Tuning and plateaux for the entropy of α-continued fraction transformations

Giulio Tiozzo
Harvard University

Marseille, May 24, 2012
Joint work with C. Carminati (Pisa)
Summary

1. α-continued fractions
Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators
Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators
5. Characterization of plateaux
Summary

1. α-continued fractions
2. The entropy function $h(\alpha)$
3. Quadratic intervals and matching
4. Tuning operators
5. Characterization of plateaux
6. Local monotonicity of the entropy
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0 q + r_0 \]
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q} \]
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q} \]
\[q = a_1 r_0 + r_1 \]
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q} \]

\[q = a_1 r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0} \]
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q} \]

\[q = a_1r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0} \]

\[\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} \]
Euclid’s algorithm and continued-fractions

\[x = \frac{p}{q} \]

\[p = a_0q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q} \]

\[q = a_1r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0} \]

\[\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} = a_0 + \frac{1}{a_1 + \frac{1}{\frac{1}{a_{k-1} + \frac{1}{a_k}}}} \]
Continued-fraction expansion

\[x \in \mathbb{R} \setminus \mathbb{Q} \]

\[x = \lfloor x \rfloor + x_0 = \]

\[x = \lfloor x \rfloor + x_1 = \]

\[x = \lfloor x \rfloor + x_2 = \]

\[\vdots \]
Continued-fraction expansion

$x \in \mathbb{R} \setminus \mathbb{Q}$

\[x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1 \]

\[x = a_0 + x_0 \]
Continued-fraction expansion

\[x \in \mathbb{R} \setminus \mathbb{Q} \]

\[x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1 \]

\[\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 = \]

\[x = a_0 + x_0 \]
Continued-fraction expansion

$x \in \mathbb{R} \setminus \mathbb{Q}$

\[x = \left\lfloor x \right\rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1 \]
\[\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 = a_1 + x_1 \quad 0 \leq x_1 \leq 1 \]

\[x = a_0 + \frac{1}{a_1 + x_1} \]
Continued-fraction expansion

\(x \in \mathbb{R} \setminus \mathbb{Q} \)

\[x = \left\lfloor x \right\rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1 \]
\[\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 = a_1 + x_1 \quad 0 \leq x_1 \leq 1 \]
\[\frac{1}{x_1} = \left\lfloor \frac{1}{x_1} \right\rfloor + x_2 = \]

\[x = a_0 + \frac{1}{a_1 + x_1} \]
Continued-fraction expansion

$x \in \mathbb{R} \setminus \mathbb{Q}$

\[
x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1
\]

\[
\frac{1}{x_0} = \lfloor \frac{1}{x_0} \rfloor + x_1 = a_1 + x_1 \quad 0 \leq x_1 \leq 1
\]

\[
\frac{1}{x_1} = \lfloor \frac{1}{x_1} \rfloor + x_2 = a_2 + x_2 \quad 0 \leq x_2 \leq 1
\]

\[
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + x_2}}
\]
Continued-fraction expansion

\[x \in \mathbb{R} \setminus \mathbb{Q} \]

\[x = \left\lfloor x \right\rfloor + x_0 = a_0 + x_0 \quad 0 \leq x_0 \leq 1 \]

\[\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 = a_1 + x_1 \quad 0 \leq x_1 \leq 1 \]

\[\frac{1}{x_1} = \left\lfloor \frac{1}{x_1} \right\rfloor + x_2 = a_2 + x_2 \quad 0 \leq x_2 \leq 1 \]

\[x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}} \]

INFINITE EXPANSION
Dynamical interpretation: the Gauss map

\[
\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}
\]
Dynamical interpretation: the Gauss map

\[\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1} \]

\[x_{n+1} = \left\{ \frac{1}{x_n} \right\} \]
Dynamical interpretation: the Gauss map

\[
\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}
\]

\[
G(x) = \left\{ \frac{1}{x} \right\}
\]
Dynamical interpretation: the Gauss map

\[\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1} \]

\[G(x) = \left\{ \frac{1}{x} \right\} \]
Nakada’s α-continued fraction transformations

For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ as follows:
Nakada’s α-continued fraction transformations

For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x),$$
Nakada’s α-continued fraction transformations

For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$
For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α-continued fraction expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \cdots}}, \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$
Nakada’s α-continued fraction transformations

For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α-continued fraction expansion:

$$x = \frac{\epsilon_1,\alpha}{c_1,\alpha} + \frac{\epsilon_2,\alpha}{c_2,\alpha} + \cdots \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}.$$
Nakada’s α-continued fraction transformations

For each $\alpha \in [0, 1]$, we can define a α-euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α-continued fraction expansion:

$$x = \frac{\epsilon_1,\alpha}{c_{1,\alpha}} + \frac{\epsilon_2,\alpha}{c_{2,\alpha}} + \ldots \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$
Nakada’s α-continued fraction transformations
Nakada’s α-continued fraction transformations
Nakada’s α-continued fraction transformations
Nakada's α-continued fraction transformations
Nakada’s α-continued fraction transformations
Nakada’s α-continued fraction transformations
Nakada’s α-continued fraction transformations
Nakada’s α-continued fraction transformations
Entropy

What is the average speed of convergence of the α-euclidean algorithm?
What is the average speed of convergence of the α-euclidean algorithm? How does it vary with α?
Entropy

For each α, the topological entropy of T_α is infinite. However, every T_α has a unique invariant measure μ_α in the Lebesgue measure class.
For each α, the topological entropy of T_α is infinite. However, every T_α has a unique invariant measure μ_α in the Lebesgue measure class. Hence we can consider the metric entropy with respect to that measure.

$$h(\alpha) := \int \log |T'_\alpha| d\mu_\alpha$$
Entropy

\[h(\alpha) := \int \log |T'_\alpha| d\mu_\alpha \]

It measures:

- the **speed of convergence** of the \(\alpha \)-euclidean algorithm
Entropy

\[h(\alpha) := \int \log |T'_\alpha| d\mu_\alpha \]

It measures:

- the speed of convergence of the \(\alpha \)-euclidean algorithm: The average number of steps over all rationals of denominator less than \(N \) is

\[P_N(\alpha) \approx \frac{2}{h(\alpha)} \log N \]

[Bourdon-Daireaux-Vallée]
Entropy

\[h(\alpha) := \int \log |T'_\alpha| d\mu_\alpha \]

It measures:

- the speed of convergence of the \(\alpha \)-euclidean algorithm
- the growth rate of the denominators
Entropy

\[h(\alpha) := \int \log |T'_{\alpha}| d\mu_{\alpha} \]

It measures:

- the speed of convergence of the \(\alpha \)-euclidean algorithm
- the growth rate of the denominators: For almost every \(x \in [0, 1] \)

\[h(\alpha) = \lim_{n \to +\infty} \frac{2}{n} \log q_{n,\alpha}(x) \]

where \(p_{n,\alpha}(x)/q_{n,\alpha}(x) \) is the \(n \)-th convergent of the \(\alpha \)-expansion of \(x \)
Entropy

\[h(\alpha) := \int \log |T'_\alpha| d\mu_\alpha \]

It measures:

- the speed of convergence of the \(\alpha \)-euclidean algorithm
- the growth rate of the denominators
- how chaotic the map \(T_\alpha \) is
The entropy function $\alpha \mapsto h(T_\alpha)$
Is entropy monotone increasing for $\alpha < \frac{1}{2}$?
Zooming in
No, it is not monotone!
Zooming in
It seems like entropy displays a **fractal** structure
Global behaviour of $h(\alpha)$

$h(\alpha)$ is:
- non-monotone [Nakada-Natsui]
Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- Hölder-continuous with exponent $\left(\frac{1}{2} - \epsilon\right)$ [T.]
Global behaviour of $h(\alpha)$

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- Hölder-continuous with exponent $(1/2 - \epsilon)$ [T.]

How to describe and explain the fractal structure?
Matching, a dynamical source of monotonicity

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

\[T^{N+1}_\alpha(\alpha) = T^{M+1}_\alpha(\alpha - 1) \quad M, N \in \mathbb{N} \]
Matching, a dynamical source of monotonicity

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

\[T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \quad M, N \in \mathbb{N} \]

They proved that, whenever this happens, the entropy \(h(\alpha) \) is monotone near the parameter \(\alpha \);
Matching, a dynamical source of monotonicity

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

\[T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \quad M, N \in \mathbb{N} \]

They proved that, whenever this happens, the entropy \(h(\alpha) \) is monotone near the parameter \(\alpha \); **but different intervals** might display **different kind of monotonicity**
Matching, a dynamical source of monotonicity

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

\[T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \quad M, N \in \mathbb{N} \]

They proved that, whenever this happens, the entropy \(h(\alpha) \) is monotone near the parameter \(\alpha \); but different intervals might display different kind of monotonicity
Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Conjecture: The union of all matching intervals is dense and has full measure in parameter space.
Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Conjecture

The union of all matching intervals is dense and has full measure in parameter space.
Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Conjecture

The union of all matching intervals is dense and has full measure in parameter space.
Indeed, they found examples of

- matching intervals where $h(\alpha)$ is increasing;
- matching intervals where $h(\alpha)$ is decreasing;
- matching intervals where $h(\alpha)$ is constant.

Conjecture

The union of all matching intervals is dense and has full measure in parameter space.
Quadratic intervals

FACT:

Every rational value admits exactly two C.F. expansions.

\[\frac{3}{10} = \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1} \]

\[\frac{3}{10} = \left[0; 3, 3 \right] \]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type

\[a = \left[0; A^- \right] = \left[0; A^+ \right] \]

Using such strings we can construct the two quadratic irrationals \(\alpha^- := \left[0; A^- \right] \) (E.g. \(\alpha^- = \left[0; 3, 2, 1 \right] = \sqrt{37} - \frac{4}{7} \)) \(\alpha^+ := \left[0; A^+ \right] \) (E.g. \(\alpha^+ = \left[0; 3, 3 \right] = \sqrt{13} - \frac{3}{2} \))
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}}
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[\frac{3}{10} = \frac{1}{3} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}} \]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3]
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type

\[
a = [0; A^-] = [0; A^+]
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{2 + \frac{1}{1}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type

\[
a = [0; A^-] = [0; A^+]\]

Using such strings we can construct the two quadratic irrationals

\[\alpha^+ := [0; A^-]\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type

\[
a = [0; A^-] = [0; A^+]
\]

Using such strings we can construct the two quadratic irrationals

\[
\alpha^- := [0; A^-] \quad (\text{E.g. } \alpha^- = [0; 3, 2, 1] = \frac{\sqrt{37}-4}{7})
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1)\) will have two C.F. expansions of the type

\[
a = [0; A^-] = [0; A^+]
\]

Using such strings we can construct the two quadratic irrationals

\[
\alpha^- := [0; \overline{A^-}] \ (\text{E.g. } \alpha^- = [0; 3, 2, 1] = \sqrt{37/7} - 4)
\]

\[
\alpha^+ := [0; \overline{A^+}]
\]
Quadratic intervals

FACT: Every rational value admits exactly two C.F. expansions.

\[
\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}
\]

\[
\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].
\]

So any \(a \in \mathbb{Q} \cap (0, 1) \) will have two C.F. expansions of the type

\[
a = [0; A^-] = [0; A^+]
\]

Using such strings we can construct the two quadratic irrationals

\[
\alpha^- := [0; \overline{A^-}] \quad (\text{E.g. } \alpha^- = [0; 3, 2, 1] = \sqrt{\frac{37}{7} - 4})
\]

\[
\alpha^+ := [0; \overline{A^+}] \quad (\text{E.g. } \alpha^+ = [0; 3, 3] = \sqrt{\frac{13}{2} - 3})
\]
For each $a \in \mathbb{Q} \cap (0, 1)$
Quadratic intervals

For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval I_a as follows
Quadratic intervals

For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval I_a as follows

$$a = [0; A^\pm]$$
For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval I_a as follows

$$a = [0; A^{\pm}] \mapsto$$
For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval l_a as follows

$$a = [0; A^\pm] \mapsto l_a := (\alpha^-, \alpha^+)$$
For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval l_a as follows

$$a = [0; A^\pm] \mapsto l_a := (\alpha^-, \alpha^+), \quad \alpha^\pm := [0; A^\pm].$$
Quadratic intervals

For each \(a \in \mathbb{Q} \cap (0, 1)\) we define open interval \(I_a\) as follows

\[
a = [0; A^\pm] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^\pm := [0; A^\pm].
\]

The interval \(I_a := (\alpha^-, \alpha^+)\) will be called
Quadratic intervals

For each \(a \in \mathbb{Q} \cap (0, 1) \) we define open interval \(I_a \) as follows

\[
a = [0; A^\pm] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^\pm := [0; A^\pm].
\]

The interval \(I_a := (\alpha^-, \alpha^+) \) will be called the *quadratic interval* generated by \(a \in \mathbb{Q} \cap (0, 1) \).
Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)

Let I_r be a maximal quadratic interval, and $r = [0; a_1, \ldots, a_n]$ with n even. Let

\[
N = \sum_{i \text{ even}} a_i \quad M = \sum_{i \text{ odd}} a_i \quad (1)
\]

Then for all $\alpha \in I_r$,

\[
T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \quad (2)
\]
Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)
Let I_r be a maximal quadratic interval, and $r = [0; a_1, \ldots, a_n]$ with n even. Let

$$N = \sum_{i \text{ even}} a_i \quad M = \sum_{i \text{ odd}} a_i$$ \hfill (1)

Then for all $\alpha \in I_r$,

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1)$$ \hfill (2)

Corollary
The union of all matching intervals is dense of full measure.
The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number \(r \).
The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.
- h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.

How about the fractal structure?
The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.

- h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.

- The complement is a set of parameters \mathcal{E} which will be called the **bifurcation set**.
The story so far

- Parameter space splits into countably many open intervals, each one of them labelled by a rational number r.
- h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.
- The complement is a set of parameters \mathcal{E} which will be called the bifurcation set.

How about the fractal structure?
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators.
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself.
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:
Tuning operators

The self-similarity of \(h(\alpha) \) can be explained in terms of tuning operators. Each \(r \in \mathbb{Q} \) determines a map

\[
\tau_r : [0, 1] \mapsto [0, 1]
\]

of parameter space into itself.

If \(r = [0; S_0] = [0; S_1] \), it is given in c.f. expansion by:

\[
[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]
\]
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the tuning window W_r.
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the tuning window W_r.

Example: if $r = \frac{1}{2} = [0; 2] = [0; 1, 1]$, then
Tuning operators

The self-similarity of \(h(\alpha) \) can be explained in terms of tuning operators. Each \(r \in \mathbb{Q} \) determines a map

\[
\tau_r : [0, 1] \mapsto [0, 1]
\]

of parameter space into itself.

If \(r = [0; S_0] = [0; S_1] \), it is given in c.f. expansion by:

\[
[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]
\]

The image of \(\tau_r \) is called the tuning window \(W_r \).

Example: if \(r = \frac{1}{2} = [0; 2] = [0; 1, 1] \), then

\[
W_{\frac{1}{2}} = [[0; 2, 1], [0; 1, 1]]
\]
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself.
If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the tuning window W_r.

Example: if $r = \frac{1}{2} = [0; 2] = [0; 1, 1]$, then

$$W_{\frac{1}{2}} = ([0; 2, 1], [0; 1, 1]) = (g^2, g)$$
Tuning operators

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r : [0, 1] \mapsto [0, 1]$$

of parameter space into itself. If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the tuning window W_r.

Example: if $r = \frac{1}{2} = [0; 2] = [0; 1, 1]$, then

$$W_{\frac{1}{2}} = [[0; 2, 1], [0; 1, 1]) = [g^2, g)$$

Idea: τ_r maps the large scale structure to a smaller scale structure, thus creating the fractal self-similarity.
Results: self-similarity of parameter space

Theorem
If h is increasing on a maximal interval I_r, then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval $[0, 1]$, but with reversed sign.
Results: self-similarity of parameter space

Theorem
If h is increasing on a maximal interval I_r, then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval $[0, 1]$, but with reversed sign. More precisely, if I_p is another maximal interval, then

1. h is increasing on $I_{\tau_r(p)}$ iff it is decreasing on I_p;
2. h is decreasing on $I_{\tau_r(p)}$ iff it is increasing on I_p;
3. h is constant on $I_{\tau_r(p)}$ iff it is constant on I_p.
Results: self-similarity of parameter space

Theorem
If h is increasing on a maximal interval I_r, then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval $[0, 1]$, but with reversed sign. More precisely, if I_p is another maximal interval, then

1. h is increasing on $I_{\tau_r(p)}$ iff it is decreasing on I_p;
2. h is decreasing on $I_{\tau_r(p)}$ iff it is increasing on I_p;
3. h is constant on $I_{\tau_r(p)}$ iff it is constant on I_p.

\[\begin{array}{|c|}
\hline
0 & 0.2 & 0.4 & g & 0.8 & 1 \\
\hline
\end{array} \]

\[\begin{array}{|c|}
\hline
0.298 & 0.299 & 0.3 & 0.301 & 0.302 & 0.303 & 0.304 \\
\hline
\end{array} \]
Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_r, then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval $[0, 1]$, but with reversed sign. More precisely, if I_p is another maximal interval, then

1. h is increasing on $I_{\tau r}(p)$ iff it is decreasing on I_p;
2. h is decreasing on $I_{\tau r}(p)$ iff it is increasing on I_p;
3. h is constant on $I_{\tau r}(p)$ iff it is constant on I_p.

If, instead, h is decreasing on I_r, then the monotonicity of I_p and $I_{\tau r}(p)$ is the same.
A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval \((g^2, g)\) is a plateau for \(h(\alpha)\).
A **plateau** of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval \((g^2, g)\) is a plateau for \(h(\alpha)\).

Definition

A tuning window \(W_r\) is **neutral** if, given \(r = [0; a_1, \ldots, a_n]\) the expansion of \(r\) of even length,

\[
a_1 - a_2 + \cdots + a_{n-1} - a_n = 0
\]

Every plateau of \(h\) is the interior of a neutral tuning window \(W_r\).
A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval \((g^2, g)\) is a plateau for \(h(\alpha)\).

Definition

A tuning window \(W_r\) is neutral if, given \(r = [0; a_1, \ldots, a_n]\) the expansion of \(r\) of even length,

\[a_1 - a_2 + \cdots + a_{n-1} - a_n = 0\]

Theorem

Every plateau of \(h\) is the interior of a neutral tuning window \(W_r\).
Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \not\in E$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in E$, then either
 (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
 (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
 (iii) otherwise, h has mixed monotonic behaviour at α, i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.
Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin E$, then h is monotone on a neighbourhood of α;

 (i) if α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;

 (ii) if α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;

 (iii) otherwise, h has mixed monotonic behaviour at α, i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.
Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
 \begin{enumerate}
 \item α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
 \item α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
 \item otherwise, h has mixed monotonic behaviour at α, i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.
Results: classification of local monotonic behaviour

Theorem
Let \(\alpha \) be a parameter in the parameter space of \(\alpha \)-continued fractions. Then:

1. if \(\alpha \notin \mathcal{E} \), then \(h \) is monotone on a neighbourhood of \(\alpha \);
2. if \(\alpha \in \mathcal{E} \), then either
 (i) \(\alpha \) is a phase transition: \(h \) is constant on the left of \(\alpha \) and strictly monotone (increasing or decreasing) on the right of \(\alpha \);
 (ii) \(\alpha \) lies in the interior of a neutral tuning window: then \(h \) is constant on a neighbourhood of \(\alpha \);
 (iii) otherwise, \(h \) has mixed monotonic behaviour at \(\alpha \), i.e. in every neighbourhood of \(\alpha \) there are infinitely many intervals on which \(h \) is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.
Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
 i. α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
 ii. α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
Results: classification of local monotonic behaviour

Theorem

Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
 (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
 (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
Results: classification of local monotonic behaviour

Theorem
Let α be a parameter in the parameter space of α-continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α;
2. if $\alpha \in \mathcal{E}$, then either
 (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α;
 (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α;
 (iii) otherwise, h has mixed monotonic behaviour at α, i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.
Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at α;
- 2.(iii) for a set of parameters of Hausdorff dimension 1 there is an explicit algorithm to decide which case occurs, given the usual continued fraction expansion of α.
Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha = g$;
Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha = g$;
- 2.(iii) for a set of parameters of Hausdorff dimension 1!
Classification of local monotonic behaviour: remarks

Note:

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- 2. there are countably many phase transitions, and they are tuned images of the phase transition at $\alpha = g$;
- 2.(iii) for a set of parameters of Hausdorff dimension 1!
- there is an explicit algorithm to decide which case occurs, given the usual continued fraction expansion of α.
The end

Thank you!
Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$.
Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$. The \textit{Mandelbrot set} \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$f^n_c(0) \not\to \infty$$
Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$. The Mandelbrot set \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$f_c^n(0) \not\to \infty$$
Substitutions and tuning

The Mandelbrot set has a self-similar structure. More precisely, there are baby copies of \mathcal{M} everywhere near its boundary.
Substitutions and tuning

The Mandelbrot set has a self-similar structure. More precisely, there are baby copies of \mathcal{M} everywhere near its boundary.

Baby copies are images of \mathcal{M} via the Douady-Hubbard tuning maps τ_W.
Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map.

E.g.: Feigenbaum parameter \Longleftrightarrow Thue-Morse sequence!
Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map. Baby copies of \mathcal{M} can be described in terms of substitutions:

$$\theta = 0.\theta_1 \theta_2 \ldots \mapsto \tau_W(\theta) = 0.\Sigma \theta_1 \Sigma \theta_2 \ldots$$
Substitutions and tuning

The boundary of \mathcal{M} can be described combinatorially in terms of the doubling map. Baby copies of \mathcal{M} can be described in terms of substitutions:

$$\theta = 0.\theta_1 \theta_2 \ldots \mapsto \tau_W(\theta) = 0.\Sigma \theta_1 \Sigma \theta_2 \ldots$$

E.g.: Feigenbaum parameter \Leftrightarrow Thue-Morse sequence!
The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set \mathcal{E} for α-c.f. [Bonanno, Carminati, Isola, T., 2011]
The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set \mathcal{E} for α-c.f. [Bonanno, Carminati, Isola, T., 2011] Hence the Douady-Hubbard substitution rule translates into our definition of tuning maps for α-c.f.!
The end

Thank you!