(1) Compute the exterior derivative of the following forms:
 (a) $\alpha = \sin x \, dx$
 (b) $\beta = \sin x \, dy$
 (c) $\omega = z^2 \, dx \wedge dy + x^2 \, dx \wedge dz$
(2) Let $\omega = y^2 \, dx + 2xy \, dy$ in the plane.
 (a) Compute $\int_\gamma \omega$, where $\gamma : [0, 2] \to \mathbb{R}^2$ is defined by

 \[
 \gamma(t) = \begin{cases}
 (t, 0) & \text{if } t \in [0, 1] \\
 (1, t - 1) & \text{if } t \in [1, 2]
 \end{cases}
 \]
 (b) Compute $\int_\beta \omega$, where $\beta : [0, 2] \to \mathbb{R}^2$ is defined by

 \[
 \beta(t) = (t/2, t/2).
 \]
 Compare with part (a).
(3) Prove that, if η is any 1-form in \mathbb{R}^n, $\eta \wedge \eta = 0$. Is the same true for a 2-form? (Prove or give a counterexample).
(4) If γ is a closed curve in \mathbb{R}^2 without self intersection, traversed counterclockwise, prove that $\int_\gamma x \, dy$ is the area enclosed by γ.
(5) Consider the following 1-form:
 $\omega = \frac{xdy - ydx}{x^2 + y^2}$
 (a) Compute the integral of ω around the circle of radius 2 (counterclockwise).
 (b) Show that $d\omega = 0$.
 (c) How do you reconcile (a) and (b) with Stokes’ theorem?
(6) Let $f : \mathbb{R}^3 \to \mathbb{R}$ and $h : \mathbb{R}^3 \to \mathbb{R}$ be smooth functions, and let $\omega = hdf$. Prove that $\omega \wedge d\omega = 0$.