they were engaging in unrea-
sonable and unrealistic hairsplitting. They had not determined to look out
at the real world to analyze it, but to look in at an ideal in the mind. The
theory of fractals shows that they had misled themselves.

Figure 5: fractal clouds that never were

The construction of this illustration bears many similarities to that of the
fractal landscape in figure 1. The figure is again a fractional Brownian
surface that can be thought to represent all points in a three-dimensional
space, such as that filled by the Earth’s atmosphere, at which the tempera-
ture equals 0° C (32° F), the freezing temperature of water. Following this
interpretation, the surface bounds a region in the atmosphere that allows
the formation and existence of clouds of ice crystals.
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Figure 6: a seven-headed Poincaré fractal curve

Much of the caption describing figure 2 applies as well to this curve, which
is also a fractal attractor, although of another kind. Its main characteristic
is that it is not self-similar, as are the other illustrated figures. Instead it is
self-inverse; that is, unchanged by geometric inversion with respect to any
of 14 circles.

Figure 7: one-eighth of a sky that never was

Fractal “dusts” of totally disconnected points play a central role in fractal
models of the distribution of stars in the Galaxy and of galaxies in the
universe. Such dusts are variants of a celebrated mathematical monster
called Cantor set. The creators of early models of the sky, not realizing that
they were dealing with Cantor sets, largely operated by trial and error. The
theory of fractals not only explains the early models but also allows present
modeling to proceed systematically in full knowledge of what is actually
being done.

In this figure, the distribution of stars is part of a planar projection of the
sky, which is a sphere centered on the Earth. The map covers the portion
of the Northern Hemisphere between the longitudes — 45° and + 45°. In
the illustration it takes the form of an ogive shape colored a dark blue. The
“stars” distributed throughout it have been generated according to a model
developed by the author; the principal mathematical input of the model
consists of several parameters, of which the main one is the estimated
fractal dimension of natural stellar distribution in the Galaxy.
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