Joint work with

- Andrew Ain
- Allen Clement
- Mike Develin
- Ed Finn
Beginnings

It all started with a chessboard...
Beginnings

It all started with a chessboard...

...and a bottle of raki.
What’s the idea?

- Play chess as usual, except...
- Do NOT alternate moves.
- Instead, players bid for the right to make the next move.
How does it work?

- Each player starts with 100 bidding chips.
- Before each move, each player writes down a bid.
- The player who bids higher gives that many chips to the other player, and makes a move.

How do you win?

- By taking opponent’s king.
A mathematician’s quibble.

What if the bids are tied?
A mathematician’s quibble.

What if the bids are tied?

- The bids are NEVER tied.
- One player starts with an extra chip, with value \(\epsilon \).
- The player who has the \(\epsilon \)-chip is required to bid it.
A sample game

1015 Evans Hall, UC Berkeley

Tuesday, October 17, 2006
A sample game

Bidding chips

W: 100*
B: 100
A sample game

Bidding chips

W: 100*
B: 100

Bids

W: 13*
B: 12
A sample game

Bidding chips

W: 87
B: 113*
A sample game

Bidding chips

W: 87
B: 113*

Bids

W: 11
B: 11*
A sample game

Bidding chips

W: 98*
B: 102
A sample game

Bidding chips

W: 98*
B: 102

Bids

W: 9*
B: 15
A sample game

Bidding chips

W: 113*
B: 87
A sample game

Bidding chips

W: 113*
B: 87

Bids

W: 15*
B: 22
A sample game

Bidding chips

W: 135*
B: 65
A sample game

Bidding chips

W: 135*
B: 65

Bids

W: 65*
B: 65
A sample game

W: 70
B: 130*

Bidding chips

W: 70
B: 130*
A sample game

Bidding chips

W: 70
B: 130*

Bids

W: 30
B: 25*
A sample game

Bidding chips

W: 40
B: 160*
Agony of defeat

W: “That was a total mindf**k.”
Richman’s theory

Similar bidding games investigated by David Richman (mid-late 1980s). Features of Richman’s theory:

- Continuous (real-valued) bidding.
- Flip coin to break ties.
- Impartial play, no zugzwang.
- No ties or draws.
Every game G has a critical threshold $R(G)$, between 0 and 1.

Let $b = \frac{B's\ resources}{B's\ resources + W's\ resources}$.

- If $b > R(G)$, then B wins.
- If $b < R(G)$, then B does not win.
- If $b = R(G)$, then the outcome may depend on coin flips.
How to compute \(R(G) \)?

Suppose directed graph is finite. Compute \(R(G) \) by working backward from ending positions.

- If \(v \) is a position from which only \(B \) can win, then \(R(G_v) = 0 \).
- If \(v \) is a position from which \(B \) cannot win, then \(R(G_v) = 1 \).
How to compute $R(G)$?

Otherwise, define

$$R^+(G_v) = \max_{v \rightarrow w} R(G_w) \quad \text{and} \quad R^-(G_v) = \min_{v \rightarrow w} R(G_w).$$

Then,

$$R(G_v) = \frac{R^+(G_v) + R^-(G_v)}{2}.$$
If the directed graph is infinite, then

\[R(G) = \lim_{n \to \infty} R(G[n]), \]

where \(G[n] \) is the truncation of \(G \) after \(n \) moves.
Instead of alternating moves or bidding to move, just flip a coin.

Say $P(G)$ is the probability that B wins, assuming optimal play.
Relations to random games

Instead of alternating moves or bidding to move, just flip a coin.

Say $P(G)$ is the probability that B wins, assuming optimal play.

Theorem (Richman)

$P(G) = 1 - R(G)$.
How to compute $P(G)$?

- If B starts in a winning position, then $P(G) = 1$.
- If B cannot win, then $P(G) = 0$.

Otherwise, compute $P(G)$ by working backward from ending positions.
How to compute $P(G)$?

If v is not an ending position, define

$$P^+(G_v) = \max_{v \rightarrow w} P(G_w) \quad \text{and} \quad P^-(G_v) = \min_{v \rightarrow w} P(G_w).$$

Then,

$$P(G_v) = \frac{P^+(G_v) + P^-(G_v)}{2}.$$
Another approach to bidding games

Berlekamp’s “Economist’s view of combinatorial games”.

- The goal of the game is not just to win, but to accumulate as many points (or stones, or dollars) as possible.
- Players bid for the right to move, using these universal points as currency.
- Closely related to Conway’s *thermography*.
- Applications to classical combinatorial games, including Go endgames.
Richman games vs. discrete bidding

Continuous bidding
- Convenient for theoretical purposes.
- Impossible to play.

Discrete bidding chips.
- Theory is more subtle and difficult (two parameters).
- Playable and fun.
Can compute “discrete critical thresholds” just like $R(G)$.

- Start from ending positions and work backwards.
- At each step, round appropriately, taking ϵ-chip into account.
- If there are few chips, effects of rounding may be severe.
Example: Tic-tac-toe

Tic-tac-toe, W starts with N^* chips, B starts with N.

- Tie for $N = 0$.
- W wins for $N = 1, 2$. (Check by hand.)
- Tie for $3 \leq N \leq 7$. (Computer check.)

Conjecture

Tie for $N \geq 3$.

Open Problem

What is $R(G)$ for $G = \text{Tic-tac-toe}$?
Many chips

For large numbers of chips, discrete bidding roughly approximates continuous bidding.

- Fix $\epsilon > 0$.
- Let $b = \#\{B's\ \text{chips}\}/\#\{\text{Total chips}\}$.

Theorem

If $b > R(G) + \epsilon$ and $\#\{\text{Total chips}\} \gg 0$, then B wins.

Theorem

If $b < R(G) - \epsilon$, $\#\{\text{Total chips}\} \gg 0$, and the directed graph is finite, then B does not win.
Many chips

For large numbers of chips, discrete bidding roughly approximates continuous bidding.

- Fix $\epsilon > 0$.
- Let $b = \#\{\text{B's chips}\}/\#\{\text{Total chips}\}$.

Open Problem

If the directed graph of G is infinite, is it possible that B can win for some $b < R(G) - \epsilon$ and $\#\{\text{Total Chips}\} \gg 0$?
At the critical threshold

What happens in discrete bidding games if $b = R(G)$?
At the critical threshold

What happens in discrete bidding games if \(b = R(G) \)?

Theorem

If the directed graph of \(G \) is finite, then the outcome for \(b = R(G) \) is periodic, with period a power of 2.
Infinite games

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any N, there is a game whose outcome for (b = R(G)) is periodic, with period N.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The path-of-length-2(N) game with equal chips is first player win if and only if (N) divides the number of chips.</td>
</tr>
</tbody>
</table>
Theorem

For any N, there is a game whose outcome for $b = R(G)$ is periodic, with period N.

Example

The path-of-length-$2N$ game with equal chips is first player win if and only if N divides the number of chips.

Theorem

There exist games whose outcome for $b = R(G)$ is aperiodic.
Open Problem

What sequences of outcomes are possible at the critical threshold?
Further reading

E. Berlekamp.
The economist’s view of combinatorial games.
Games of No Chance, 365–405, MSRI 1996.

Richman games.

Combinatorial games under auction play.