Determinants

July 18, 2007

In class we showed that there exists a unique map

$$
D: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{n \text { components }} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{n}\right) \mapsto D\left(v_{1}, \ldots, v_{n}\right)
$$

satisfying the properties
(1) D is multilinear:

$$
D(\ldots, \lambda v+\mu w, \ldots)=\lambda D(\ldots, v, \ldots)+\mu D(\ldots, w, \ldots)
$$

for all $\lambda, \mu \in \mathbb{R}$ and $v, w \in \mathbb{R}^{n}$.
(2) D is alternating:

$$
D(\ldots, v, \ldots, w, \ldots)=-D(\ldots, w, \ldots, v, \ldots)
$$

for all $v, w \in \mathbb{R}^{n}$.
(3) D is normalized:

$$
D\left(e_{1}, \ldots, e_{n}\right)=1
$$

We then defined the determinant of an $n \mathrm{x} n$-matrix A with column vectors a_{1}, \ldots, a_{n} to be

$$
\begin{equation*}
\operatorname{det}(A):=D\left(a_{1}, \ldots, a_{n}\right) \tag{1}
\end{equation*}
$$

Therefore the determinant has properties (1)-(3) with respect to the columns of the matrix A.
We proved that for an $n \mathrm{x} n$-matrix $A=\left(a_{i j}\right)$ the determinant is given by the explicit formula

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{\sigma(1) 1} \cdots a_{\sigma(n) n} . \tag{2}
\end{equation*}
$$

This formula is sometimes called the Leibniz formula, named after the mathematician Gottfried Leibniz (1646-1716).

Problem 1. Use the Leibniz formula to give an explicit formula for the determinant of a 4 x 4 -matrix. (This should be a sum of 24 products, since $\# S_{4}=24$).

Solution.

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33} a_{44}+a_{11} a_{32} a_{43} a_{24}+a_{11} a_{42} a_{23} a_{34} \\
& +a_{21} a_{12} a_{43} a_{34}+a_{21} a_{32} a_{13} a_{44}+a_{21} a_{42} a_{33} a_{14} \\
& +a_{31} a_{12} a_{23} a_{44}+a_{31} a_{22} a_{43} a_{14}+a_{31} a_{42} a_{13} a_{24} \\
& +a_{41} a_{12} a_{33} a_{24}+a_{41} a_{22} a_{13} a_{34}+a_{41} a_{32} a_{23} a_{14} \\
& -a_{11} a_{22} a_{43} a_{34}-a_{11} a_{32} a_{23} a_{44}-a_{11} a_{42} a_{33} a_{24} \\
& -a_{21} a_{12} a_{33} a_{44}-a_{21} a_{32} a_{43} a_{14}-a_{21} a_{42} a_{13} a_{34} \\
& -a_{31} a_{12} a_{43} a_{24}-a_{31} a_{22} a_{13} a_{44}-a_{31} a_{42} a_{23} a_{14} \\
& -a_{41} a_{12} a_{23} a_{34}-a_{41} a_{22} a_{33} a_{14}-a_{41} a_{32} a_{13} a_{24}
\end{aligned}
$$

Problem 2. An $n \mathrm{x} n$-matrix $A=\left(a_{i j}\right)$ is called diagonal if $a_{i j}=0$ for $i \neq j$. Compute the determinant of a diagonal matrix in two different ways. First use the Leibniz formula. Secondly, use the definition (1) and properties (1)-(3).

Solution. In the Leibniz formula the only product which does not involve a zero entry of the matrix A is the one corresponding to the identity permutation: $a_{11} a_{22} \ldots a_{n n}$. This proves the claim.
For the second proof let a_{1}, \ldots, a_{n} denote the column vectors of A.

$$
\begin{aligned}
\operatorname{det}(A) & =D\left(a_{2}, \ldots, a_{n}\right) & & \\
& =D\left(a_{11} e_{1}, \ldots, a_{n n} e_{n}\right) & & \\
& =a_{11} \ldots a_{n n} D\left(e_{1}, \ldots, e_{n}\right) & & \text { by multilinearity } \\
& =a_{11} \ldots a_{n n} & & \text { by normalization }
\end{aligned}
$$

Problem 3. An $n \mathrm{x} n$-matrix $A=\left(a_{i j}\right)$ is called upper triangular if $a_{i j}=0$ for $i>j$. Show that the determinant of an upper triangular matrix is given by the product of the diagonal entries. Hint: Use the Leibniz formula and realize that only one permutation contributes a nonzero summand.

Solution. Same proof as above, the only permutation which leads to a nonzero product is the identity permutation.

Problem 4. Using properties (1)-(3) show that the determinant of a matrix does not change if we add a multiple of one column to another column.

Solution. Denote the columns of A by a_{1}, \ldots, a_{n}. Let's say we add λa_{i} to the column a_{j} :

$$
\begin{aligned}
D\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}+\lambda a_{i}, \ldots, a_{n}\right)= & D\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right) \\
& +\lambda \underbrace{D\left(a_{1}, \ldots, a_{i}, \ldots, a_{i}, \ldots, a_{n}\right)}_{0} \\
= & D\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right)=\operatorname{det}(A)
\end{aligned}
$$

