
Contents

A Brief Introduction to Mapping Class Groups
Yair N. Minsky 5

A Brief Introduction to Mapping Class Groups 7
1. De�nitions, examples, basic structure 7
2. Hyperbolic geometry, laminations and foliations 19
3. The Nielsen-Thurston classi�cation theorem 29
4. Classi�cation continued, and consequences 36
5. Further reading and current events 39
Bibliography 41

i





A Brief Introduction to Mapping
Class Groups

Yair N. Minsky





IAS/Park City Mathematics Series
Volume 20, 2011

A Brief Introduction to Mapping Class Groups

Yair N. Minsky

These notes summarize a short set of lectures I gave at the PCMI program on
mapping class groups and moduli spaces in the summer of 2011.My job was to
introduce the mapping class group of a surface, discuss its basic features from a
topologist's point of view, and give a description of the Nielsen-Thurston classi�-
cation of mapping classes.

When writing out these notes I couldn't help wondering to myself what purpose
they could possibly serve. All of this beautiful material is by now 30 years old or
older, and has been described eloquently in a number of booksand articles, notably
(for the Thurston material) the Asterisque volume \Travaux de Thurston sur les
surfaces" [27] and its new translation [28], Thurston's own famous article [70],
Casson's lecture notes with Bleiler [20], and most recently Farb-Margalit's lovely
text [ 26].

While giving the talks the most enjoyable part for me (and I hope for the
audience) was drawing the many pictures one needs to really illustrate the ideas.
Perhaps if nothing else, then, one goal for these notes is to recapture some of
the feeling of an informal chalkboard lecture, with as many engaging pictures as
possible.

In the last section, I have added a brief and highly biased meander through
areas of the literature which I �nd particularly interestin g. The �eld is much larger
than I can really do it justice here, so this is by no means an exhaustive survey.

1. De�nitions, examples, basic structure

De�nitions. Throughout, S = Sg;n , the oriented surface of genusg with n punc-
tures (Figure 1). Occasionally we will consider surfaces with boundary instead of
punctures, but we will not emphasize this point.

The mapping class group ofS, here denoted Mod(S), is the group

Mod(S) = Homeo+ (S)=Homeo0(S):

That is, the group of orientation-preserving homeomorphisms modulo the relation of
isotopy. The group appears naturally in many contexts. It is relevant for describing
gluings of 3-manifolds along boundary surfaces; for classifying bundles whose �bres
are 2-dimensional; it is the natural symmetry group for the space of conformal
or hyperbolic structures on a surface; it is important in the dynamical study of
di�eomorphisms and ows.
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8 YAIR N. MINSKY, INTRODUCTION TO MAPPING CLASS GROUPS

Figure 1. Some surfaces of �nite type.

There are some choices implicit in this de�nition; let us remark on them briey.

� Orientation: The restriction to oriented surfaces and orientation preserv-
ing homeomorphisms is mostly a matter of simplicity, and it is also natural
when considering Riemann surfaces, which are naturally oriented. Allow-
ing orientation-reversing maps of Sg;n would, for example, produce an
index 2 extension of Mod(S).

� Homeo versus Di�eo: We could endowS with smooth structure and con-
sider Di� + (S)=Di� 0(S). This is the same group, but the proof is not
trivial. We will be cavalier about this distinction, switch ing categories as
convenient.

� Homotopy versus Isotopy:We could replace the relation of isotopy with
homotopy, still yielding the same group. This is nontrivial , and not quite
true in complete generality { in particular there exists an orientation-
reversing homeomorphism of the disk or the annulus which is homotopic,
but not isotopic, to the identity.

� Homeomorphisms versus homotopy-equivalences:The group of homotopy-
equivalences, mod homotopy, is a completely algebraic object, namely

Out(� 1(S)) = Aut (� 1(S))=Inn (� 1(S)) :

If S is closed (n = 0), then the natural map Mod( S) ! Out(� 1(S)) is
an isomorphism by the Dehn-Nielsen-Baer theorem. We will not prove
this here. In general, one must restrict to automorphisms of� 1(S) that
\respect the punctures".
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� Punctures versus boundary:If we give our surfaces boundary, we might
consider the group of homeomorphisms that �x the boundary pointwise,
modulo isotopies that do the same. This makes Dehn twists around the
boundary nontrivial (see below for de�nitions), and so gives a group which
is a extension of our group by this (abelian) group of twists.

It is not hard, with these remarks in mind, to show that Mod( S) is a countable
group { note that any map S ! S su�ciently close to the identity is homotopic to
the identity. However note also that this is false if we allow g = 1 or n = 1 .

Simplest surfaces. For the sphereS0;0 and the plane S0;1, Mod(S) is trivial. A
key point here is to isotope the image of a circle back to itself, which is actually
somewhat delicate (involving the Jordan curve theorem and the Alexander trick).
This is the simplest case of the \homotopy implies isotopy" remark above.

For the annulus S = S0;2, Mod(S) = Z=2Z. The nontrivial element is the
180 degree rotation illustrated in Figure 2. There is nothing else { an orientation-
preserving homeomorphism �xing the punctures must be isotopic to the identity.

Figure 2. The rotation through the horizontal axis generates Mod(S0;2).

Similarly, for the 3-holed sphere, Mod(S0;3) is �nite { it is identi�ed with the
group of permutations of the punctures. Generators are pictured in Figure 3.

Figure 3. Order-2 and Order-3 generators for Mod(S0;3).

The Torus: T = S1;0 is our �rst example of a surface with in�nite mapping class
group:

Mod(T) �= SL(2; Z) =
��

a b
c d

�
: a; b; c; d2 Z; ad � bc= 1

	
:
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To see this, note � 1(T ) = Z2 and Aut (Z2) = GL(2 ; Z), so there is a natural
map Mod(T) ! GL(2; Z). The map lands in SL(2; Z) because of the orientation-
preserving condition.

The map is surjective because anyA 2 SL(2; Z) acts linearly on R2 preserving
Z2, hence the action gives a homeomorphism ofT = R2=Z2.

It is injective because if a map is the identity on � 1(T ) it is homotopic to the
identity. This can be done by hand in R2, or we can appeal to general notions {T
is a K (�; 1).

The nontrivial elements of SL(2; Z) fall into three distinct types:

� Finite order (elliptic): Consider
�

0 � 1
1 0

�
, which has order 4. It acts by �= 2

rotation on R2 (Figure 4).

Figure 4

Similarly
�

0 � 1
1 1

�
has order 6. On the usualZ2 lattice it does not act

as a rotation { it is better viewed on the hexagonallattice Z + Ze2�i= 3

(identifying R2 with C), where it is a rotation by �= 3 (Figure 5). More
precisely this rotation is obtained by conjugating

�
0 � 1
1 1

�
by the element

of SL(2; R) that takes the square lattice to the hexagonal one.

Figure 5. An order 6 mapping class preserves the geometry of
the hexagonal lattice.
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Finite order elements of SL(2; Z) have traces in f� 1; 0; 1g. It is not
hard to check that there are �nitely many conjugacy classes like this, all
corresponding to the examples we have given or to their powers.

Figure 6. A parabolic transformation twists the torus around a
simple loop.

� Twist maps (parabolic): Let � = [ 1 1
0 1 ]. Then � n = [ 1 n

0 1 ], so � has in�nite
order. Note it preserves (up to isotopy) exactly one simple closed curve
on the torus (Figure 6). Parabolic matrices have trace� 2.

Figure 7. An Anosov map of the torus.

� Anosov (hyperbolic): Consider A = [ 3 1
2 1 ]. It has two eigenvalues� � >

0 such that � + � � = det A = 1. The eigenvectors give two transverse
invariant foliations by straight lines, one expanded and one contracted by
A (Figure 7). Anosov maps have traces outside [� 2; 2].

Our main goal, the Nielsen-Thurston classi�cation, generalizes this picture to
arbitrary surfaces.
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Action on homology. A �rst attempt to generalize the torus can lead us to
consider automorphisms ofH1(S) which is Z2g for n = 0, so we have

� : Mod( S) ! Aut( H1(S)) :

We don't get SL(2g;Z) now: homeomorphisms preserve theintersection form which
in a standard basis is the symplectic formJ , a concatenation of

�
0 1

� 1 0

�
's along the

diagonal. The subgroup of GL(2g;Z) preserving J is called the symplectic group
Sp(2g;Z). Hence we have a short exact sequence

1 ! I ! Mod(S) ! Sp(2g;Z) ! 1:

The kernel, I , is called the Torelli group and is an object of much interest. Sur-
jectivity of the map can be obtained by identifying simple generators of Sp(2g;Z)
and showing each can be realized by a homeomorphism.

Dehn twists. Consider [1 0
1 1 ] applied to the band B = [0 ; 1] � R. It descends to

the annulus A = B=Z = [0 ; 1] � S1. Note that this is the identity on the boundary.
Hence for any embedding ofA in S we can apply this map on the image and extend
by the identity. This is a (leftward) Dehn twist � (see Figure 8). The isotopy
class of� depends only on the isotopy (in fact homotopy) class of the embedding,
particularly of the core curve  of the annulus. We write � = �  , or sometimesT .

Figure 8. Dehn twist around an annulus.

If  is trivial it bounds a disk (the Jordan curve theorem again) and �  is trivial
in Mod(S) by the Alexander trick.

If  is nonseparating inS then �( �  ) acts nontrivially in H1(S) and in fact has
in�nite order:

�( �  )([ � ]) = [ � ] + i (�;  )[ ]
where i (�; �) is algebraic intersection number and [�] denotes homology class (see
Figure 9). If  is essential but separating then [ ] = 0 so �( �  ) is the identity, but
�  still has in�nite order in Mod( S). This requires more care; either some kind
of careful discussion of intersection patterns of curves, or an appeal to the picture
in the universal cover. We will return to this later. (Note \e ssential" means not
bounding a disk or a once-punctured disk).

Pseudo-Anosov examples. In higher genus one can construct mapping classes
similar to the Anosov case for the torus. For example, if an Anosov di�eomorphism
lifts to a branched cover of the torus, we can lift the invariant foliations to obtain
a pair of invariant foliations in the cover, de�ned everywhere except at the branch
points. To make this explicit, let T = R2=Z2 be the square torus, and letX be
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Figure 9. The e�ect of a Dehn twist on homology.

obtained from two copies ofT by slicing each along the image of the straight arc
from 0 = (0 ; 0) to q = ( 1

2 ; 1
2 ) and gluing crosswise. This gives a double branched

cover X ! T branched over 0 and q. The mapping A = [ 4 1
7 2 ] lifts to a map

Â : X ! X , which preserves the lifted invariant foliations of A (Figure 10).

Figure 10. The double branched coverX ! T and the expanding
foliations of A and its lift.

The L-shaped billiard tableis another example (Calta [19] and McMullen [54]).
In Figure 11 we see the union of a 1� 1 and s � s square, wheres = (1 +

p
5)=2

is the golden ratio. Gluing the indicated opposite edges (A to A0, B to B 0, etc) by
Euclidean translations, we obtain a surfaceX of genus 2, with a Euclidean structure
that has one singularity, the image of the eight indicated vertices.

There are two decompositions ofX into a pair of annuli, as shown in Figure
12. The Dehn twists on the two vertical annuli can be simultaneously realized by
an a�ne map, given in the Euclidean coordinates of the table as [1 0

1 1 ]. The twists
in the horizontal annuli can be similarly realized by [ 1 �

0 1 ], where we leave it to the
reader to deduce the value of� . These two transformations generate a group of
locally a�ne maps of X . In particular there are (many) compositions that result
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Figure 11. L-shaped table

in a hyperbolic a�ne map, and hence admit the same eigendirection analysis as
before.

Figure 12. Two decompositions into pairs of annuli

Generators. It is a foundational fact that Mod( S) can be generated by �nitely
many elements. This allows the techniques of combinatorialgroup theory to be
applied to the study of Mod(S), as well as those of geometric group theory, as we
will briey discuss in the last section.

When S is closed the generators can be taken to be Dehn twists. IfS has
punctures we must be careful: A Dehn twist, being supported on a compact subset,
cannot permute the punctures. De�ne the pure mapping class groupPMod(S) to
be the subgroup that �xes the punctures pointwise. We will sketch the proof of
this theorem:

Theorem 1.1. For g > 0, PMod(Sg;n ) is generated by a �nite collection of Dehn
twists on nonseparating curves.

Clearly PMod(Sg;n ) = Mod( Sg;n ) for n � 1. In general, it is easy to �nd a
�nite number of homeomorphisms that su�ce to give all the per mutations of the
punctures, and append these to the twists to get a �nite generating set for the
whole group.

The proof we'll sketch, following Farb-Margalit [ 26], does not give a particularly
e�cient description of the generating set. In fact, quite ex plicit (and short) sets of
twist generators exist { the �rst one was given by Dehn/Licko rish, and the shortest
possible set (2g + 1 twists for Sg;0) was given by Humphries [41].
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If one is not limited to Dehn twists, it is interesting to note that the number
of generators need not grow with complexity of the surface. Indeed several au-
thors, starting with Lickorish, have given generating setsas small as 2 forSg;0 and
Sg;1. See Wajnryb [74], Brendle-Farb [16] and Korkmaz [47] for recent results and
discussions.

Sketch of the proof: Consider a graphN (S) whose vertices are (isotopy classes
of) non-separating unoriented simple closed curves, and whose edges [a; b] cor-
respond to pairs of curvesa and b that intersect exactly once. A con�guration
associated to an edge is indicated in Figure 13.

Figure 13. An edge [a; b] in N (S).

Note that the natural action of PMod( S) on this graph is transitive on ver-
tices, because the complement of a nonseparating curve inSg;n is alwaysSg� 1;n +2 .
Thus if a and b are two such curves their complements are homeomorphic, and
the homeomorphism can be chosen to \glue up" to a homeomorphism of S taking
a to b. The action is transitive on edges because the complement oftwo curves
that intersect once is alwaysSg� 1;n +1 . In fact, the action is transitive on directed
edges: to �nd a homeomorphism that ips an edge [a; b], observe that a regular
neighborhood ofa [ b is a torus with one hole. In the torus, the homeomorphism�

0 � 1
1 0

�
interchanges the horizontal and vertical directions and �xes a point, so we

can apply this to the regular neighborhood.
We will need this basic structural fact:

Lemma 1.2. N (S) is connected.

as well as this inductive statement about stabilizers:

Lemma 1.3. The stabilizer � a < PMod(S) of a is contained in a subgroup gener-
ated by a �nite collection of Dehn twists on nonseparating curves.

(It is worth nothing that these nonseparating curves are notnecessarily disjoint
from a).

Assuming these lemmas for now, �x an edge [a; b] of N (S). Consider any
f 2 PMod(S). Lemma 1.2 implies that there is a sequencea = a0; a1; : : : ; ak = f (a)
such that ai and ai +1 intersect exactly once for eachi .

The idea now, as indicated in Figure 14, is to successively \rotate" around the
vertices ai using the stabilizers � a i , carrying a to f (a) only using a speci�ed set of
generators.
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Figure 14. A path in N (S) connecting a to f (a).

Consider the subgroup

H = h� a ; Tbi :

Applying Lemma 1.3, we see thatH is contained in a subgroup generated by a
�nite collection of twists on nonseparating curves.

Since PMod(S) acts transitively on directed edges ofN , we see that �a contains
an element taking b to a1, and hence (conjugating by this element)H contains the
subgroup H0 = h� a ; Ta1 i .

Now note that Ta i Ta i +1 takesai to ai +1 (see the discussion on the braid relation,
below). Hence sinceH0 contains Ta0 Ta1 , conjugating by this element we see that
H0 contains � a1 . Again by transitivity on directed edges, there is an element in
� a1 that takes a0 to a2. Conjugating by this element we �nd that H also contains
Ta2 , and hence containsH1 = h� a1 ; Ta2 i .

This enables us to proceed inductively, concluding thatH contains an element
g taking a0 to ak . Thus g� 1f 2 � a , from which we can conclude thatf itself is in
H , and henceH is all of PMod(S). It remains to discuss the two lemmas.

Proof of Lemma 1.2: The �rst idea, given two curves � and ! that intersect
many times, is to use surgery to replace! by a curve ! 0 which is adjacent to it,
and intersects � fewer times. Figure 15 shows the two cases that can arise when
considering two intersections of! with � that are successive along� . In the �rst,
we indeed see that! 0 intersects ! exactly once. However in the second case! 0 and
! are disjoint, and ! 0 may be separating. This idea can easily be used to give a
proof of connectivity of a related complex X (S) whose vertices are all nontrivial
isotopy classes and whose edges correspond to pairs of curves that intersect once
or not at all.

Given a path (ai ) in X (S), we can successively reduce the number of separating
curves (keeping the same endpoints) with the following observation: if ai separates
S into two pieces then one,S0, must have positive genus. Ifai � 1 are in S0 then,
using induction (with base caseS1;1), they can be connected inX (S0) by a path
with only nonseparating curves in its interior. If they are not in S0 then ai can be
replaced by a nonseparating curve inS0.

Once we have a path with only nonseparating curves, we observe that for any
two disjoint nonseparating curves there exists a third curve intersecting each of
them exactly once. This gives us a path inN (S).

Proof of Lemma 1.3: The proof is by induction on complexity, with base case
the torus (where the result is a standard fact about SL(2; Z)).
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Figure 15. Surgery along the intersections of! with � yields a
curve ! 0 intersecting � fewer times.

Note �rst that we can generate the stabilizer � a from PMod(Sr a) by adding a
twist along a itself, and an element that interchanges the sides ofa. A Dehn-twist
construction for the latter is not hard to supply if Sr a has positive genus: Letb be
a curve intersecting a exactly once. A regular neighborhood of the union ofa and
b is a one-holed torus, and there a 180� rotation, which interchanges the sides ofa,
can be composed fromTa and Tb, as in SL(2; Z). Namely, TaTb is the order 6 map�

0 � 1
1 1

�
illustrated in Figure 5; hence we see that (TaTb)3 corresponds in SL(2; Z)

to � I , which interchanges the sides ofa. (See however the end of the section for a
bit more on this element).

SinceSr a has strictly smaller genus thanS, we would like to handle PMod(Sr
a) inductively. However, note that the number of punctures has grown, so we also
need an inductive step that reducesn. This can be done via theBirman exact se-
quence,which we will describe only briey: The act of \forgetting" a puncture gives
a map from PMod(Sg;n +1 ) to PMod( Sg;n ), which �ts into a short exact sequence
like this:

1 ! � 1(Sg;n ) ! PMod(Sg;n +1 ) ! PMod(Sg;n ) ! 1:

The kernel is identi�ed with � 1(Sg;n ) because, given a map that is isotopic to the
identity after forgetting the n + 1-st puncture, following the puncture around the
isotopy gives a loop inSg;n . Conversely, given an element of� 1 we can \drag" the
surface around the loop to get an element in the kernel of the forgetting map.

Dragging around simple nonseparating loops inSg;n corresponds to products
of Dehn twists on nonseparating loops inSg;n +1 (see Figure 16, and Figure 17 for
an example with a nonsimple loop). Since� 1(Sg;n ) is generated by such loops, we
obtain enough twists in Sg;n +1 to enlarge a generating set for PMod(Sg;n ) to one
for PMod(Sg;n +1 ).

Relations. In fact Mod( S) is �nitely presented { i.e. is completely determined by
a �nite list of generators and relations. We will not discuss the proof of this here,
but will limit ourselves to pointing out some interesting re lations:

Commuting elements: If two homeomorphisms are supported (i.e. dif-
ferent from the identity) on disjoint subsets, then they commute. This
applies for instance to Dehn twists on disjoint curves.
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Figure 16. Dragging a puncture around a simple loop is a product
of two Dehn twists in opposite directions.

Figure 17. The dragging map corresponding to a self-intersecting loop.

Braid relation: If a and b intersect exactly once then one can easily check
that TaTb(a) = b. This implies that TaTb conjugatesTa to Tb, or in other
words

TaTbTa = TbTaTb:

This is known as the braid relation.
Root of a Dehn twist: Let c be a separating curve that cuts o� a one-

holed torus W , and let a and b be curves in W that intersect exactly
once. Restricted to W , TaTb has order 6 (it corresponds to the elliptic
element of SL(2; Z) we saw in the beginning of the section, and in the
proof of Lemma 1.3). However, viewed as a homeomorphism ofS as a
whole, it satis�es

Tc = ( TaTb)6:

Figure 18 illustrates this. It indicates the lift of TaTb to the Z2-cover of
the one-holed torus. This map is essentially the same as the�= 3 rotation
of Figure 5, except that it is required to move the circle boundaries by
translations. It follows that after six iterations a full tw ist builds up
around each circle.
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Figure 18. The map TaTb and its sixth power. The image of a
selected triangle is shown for each.

Lantern relation: Let Y be the 4-holed sphere, with boundary components
a; b; c; d and curves x; y; z labeled as in Figure 19. Imagine that Y is
embedded in a surfaceS so each boundary component is essential. The
reader is invited to check that

Tx Ty Tz = TaTbTcTd:

(See Farb-Margalit [26] for a more illuminating discussion of this).

Figure 19. The lantern relation

2. Hyperbolic geometry, laminations and foliations

Hyperbolic plane and its boundary circle. We assume familiarity with the
basic models ofH2: First, the upper half plane

U = f z 2 C : Im z > 0g

with the metric ds2=Im(z)2, where ds2 = dx2 + dy2 is the Euclidean metric. The
(orientation-preserving) isometry group is PSL(2; R), i.e. SL(2; R)= � 1 acting by
z 7! (az + b)=(cz + d).



20 YAIR N. MINSKY, INTRODUCTION TO MAPPING CLASS GROUPS

A suitable M•obius transformation M takes U to the unit disk, which gives
another model of H2, where the metric is 4ds2=(1 � j zj2)2. The isometry group is
now the subgroup of PSL(2; C) conjugate to PSL(2; R) by M .

There is a natural circular boundary compactifying H2 to a disk on which
isometries act homeomorphically. This boundary is identi�ed with R [ f1g for the
upper half plane, and with the unit circle for the disk model.

Figure 20. A con�guration of ideal geodesic triangles in the hy-
perbolic plane, in both models.

Geodesics in both models are arcs of circles or lines that meet the boundary
orthogonally. An important property (which is intrinsical ly a consequence of neg-
ative curvature) is that any two di�erent geodesics are either disjoint or intersect
exactly once. Geodesics are uniquely determined by their endpoints on the circle.

Hyperbolic structures on surfaces. From now on we assume the Euler charac-
teristic � (S) is negative; that is, we exclude the sphere with 2 or fewer punctures,
and the torus with no punctures. In this case the Uniformization Theorem gives (at
least one) complete �nite-area hyperbolic metric on S, or equivalently S = H2=�
for � 1(S) �= � < PSL(2; R). Hence we can identify the universal cover ofS with
H2.

This picture yields some immediate consequences: Any nontrivial, nonperiph-
eral (not homotopic to a puncture) homotopy class of curves has aunique geodesic
representative. These representatives intersect themselves and each other in the
minimal possible number of points for their homotopy classes (Figure 21).

Another consequence of uniqueness of geodesics is that an isometry isotopic
to the identity must be the identity. We can see this by considering a system of
geodesics that cutsS up into polygons. An isometry isotopic to the identity must
�x all of these, hence their intersection points, and �nally all the complementary
polygons.

Hence the isometry group ofS, which must be �nite, injects in Mod( S). The
Nielsen Realization Theorem gives a converse of this (see discussion inx4).

Lifting mapping classes to circle homeomorphisms. Any [ f ] 2 Mod(S) is
realized by a bilipschitz mapf , which can lift to a map ef : H2 ! H2 that conjugates
� �= � 1(S) to itself. The lift is uniquely determined up to the action of � { that is,
if � 2 � then � � ef is also a lift, and conversely every lift has this form.
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Figure 21. The curve  has inessential self-intersections inS. Its
geodesic representative � does not. In the lift to H2 the untangling
becomes visible.

Figure 22. The image of a ray under a quasi-isometry has a well-
de�ned endpoint.

Becauseef is bilipschitz, it extends to the compacti�cation H2, and in particular
acts on the boundary circle@H2. To see this, consider a rayr : [0; 1 ) ! H2 landing
at a point � 2 @H2. Assuming that r is parameterized by arclength, we see sinceef
is bilipschitz that ef � r escapes to in�nity at a linear rate { that is, d( ef (r (t)) ; 0) >
Kt . To simplify matters assume for a moment that f is di�erentiable. Then
the Euclidean magnitude of the derivative of ef � r , in the disk model, is roughly
equal to its hyperbolic magnitude multiplied by exp( � d( ef (r (t)) ; 0)) (using the basic
properties of the model). Integrating this we obtain the arclength of ef � r in the
model, and together with the linear escape rate we �nd this arclength is integrable
and hence that the image path has a well-de�ned endpoint. Thenon-di�erentiable
case follows from a similar coarse estimate. A slightly closer look at this discussion
shows that the extension is continuous, and since the same analysis applies to ef � 1,
the extension must be a homeomorphism.
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Figure 23. Lifts of homotopic homeomorphisms have the same
extension to in�nity.

We call the extension @ef . Moreover, note that if f and g are isotopic then
this isotopy can be lifted to an isotopy between ef and some lift eg of g, which has
bounded-length tracks(if there are punctures we need to take a bit more care).
This implies that @ef = @eg (Figure 23). Hence only the mapping class, and not its
particular representative, matters when considering the circle maps.

Figure 24. A lift of a Dehn twist T to the universal cover is not
a M•obius transformation. It �xes the endpoints of a lift e , and
moves the remaining two sides of the circle in opposite directions.

The ambiguity in the lift ef 7!  ef for  2 � means that every element of Mod(S)
determines a coset of � in Homeo(S1).

As an application, consider lifts of a Dehn twist on a (possibly separating)
curve. An examination in the universal cover (Figure 24) shows that the extension
to the circle is never a M•obius transformation, and hence the twist must be a
nontrivial element of Mod(S) (and similarly for all its powers).

Geodesic laminations. If we consider a sequence of closed geodesics on a hyper-
bolic surface whose lengths go to in�nity, we will notice that it tends to accumulate
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on Cantor-like patterns of in�nite, disjoint geodesics. Th is phenomenon leads to
the de�nition of geodesic laminations.

A geodesic lamination in a hyperbolic surface is a closed set� foliated by
geodesics. More precisely, for every point in� there is a neighborhoodU and a
homeomorphism of pairs (U; � \ U) ! ((0; 1) � (0; 1); (0; 1) � K ) where K is a
compact subset of (0; 1). The preimages of the lines (0; 1) � f kg for k 2 K are
geodesic segments. (See �gure 25).

Figure 25. The local structure of a geodesic lamination.

The simplest example is a simple closed geodesic; hereK can be taken as a
single point in a small enough neighborhood. For a \generic"lamination however,
K will be a cantor set.

Figure 26. Two complementary components of this lamination
are pictured; an ideal triangle and a one-cusped ideal bigon.
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The complement S r � is an open hyperbolic surface which is the interior of a
complete surface with geodesic boundary (the completion isobtained by considering
the path metric in S r � ). The boundary naturally maps to certain leaves of � ,
called boundary leaves. The simplest example of such a surface is an ideal polygon
in H2 (Figure 26).

Assuming S has �nite area, one can show that

area(S) = area(S r � )

And in particular � has zero area, and the transversal setsK have no interior.
Here is a sketch of the argument: The Gauss-Bonnet theorem implies that the

area ofS r � is � 2�� 0(S r � ), where � 0 is the Euler characteristic � (S r � ) minus
half the number of boundary cusps. By extending the tangent lines of@(S r � ) to
a line �eld in the interior (see Figure 27) one sees that� 0(S r � ) can be written
as a Poincar�e-Hopf sum of indices of singularities. By extending this line �eld
continuously across� one obtains� 0(Sr � ) = � (S), and the Gauss-Bonnet Theorem
applied to S completes the proof.

Figure 27. Extending a lamination to a singular line �eld.

(In fact, geodesic laminations are even thinner than that: Atheorem of Birman-
Series [12], see also Bonahon-Zhu [75], shows that a geodesic lamination has Haus-
dor� dimension 1, and more dramatically that the union of all geodesic laminations
in S is a subset of Hausdor� dimension 1.)

The lift e� of � to H2 is a lamination in H2, namely a �-invariant closed union
of disjoint geodesics.

Note that e� is uniquely determined by the set of endpoint pairs of leaves,
which gives a �-invariant closed set in S1 � S1 r diagonal. (Not every set will
do: the endpoint pairs must satisfy a \non-linking" conditi on in the circle which
corresponds to the leaves of the lamination not intersecting).

Let GL(S) be the set of all geodesic laminations onS. This set admits a natural
Mod(S) action, via the lifts of mapping classes to the circle, and the description
of laminations in terms of endpoint pairs. (Note that �-inva riance of these sets
implies the action of f 2 Mod(S) is independent of choice of lift).

Topology of GL(S). Let X be a complete metric space andC(X ) the set of
compact subsets ofX . The Hausdor� distance betweenA; B 2 C(X ) is the in�mum
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of all � > 0 such that A is in the � -neighborhood ofB and vice versa. IfX is compact
it is not hard to see that C(X ) is compact.

We may considerGL(S) as a subset ofC(S), and claim:

Lemma 2.1. GL(S) is a closed subset ofC(S).

When S is compact this implies that GL(S) is compact as well. In fact it is
compact wheneverS has �nite area, but for simplicity we will focus from now on
on the case thatS is compact.

Let us sketch the proof. Given � n 2 GL(S) converging to Z in C(S) we must
extract the leaf structure of Z . Note that Z must be a union of geodesics, because
any limit in C(S) of a sequence of geodesic segments of bounded length is a geodesic
segment. However it is less obvious that these geodesics areall disjoint. A priori
di�erent subsequences can lead to intersecting geodesics,and in fact it is not clear
that Z is not all of S!

Figure 28. The area of an� -neighborhood of the boundary of an
ideal triangle.

The main enemy is the possibility that � n get \denser" in such a way that Z
has nonempty interior. Hence, we need some type of \uniform sparseness". The
main ingredient is to use the structure of S r � to show that

area(N � (� )) < O (� log 1=�)

for any � 2 GL(S) (all that matters here is that the bound on the right is indep en-
dent of � , and goes to 0 with� ). In view of the fact that � itself has area 0, it su�ces
to consider an� -neighborhood of the boundary of a complementary component. To
give the idea let us consider the case of an ideal triangle inH2 (Figure 28). Here, an
� -neighborhood of the boundary is covered by three cusp neighborhoods bounded
by horocycles of length roughly� , each of areaO(� ), and by three strips along the
remaining segments of boundary, which have width� and length O(log 1=�).

With this estimate in hand, consider a geodesic arca of �xed length that
makes an angle at least� > 0 with leaves of� n . The local product structure of � n ,
together with the estimate of area, implies that a \ N � (� n ) has length going to 0
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with � (keeping � �xed). Hence, for high n, a cannot be too close to a geodesic arc
in Z . From this we can conclude that the geodesics inZ are simultaneously aligned
with � n for all high enough n, and the result follows from this.

Figure 29. In a lamination chart for � n , the area estimate im-
plies that a transversal making de�nite angle with � n has small
intersection with an � -neighborhood.

Measured laminations. A transverse measureon a lamination � is a family of
Borel measures on transversal arcs, invariant by holonomy (sliding transversals
along � , supported on the intersection with � , and additive over concatenations of
transversals.

The basic example is a simple closed geodesic with \countingmeasure" { the
total measure of a transversal arc is the number of intersection points with � .

Every lamination admits some measure: consider a leaf̀ in � and take the
counting measure associated to a very long segment iǹ. This is not a transverse
measure { holonomy can slide transversals past the endpointand the measure
changes. However if we take a sequence of segments whose length goes to 1 ,
and then rescale the counting measures appropriately, we obtain a limit which
does satisfy holonomy invariance. This is a weak-* limit, meaning that on any
�xed transversal the measures converge, when integrated against any continuous
function.

On the other hand the support of such a measure may not be all of� . For
example if  is a closed leaf of� and ` a leaf that spirals onto  , ` cannot support
a positive amount of measure, because then the measure on a transversal crossing
 would be in�nite.

One can show that the number of such isolated leaves is uniformly bounded,
and once they are removed the remainder falls into a bounded number of minimal
components that are the supports of measures. We state this without proof:

Lemma 2.2. Each � 2 GL(S) can be written as a union

� = � [ � 0

where � 0 is a nonempty lamination admitting a transverse measure of full support,
and � is a �nite (possibly empty) collection of isolated leaves that accumulate on� 0.
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Figure 30. The leaf ` cannot support a positive measure because
it intersects every transversal of in�nitely many times.

Figure 31. A lamination with three minimal pieces � 0 = � 1 [ � 2 [
� 3, and one isolated leaf� = `1.

Each component of� 0 is minimal, meaning that every leaf (and even half leaf)
of it is dense in that component.

The number of components of� 0 and leaves of� is bounded in terms of the
topological type ofS.

The spaceML (S) of all measured laminations admits a natural topology in-
duced from weak-* convergence on transversals. One of Thurston's striking dis-
coveries was thatML (S) is homeomorphic to Euclidean space, and that this has
implications for Mod( S), for the structure of Teichm•uller space, and for the theory
of hyperbolic 3-manifolds. We will not develop this further here, however, because
we will sketch a proof of the classi�cation theorem that sidesteps this part of the
theory. Let us also record the notation PML (S), or projectivized measured lam-
inations, for the quotient of ML (S) minus the empty lamination by the natural
equivalence of scaling of measures.

Measured foliations. For our description of pseudo-Anosov maps, it will be help-
ful to have the related and equivalent structure of measured foliations. A measured
foliation is a foliation of all S minus a �nite number of singular points, with a
standard \pronged" local picture at each singularity (and puncture), together with
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a transverse measure de�ned as above, except that the holonomy maps cannot slide
past the singular points. (See Figure 10 for an example).

Measured foliations do not have geodesic leaves, and we consider them up to
an equivalence relation generated by isotopy and \Whitehead moves", which are
collapses of singularities along compact leaves. With thiswe obtain a spaceMF (S)
and PMF (S), admitting actions by Mod( S).

Figure 32. Straightening a foliation yields a lamination, and col-
lapsing a lamination yields a foliation.

There is a natural homeomorphismMF (S) ! ML (S), which respects all this
structure. It is essentially the \straightening map": lift ing a foliation to H2 one
can show that each leaf is a \quasi-geodesic" and has distinct endpoints on the
circle, which are then connected by a geodesic arc. Conversely the space between
the leaves of a geodesic lamination can be \collapsed" to yield a foliation. (See
Figure 32).

(We caution the reader that this is not the same as the extended foliation of
Figure 27 { that foliation has many parallel leaves that do not support a non-zero
transverse measure.)

De�nition of pseudo-Anosov. The examples from Section 1 can now be de-
scribed as part of a general class. A mapf : S ! S is pseudo-Anosovif, after
isotopy, there is a pair of measured foliationsF + , F � that can be realized trans-
versely and with the same singular points, so thatf takes the leaves ofF + to each
other and those ofF � to each other, and there is anm > 1 so that f multiplies
the transverse measure ofF + by m and that of F � by 1=m.

Equivalently, the transverse measures ofF + and F � give locally Euclidean
charts on S minus the singularities, such that leaves ofF + and F � map to ver-
tical and horizontal lines, respectively, and the action of f is locally given, up to
translation, by the matrix

� m 0
0 1=m

�
.

One can of course describe this in terms of a transverse pair of measured geo-
desic laminations, whichf takes to multiples of themselves bym and 1=m. In our
proof of the Nielsen-Thurston theorem much of the discussion will take place in the
lamination setting.
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3. The Nielsen-Thurston classi�cation theorem

In Section 1 we observed that for nontrivial mapping classesof the torus there is
a trichotomy: elliptic (rotation), parabolic (twist), and hyperbolic (Anosov). This
classi�cation is generalized by the following celebrated theorem:

Theorem 3.1. For every f 2 Mod(S) one of the following holds:

(1) (Elliptic) f has �nite order,
(2) (Reducible) There is a systemC of disjoint essential simple closed curves

such that f (C) = C (up to isotopy),
(3) f has a pseudo-Anosov representative.

Note that (1) and (2) are not mutually exclusive. On the other hand a pseudo-
Anosov map cannot be elliptic or reducible, because every simple closed curvec
crosses the foliations in an essential way, and the action off stretches c in the
direction of F � and increases its length exponentially fast.

The reducible case generalizes the twist case for the torus,in which the core of
the Dehn twist is the invariant curve system. In general oncea reducing systemC
is found the classi�cation can be applied inductively to its complementary surface.
In the next section we will sketch a more detailed description of the reducible case,
which involves identifying a canonical reducing systemC.

The proof that we will sketch here closely follows the proof given by Casson in
[20] (see also Gilman [30] for connections to Nielsen's work). It is di�erent from
Thurston's original proof, which depends more strongly on the topological structure
of PML (S) and its use in the compacti�cation of Teichm•uller space, nor is it Bers'
proof, which uses the metric structure of Teichm•uller space.

Proof: (For simplicity we restrict to the case of a closed surface, of genus 2 or
higher). In this section we will actually prove a slightly weaker statement, namely
that if f satis�es this condition:

(*) For every isotopy class of simple closed curvesc in S, the orbit f f n (c)g is
in�nite

then f is pseudo-Anosov. Note that (*) immediately implies that f is not �nite-
order or reducible, but the opposite implication requires abit more work.

Given f satisfying (*), we need to �nd the invariant laminations/fo liations.
Since GL(S) is compact (Lemma 2.1), we can extract an accumulation point � 2
GL(S) for the in�nite sequence f f n (c)gn> 0. The rest of our argument can be
summarized as follows:

Invariance: Lemma 2.2 on the structure of laminations gives us

� = � [ � 0;

where� 0 is the measurable part. Using condition (*) we prove that f (� 0) =
� 0, and that � 0 �lls S, i.e. components ofS r � are ideal polygons.

Dynamics: Study the actions of lifts ef on @H2. Show that we get \north-
south dynamics" where endpoints of leaves ofe� 0 are attracting �xed
points, and the repelling �xed points are endpoints of leaves of the corre-
sponding lamination for f � 1.

This is enough to give thetopological picture of two transverse invari-
ant laminations (or, after collapse, foliations).
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Measures: Build the invariant transverse measures, using a Markov parti-
tion and the Perron-Frobenius theorem.

We give more details below.

Invariance: We have � = lim f n i (c) for some subsequenceni ! 1 . It is not a
priori clear from this that � should be invariant. However, note that � 0 has the
following property:

(**) A leaf of � 0 is not isolated in � .

For if a leaf ` were isolated, it would be a closed leaf (each component of� 0 is
minimal). But then, being isolated means that eventually f n i (c) just equals `,
since a neighborhood of̀ meets no other curves in the limit. But this contradicts
the irreducibility assumption.

Hence, there are in�nitely many leaf segments of� approximating any segment
of � 0. This implies that

(***) � 0 and f m (� 0) have no transverse intersection for anym � 0.

Figure 33. A transverse intersection of � 0 and f m (� 0) implies
in�nitely many intersections of � and f m (� ).

For, suppose that they did: Fact (**) implies that � and f m (� ) have in�nitely
many transverse intersections in a neighborhood of this point (Figure 33), and so
f n i (c) and f n i + m (c) have a number of intersection points that goes to1 . Sincef n i

is a homeomorphism this means thatc and f m (c) have a number of intersections
going to 1 . But m is �xed here! This is a contradiction.

We conclude that � 0 and f m (� 0) are either disjoint or their intersection is a
sublamination of both. Hence their union is a lamination, and similarly � 0[ f (� 0) [
f 2(� 0) [� � � is a lamination. Lemma 2.2 gives a uniform upper bound to the number
of components of a lamination, so this sequence eventually stabilizes. The union
gives an invariant lamination � .

However if � is not �lling, it is carried on a proper subsurface, and this gives a
reducing system of curves forf .

We conclude that � is �lling, and hence minimal, and hence that all the pieces
were already �lling and equal to each other. So� 0 = f (� 0), and � 0 is �lling.
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North-South Dynamics: We now study the action on the circle of the lifts of f
to the universal cover.

We can immediately learn something from the �nitely many complementary
regions of the lamination � 0. Each one is an ideal polygon, andf must permute
them. Thus there is some powerf p which �xes each polygon, and moreover �xes
each of its vertices. Lifting to the universal cover, we �nd that for each lift P of
a complementary polygon there is a corresponding liftef p which �xes its endpoints
on the circle.

The following lemma gives more details about the dynamics ofthese �xed
points, not just for these special lifts but for all lifts (see Figures 34 and 35).

Lemma 3.2. For any lift ef of f , there is a power ef p which acts on the circle with
an even number of �xed points, which are alternately attracting and repelling.

When there are two or more attracting �xed points, they are the vertices of a
leaf or a complementary region ofe� 0. All other �xed points are not endpoints of
leaves ofe� 0.

Figure 34. North-South dynamics of a lift of f p which �xes the
vertices of a complementary polygon.

The main step in the proof is an analysis of the following situation. Let ` be
a leaf of e� 0. Its boundary divides the circle into two intervals I and J , and we say
` is non-isolated in I if there is a sequence of leaves ofe� 0 converging to ` whose
endpoints are in I (Figure 36).

The dynamics on the non-isolated side of a �xed leaf are determined by this
lemma (see Figure 37):

Lemma 3.3. Let ` be a leaf ofe� 0 whose endpoints are �xed by a poweref p of a lift
of f . If ` is non-isolated on the sideI then the endpoints of` are attracting �xed
points of ef p jI , and ef p jI has a single repelling �xed point in int (I ).

For simplicity we will sketch the proof of this in the case where the power p
is 1. Because every leaf of� 0 is dense in� 0 and � 0 is �lling, ` crosses a liftec of c.
Sincef n i (c) converges to� , the limit of ef n i (@ec) cannot have a point in the interior
of I , because this would imply transversal self-intersectionsof � (Figure 38).

Hence the endpoint ofec in I converges to an endpoint of̀ , so that at least that
endpoint of I is attracting in a neighborhood in I .
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Figure 35. North-South dynamics in the remaining cases of 2 and
4 �xed points.

Figure 36. The leaf ` is non-isolated on the sideI .

Figure 37. The dynamics of ef p on a non-isolated side of a �xed leaf.
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Figure 38. If the endpoint of ec in I converges to the interior then
since limf n i (c) is in � , transversal self-intersections of� occur.

A bit of care, again involving the avoidance of transverse self-intersections,
shows that the other endpoint is attracting too. Now we claim that in I there is
one other �xed point which is repelling, and that's the North -South dynamics we
wanted. We show this bybackward-iterating a leaf that lies near ` in I , and arguing
that if it accumulates on a leaf (and not a single point) then that leaf has repelling
behavior for ef , but that contradicts what we just proved applied to the new l eaf
(Figure 39).

Figure 39. If the backward iterates of the leaf near` converge to
a leaf, we obtain a contradiction.

Now, given any polygonP of e� 0 which is �xed by a power of a lift ef , note that
each side ofP is non-isolated on the interval which is outside ofP. Lemma 3.3
therefore gives us exactly the dynamical picture we are looking for.

A leaf of e� 0 which is not on the boundary of a polygon is non-isolated on both
sides, and so if such a leaf is �xed by a power of a lift, we againget the desired
picture.

Now considering an arbitrary lift ef , it remains to show that if no power �xes
any leaves ofe� 0 then a power must have exactly one attracting and one repelling
�xed points. This can be done by similar methods, and we omit it.
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Finally, this argument can also be applied to f � 1, and it follows immediately
that the repelling �xed points of lifts of f must be the attracting �xed points for
the corresponding lamination � 0 for f � 1. Hence the two laminations are transverse
and have the dynamics we expect.

Transverse measures: Let us collapse the laminations to transverse singular fo-
liations L (for � 0) and M (for � 0). (This isn't strictly necessary but improves the
picture a bit.) Call the leaves of L \horizontal" and those of M \vertical". Note
that a singular point appears for every transverse pair of polygons of � 0 and � 0

(Figure 40). Remember that we have replacedf by a power, so that it �xes each
singular point as well as the leaves ofL and M that meet it.

Figure 40. After collapsing, the boundary leaves of a polygon of
� 0 become expanding leaves meeting a singularity, and the bound-
ary leaves of the corresponding polygon of� 0 become contracting
leaves.

We �nd a decomposition of S into \rectangles" as follows: At each singular
point choose horizontal initial segments of each leaf ofL that meets it. Fixing
these for the moment, extend from each singular point a vertical leaf that continues
until it �rst meets one of the horizontal initial segments. T his must occur because
every leaf ofL (and M ) is dense, since the original laminations were �lling.

Having �xed these vertical segments, continue the originalhorizontal segments
until they hit the vertical segments (Figure 41).

The complement of this system of segments must be a �nite union of disks,
which we call \rectangles" because each one of them has two boundary segments
along L and two along M , and is foliated on the interior by L and M , without
singularities. Call the L and M boundaries of a rectangleR @h R and @v R, respec-
tively.

Number the rectanglesR1; : : : ; Rk . Becausef contracts leaves ofM at the
singularities and f � 1 contracts leaves ofL (this follows immediately from our north-
south dynamics upstairs), we can see that the following holds, for eachRi :

f (@v Ri ) �
[

j

@v Rj ;
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Figure 41. A con�guration of rectangles bounded by singular
leaves ofL and M .

Figure 42. The imagesf (Ri ) cut each Rj into a vertical stack of
subrectangles. Similarly Rj ) is cut by f � 1(Ri ) into a horizontal
sequence of subrectangles.

f � 1(@h Ri ) �
[

j

@h Rj :

So f Ri g is a Markov partition, and the images f (Ri ) cut each rectangle cleanly
into subrectangles (Figure 42).

We are trying to �nd invariant transverse measures on � 0 and � 0, or what is
equivalent, a (singular) Euclidean metric on the foliated surface such that L and M
are horizontal and vertical straight lines, on which f acts like a hyperbolic linear
map

� m 0
0 1=m

�
, for somem > 1.

If we were to succeed, eachRi would inherit a height and a width. Moreover
the vectors of heights and widths,h = ( h(Ri )) and w = ( w(Ri )), would satisfy an
eigenvalue equation, as follows:

Because of the Markov condition, eachRi is decomposed by the imagesf (Rj )
into a vertical stack of subrectangles, and similarly eachRi is decomposed by the
preimagesf � 1(Rj ) into a horizontal stack of subrectangles. LetA be the incidence
matrix, i.e. A ij is the number of subrectangles inRi \ f (Rj ). Note that (applying
f � 1) A ji counts the subrectangles off � 1(Rj ) \ Ri , so that A t is the incidence
matrix for f � 1.
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If we have found the right metric then h(Ri ) =
P

j A ij 1=mh(Rj ), or in other
words Ah = mh whereh is the vector of heights. Similarly for the widths we would
have A t w = mw.

Now A is a matrix of non-negative integers. Moreover for some power An , all
of the entries are positive: this is because the forward image of each leaf segment
starting at a singularity must eventually cover the entire l eaf, so the image of each
rectangle eventually meets every rectangle.An is of course the incidence matrix for
f n .

The Perron-Frobenius theorem tells us that A has a unique eigenvector with
positive entries, and that its eigenvaluem is the unique largest positive eigenvalue
of A. This gives us the vector of heights. SinceA t has the same set of eigenvalues,
the same argument gives the desired vector of widths, with the same eigenvaluem.

4. Classi�cation continued, and consequences

We are almost done with the proof of the classi�cation theorem: we have shown
that, given condition (*) (all curves have in�nite orbits), the map f has a pair of
invariant laminations (or foliations), with transverse me asures that are expanded
by f and its inverse, respectively, by the same factor.

It remains to check that condition (*) is equivalent to irred ucibility. It is clear
that (*) implies irreducibility, but we must also show that i f (*) fails, i.e. if there
is a curve with a �nite orbit, then f admits an invariant system of disjoint curves,
and hence is reducible.

To do this we introduce the idea of canonical reducing systems. This will also
allow us to better understand the reducible mapping classes, and to obtain some
consequences about the structure of subgroups of Mod(S).

De�nition 4.1. The canonical reducing systemCf for f 2 Mod(S) is the set of
(isotopy classes of) simple closed curvesc such that

� the orbit f f n (c)g is �nite, and
� for every curve b crossing c essentially, f f n (b)g is in�nite.

It is immediately clear that:

� Cf is a system ofdisjoint curves (hence �nite).
� Cf is empty if f is �nite-order or if (*) holds.
� Cf n = Cf for any power n 6= 0.
� Cf is natural, i.e. g(Cf ) = Cgfg � 1 . In particular f (Cf ) = Cf , and in fact

g(Cf ) = Cf wheneverg and f commute.

It takes a bit more care to check that

� Cf is non-empty if f does not satisfy condition (*) but is of in�nite order.

This we do by induction. Given such an f , let c be a curve with �nite orbit. For
some powerf p, c is �xed and its complementary component(s) are each �xed.

Suppose in each componentY , f p is �nite order. Then a further power f q is
the identity on each component. Sincef is in�nite order, f q must be a (power of
a) Dehn twist on c, and then every curve that crossesc has in�nite orbit, hence
c 2 Cf q = Cf .

Suppose in someY f p jY satis�es (*), and hence is pseudo-Anosov. Then (here
we have to think a bit about the dynamical structure we have been discussing) every
curve that crossesc essentially must intersectY in some collection of essential arcs,
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and these cross the laminations off p jY , hence their images grow exponentially in
length and in particular have in�nite orbits. Again c 2 Cf p = Cf .

Finally we have the possibility that some f p jY fails to satisfy (*) but has in�nite
order. Then by induction Cf p j Y is nonempty. It follows that Cf is nonempty,
though one should take a bit of care showing that curves not contained in Y but
crossing a curve ofCf p j Y have in�nite orbits.

This concludes the proof of the classi�cation theorem, and we also have a more
complete picture: Given an in�nite-order reducible f , we have a canonical nonempty
invariant curve system Cf . The complementary regions ofCf are permuted by f ,
and some powerf p �xes them. In each component, f p is either pseudo-Anosov or
�nite order (else there would be even more curves ofCf inside). This gives us the
beginnings of a discussion about basic types of subgroups ofMod(S).

Abelian subgroups. An obvious way to get an abelian subgroup of Mod(S) is to
decompose the surface into pieces and choose homeomorphisms supported in each
piece. Birman-Lubotzky-McCarthy [ 11] showed that this is essentially all that can
happen; in fact they showed that these are the only possibilities for (virtually)
solvable subgroups as well.

The canonical reduction system is the tool for doing this. If f and g commute
then g(Cf ) = Cf and f (Cg) = Cg, by naturality. It follows immediately that Cf

and Cg cannot intersect. Hence the union is an invariant curve system for the group
generated byf and g. A �nite-index subgroup must therefore �x every component
of the resulting decomposition.

We will see below that two pseudo-Anosovs commute only if they are powers of
a common element. An immediate consequence of all this is a bound (3g� 3+ n) on
the rank of any free abelian subgroup ofSg;n . The obvious maximal-rank groups
are those generated by Dehn twists on the curves of a pants decomposition of S,
but these arenot the only possibilities (exercise).

Free groups, ping pong and the Tits alternative. One can �nd many free
subgroups in Mod(S), once we have the classi�cation theorem. Suppose we have
elementsf and g which are pseudo-Anosovs that do not have the same invariant
laminations. That is, no two of the four laminations, which we denote� �

f and � �
g ,

are equal.
To describe the proof we must appeal to a slightly �ner description of the action

of Mod(S) on laminations than we have had so far. We consider� �
f and � �

g as as
points in PML (S). Once one forms a clearer picture ofPML (S), it is not hard to
see that in fact � +

f is an attracting �xed point of f and � �
f is repelling. In fact f has

North-South dynamicson PML (S): For every compact setK in PML (S) r f � �
f g,

and any neighborhoodU+ of � +
f , there is a powerf p taking K into U; and similarly

for f � 1 with � +
f and � �

f interchanged.
From this (and compactness ofPML (S)) we �nd that there is a pair of open

neighborhoodsU � (which can be taken as small as we like) and a powerf p such
that f p takes the complement ofU � into U+ , and f � p takes the complement of
U+ to U � .

We can do the same forg, obtaining V � , and we can arrange for these open sets
to all be disjoint, and for their complement to be nonempty. DenoteX = PML (S),
for brevity, and let F = f p, G = gp.
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Now let
A = X r (U+ [ U � );

B = X r (V + [ V � )

what we now have is, for any nonzero integern,

F n (A) � B r A;

Gn (B ) � A r B:

We are ready to play ping-pong! Letw be a word composed of alternating non-zero
powers ofF and G, for example

w = F n 1 Gn 2 � � � F n k

where the ni are nonzero. Starting with the (nonempty!) set A \ B , we see that
(e.g. if w has a power ofF on the right) A \ B is taken to B r A, then A r B , and
so on back and forth across the table. Hence in the endw(A \ B ) must be in the
complement ofA \ B , and we conclude thatw cannot represent the identity.

In other words, the powersF and G generate a free subgroup of Mod(S).
A similar argument applies, with more care, to the case wheref and g are

reducible but have data that \cross" in some way { either their canonical reducing
systems intersect, or in a common component they have pseudo-Anosov restrictions
with distinct laminations.

If two pseudo-Anosovsf and g share at least one lamination, then in fact they
share both, and they are commensurable, i.e. satisfyf p = gq for some p; q 2 Z.
Hence they generate a �nite extension ofZ. This is not hard to prove but we will
omit it.

A consequence of this discussion, together with the discussion of abelian groups,
is a Tits alternative for Mod(S), analogous to Tits' foundational result for linear
groups [71].

Theorem 4.2. (McCarthy [ 53]) A subgroup ofMod(S) is either virtually abelian
or contains a free group of rank 2.

Finite subgroups. Since it is easy to build symmetrical pictures of surfaces,
Mod(S) has many �nite subgroups. Indeed every �nite group occurs for some
S.

A seemingly special situation is a �nite group of isometriesof a hyperbolic sur-
face, but in fact this turns out to be the general situation, by the Nielsen realization
theorem:

Theorem 4.3. For every �nite group G < Mod(S) there is a hyperbolic metric on
S so that G is realized as a group of isometries ofS.

This was proved by Steve Kerckho� in the 1980's [45], after several decades
of partial results by many people. The proof uses a \center ofmass" argument in
the Teichm•uller space, and the geometry of Thurston'searthquake paths, which are
generalizations of Dehn twists to the setting of laminations. Note that an apparently
weaker consequence is that a �nite groupG lifts to the group of di�eomorphisms
of S. It turns out that this is actually equivalent! If a �nite G actually acts
by di�eomorphisms (as opposed to di�eomorphisms modulo isotopy), then we can
average any Riemannian metric to get an invariant one. Then this invariant metric
is conformally equivalent to a hyperbolic metric by the Uniformization theorem,
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and conformal isomorphisms of a hyperbolic metric are automatically isometries by
the Schwarz lemma.

Not a lot is known about the general problem of lifting a subgroup of Mod(S)
to Di�( S). Morita proved that the entire group does not lift (i.e. the sequence 1!
Di� 0(S) ! Di�( S) ! Mod(S) ! 1 does not split), and more recently Markovic-
Saric [50] proved that Mod( S) does not even lift to Homeo(S).

A consequence of the Nielsen realization theorem is a bound,in terms of genus,
on the order of a �nite subgroup G < Mod(S). Since G acts by isometries the
quotient S=G is a hyperbolic orbifold, or more mundanely a hyperbolic surface
with (possibly) cone points with angles always of the form �=n . These can be
classi�ed, and in particular (this is just Gauss-Bonnet) th ere is a lower bound on
the area of a hyperbolic orbifold. This gives an upper bound on the order of G in
terms of the area ofS, which depends only ong, again by Gauss-Bonnet.

There are, of course, many interesting subgroups of Mod(S) and we have only
touched the tip of the iceberg. Examples of subgroups that arise naturally:

(1) Groups isomorphic to � 1(Sg) inside Mod(Sg;1), via the Birman exact se-
quence

(2) The Torelli group and its various relatives and descendants
(3) After identifying Sg with the boundary of a 3-manifold M , the group of

mapping classes ofSg that come from restrictions of homeomorphisms of
M

(4) various right-angled Artin groups { these are a natural category that com-
bines the notion of free and free abelian

(5) stabilizers of certain \Teichm•uller disks" in Teichm•uller space (Veech
groups). These are naturally lattices in SL(2; R) and are related to the
dynamics of billiards.

5. Further reading and current events

We have only given a brief taste of a subject with classical roots that has had
explosive growth over the past 30 years or so. Further information on the general
theory of Mod(S) can be found in Farb-Margalit [26] and Ivanov's survey [42], as
well as Birman's classic text [10].

One can read more about geodesic laminations in, for example, Bonahon [13],
Levitt [ 48], as well as Penner-Harer [65].

We have only hinted at Teichm•uller theory { the study of the s pace of hyper-
bolic (or conformal) structures on a surface, on which Mod(S) acts discretely with
Riemann's moduli space as quotient. See for example Gardiner [29] or Hubbard
[39], and Hamenst•adt's notes in this volume.

There is a deep connection between mapping class groups and hyperbolic 3-
manifolds, beginning of course with the mapping torusM f of a mapping classf ,
a 3-manifold �bering over the circle given by S � R modulo the action (x; t ) 7!
(f (x); t + 1). Thurston's celebrated hyperbolization theorem [69, 68, 64 ] states
that M f admits a hyperbolic structure if and only if f is pseudo-Anosov. More
recently, the work in [18] gives explicit methods for connecting the �ner structure
of a mapping class to the details of the geometry ofM f . More generally, mapping
classes are used to describe gluings of 3-manifolds along their boundaries. When
these boundaries are incompressible (� 1-injective), this leads to a structure theory
quite similar to that of surface bundles. Compressible boundaries present a number
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of formidable complications, as indicated for example by the rich but incomplete
theory of Heegaard splittings of 3-manifolds.

The L-shaped table in Figure 11 gives an example of a subgroupof Mod(S)
acting by a�ne automorphisms of a at surface. This subgroup naturally embeds
in P SL(2; R), where in fact it is a lattice. Thurston originally gave constructions of
this type in [ 70], and they were generalized and studied by Veech [72] in terms of
their close connections to the dynamics of billiards and translation surfaces. This
connection, pioneered also by Kerckho�-Masur-Smillie [43, 44 ]), has given rise to
a very active subject. See Hubert-Schmidt [40] for a good introduction.

One interesting point of view on the mapping class group is that of coarse geom-
etry: As a �nitely generated group, Mod(S) admits a word metric, or equivalently
the metric induced from its Cayley graph, once a generating set has been �xed.
The interaction between algebraic and geometric properties of groups can be very
rich and its study goes back at least to the work of Milnor and �Svarc on growth
rate in groups [57, 56, 67 ] and to Gromov's polynomial growth theorem [31]. See
also Gromov's 1983 ICM address [32].

An important geometric class of groups are theword-hyperbolic ones, whose
geometry shares some of the coarse features of the classicalhyperbolic spaces and
of trees. Mod(S) is not hyperbolic, but it does admit an interesting action on
a hyperbolic space, thecomplex of curvesC(S), a close cousin of the complexes
discussed earlier in the proof of the �nite generation of Mod(S) (see Masur-Minsky
[51] or Bowditch [14] for proofs of hyperbolicity). The action is not discrete {
reducible elements, while of in�nite order, act with �xed po ints. However pseudo-
Anosov elements act as translations, with quasi-geodesic axes, in analogy with
translations in Hn . Stabilizers of vertices ofC(S) are closely related to mapping
class groups of subsurfaces ofS, and this leads to an inductive description that gives
a detailed picture of the coarse-geometric structure of Mod(S) (see for example
[52] and [1]). An expository account of this, including applications to hyperbolic
3-manifolds, can be found in [58].

One outcome of this type of analysis is aquasi-isometric rigidity theorem for
Mod(S) (Behrstock-Kleiner-Minsky-Mosher [3] and Hamenst•adt [35]), namely the
statement that any group with the same coarse geometry as Mod(S) is related to
it by simple operations such as restriction to �nite-index subgroups or extension by
�nite groups.

A �nitely-generated subgroup H of Mod(S) (or any �nitely-generated group)
is undistorted if the inclusion of H into Mod( S) is a quasi-isometry { that is, if
distances su�er bounded additive and multiplicative distortion. There is a growing
but still incomplete understanding of which subgroups of Mod(S) are undistorted.
Work of Farb-Lubotzky-Minsky [ 25] and Masur-Minsky [52] tells us that abelian
subgroups and more generally stabilizers of curve systems and subsurfaces are al-
ways undistorted. On the other hand, Broaddus-Farb-Putman [17] showed that
a number of natural subgroups, such as the Torelli group and the kernel of the
Birman exact sequence, are exponentially distorted. Similarly Hamenst•adt-Hensel
[36] showed that the handlebody group is exponentially distorted.

Coarse-geometric techniques also shed a little light on thequestion of surface
subgroupsof Mod(S) { that is, subgroups of the form � 1(�) < Mod(S) where �
is some closed surface. It is an open question whether such groups exist all of
whose nontrivial elements are pseudo-Anosov, and this question has bearing on the
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existence of negatively-curved 4-manifolds which �bre over a surface. Bowditch
[15] showed that there are at most �nitely many conjugacy classes of such sub-
groups. Related restrictions on subgroups are obtained by Behrstock-Drut�u-Sapir
[2], through an examination of the limiting geometry of Mod(S) after unbounded
rescaling. See also Mangahas [49] for applications to a uniform version of the Tits al-
ternative, and Clay-Leininger-Mangahas [21] for applications to right-angled Artin
subgroups.

The mapping class group also interacts with the rest of mathematics by way of
analogy. Much of the study of Mod(S) is motivated by the classical theory of linear
groups and lattices, and conversely the structural features of Mod(S) can inspire
our study of other groups. Probably the richest single example of this is the study
of Out(Fn ), the group of outer automorphisms of the free group onn letters. The
analogy of course comes from the identi�cation of Mod(S) with Out(� 1(S)) when
S is closed.

Bestvina-Handel [9] and Bestvina-Feighn-Handel [7, 8] developed an analogue
of the Nielsen-Thurston theory, and Thurston's work on laminations and train-
tracks, for this setting. Culler-Vogtmann's Outer Space provides an analogy to
Teichm•uller space [22, 73 ]. The literature in this area is vast and we cannot do
it justice here. It is interesting to note that quite recentl y an analogue of the
hyperbolicity theorem for C(S) was proved for two natural Out(Fn )-complexes, by
Bestvina-Feighn [6] and Handel-Mosher [37]. This promises to have interesting
applications for the structure of this group.

The theory of laminations and foliations on surfaces has also inspired a signi�-
cant generalization to the theory of group actions onR-trees. A measured foliation
on S lifts to a � 1(S)-invariant measured foliation on H2. Collapsing the leaves of
this foliation to points yields a tree, called an R-tree, which inherits a metric from
the transverse measure, and an isometric action by� 1(S). Such trees are typi-
cally non-simplicial, so this is a strict generalization of the theory of Bruhat-Tits.
The study of group actions on R-trees gives a powerful method in geometry for
understanding degenerations of structures on manifolds. This point of view was
introduced by Morgan-Shalen [59, 60, 61 ], with fundamental contributions from
Rips (see Bestvina-Feighn [5]), and much subsequent development by many people.
See [4] for a survey. This point of view also leads to a deep structure theory for
groups in general, which echoes some of the features of the theory of 3-manifold
groups, see for example Rips-Sela [66], Drut�u-Sapir [ 23].

We should not conclude without a brief mention of the algorithmic aspects of
Mod(S), notably the conjugacy problem [38, 62], automatic structure [63] and
biautomatic structure [ 34]. One last interesting topic is that of the dilatation val-
ues of pseudo-Anosovs, which carry interesting geometric,dynamical and number-
theoretic information. For a few recent articles in this direction see [24, 55, 46, 33 ].
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