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Abstract. We study the fluctuations in the number of points of `-cyclic covers over the
finite field Fq, when q is fixed and the genus tends to infinity. The distribution is given
in terms of a sum of q + 1 i.i.d. random variables. This was completely settled for hyper-
elliptic curves by Kurlberg and Rudnick [KR09], while statistics were obtained for certain
components of the moduli space of `-cyclic covers in [BDFL10]. In this paper, we obtain
statistics for the distribution of the number of points as the covers vary over the full moduli
space of `-cyclic covers of genus g. This is achieved by relating `-covers to cyclic function
field extensions, and counting such extensions with prescribed ramification and splitting
conditions at a finite number of primes.

Keywords: curves over finite fields, distribution of number of points, function field ex-
tensions, local behavior

Contents

1. Introduction and results 1
1.1. Outline of the paper 5
2. Background and setup 5
2.1. Notation 5
2.2. From covers to field extensions 6
2.3. From field extensions to maps 6
2.4. Generating series and the Tauberian Theorem 8
3. Dirichlet characters and L-functions 10
4. `-Cyclic Extensions 15
4.1. Quadratic extensions 26
5. Distribution of the number of points on covers 28
5.1. Affine models 30
6. Acknowledgments 31
References 32

1. Introduction and results

Let q be a prime power, and let Fq be the finite field with q elements. The goal of this
paper is to establish statistics for the distribution of the number of Fq-points of `-cyclic
covers C of P1 defined over Fq, as C varies over the moduli space Hg,` of such covers of
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genus g for large g (and fixed q). We always suppose that ` is a prime number such that
q ≡ 1 (mod `). For ` = 2 (the case of hyperelliptic curves), this was addressed by Kurlberg
and Rudnick [KR09] who showed that the probability that #C(Fq) = m for some integer
m is the probability that the sum of q + 1 independent and identically distributed (i.i.d.)
random variables is equal to m. This was generalized to cyclic `-covers of degree d by the
first, second, third and fifth named authors in [BDFL10] who obtained statistics for each
irreducible component of the moduli space

Hg,` =
⋃

d1+2d2+···+(`−1)d`−1≡0 (mod `),
2g=(`−1)(d1+···+d`−1−2)

H(d1,...,d`−1),(1)

as d1, d2, . . . , d` tend to infinity. Again, the probability that #C(Fq) = m for some integer
m, as C varies over H(d1,...,d`−1) and d1, . . . , d`−1 → ∞, is the probability that the sum of
q + 1 i.i.d. random variables is equal to m. The i.i.d. random variables X1, . . . , Xq+1 are
given by (for any prime ` ≥ 2)

Xi =



0 with probability
(`− 1)q

`(q + `− 1)
,

1 with probability
`− 1

q + `− 1
,

` with probability
q

`(q + `− 1)
.

(2)

As the statistics hold for d1, . . . , d`−1 →∞, this does not give statistics for the distribution
of the number of points on Hg,`, since g → ∞ does not mean that d1, . . . , d`−1 → ∞ on all
components H(d1,...,d`−1) for a given genus in (1). Other statistics for cyclic `-covers were also
obtained by counting the covers in a different way (which does not preserve the genus) by
Xiong [Xio10] and Cheong, Wood and Zaman [CWZar], and the distribution of the number
of (affine) Fq-points on those covers was also given by a sum of i.i.d. random variables but
with different probabilities than the random variables of [BDFL10].

We show in this paper that the statistics for the distribution of the number of Fq-points for
covers in Hg,` are also given by the random variables (2). The strategy is completely different
from the work in [BDFL10]. In this paper we study the equivalent question of counting the
number of extensions of the function field K = Fq(X) with Galois group Z/`Z, conductor
of degree n, and prescribed splitting/ramification conditions at a finite set of fixed primes
of Fq(X). We explain in Section 5 why these two questions are equivalent, and give general
formulas for the number of points on covers in terms of the distribution of their function
field extensions.

In order to count the cyclic function field extensions associated to our statistics for point
counting on covers, we use a classical approach described in [Wri89] (and first due to Cohn
[Coh54] for the case of cubic extensions of the rationals) which is to study the Dirichlet series∑

Gal(L/K)∼=G

D(L/K)−s,
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where D(L/K) is the absolute norm of the discriminant Disc(L/K). The approach uses class
field theory to give an explicit expression for the Dirichlet series. This is done in generality
by Wright in [Wri89] for any global field K and any abelian group G. The count is then
obtained by an application of the Tauberian theorem, and the main term is given by the
rightmost pole of the Dirichlet series. The order of this pole varies according to the group
G and the ground field K (more precisely with the number of roots of unity in K). This is
described in [Wri89, Theorem 1.1].

In this paper, we apply those techniques to the case K = Fq(X) and G = Z/`Z, and we
further restrict to counting extensions with prescribed splitting conditions at the Fq-rational
places ofK. To find our desired statistics for point counts of curves, we need to obtain explicit
constants in our asymptotics, and in particular understand how those constants change as
we change the splitting conditions. For this, we use the last author’s further development
of Wright’s method in [Woo10], which determines probabilities of various splitting types in
abelian extensions of number fields. We are also interested in the secondary terms, and
which power saving can be obtained after taking into consideration all secondary terms. Our
results can then be used to get the distribution of the number of points on Hg,`, but also
have other applications for statistics on the moduli spaces of curves over finite fields, such
as the power of traces and the one-level density, as it is shown in a forthcoming paper of
the first and second named author and some collaborators [BCD+14]. We also compute the
values of the constants for the leading term of the asymptotic, so the counts obtained with
those techniques can be compared with the counts of [BDFL10] (see Section 5.1).

We now state the main results of our paper. We first define some notation. Let VK be the
set of places of K. Let N(Z/`Z, n) be the number of extensions of K = Fq(X) with Galois
group Z/`Z such that the degree of the conductor is equal to n. Let VR, VS, VI denote
three finite and disjoint sets of places of Fq(X), let N(Z/`Z, n;VR,VS,VI) be the number of
extensions of Fq(X) with Galois group Z/`Z, which are ramified at the places of VR, split at
the places of VS, and inert at the places of VI , and such that the degree of the conductor is
equal to n.

Theorem 1.1. Let ` ≥ 2 be a prime, and let VR, VS, VI and N(Z/`Z, n;VR,VS,VI) be as
defined above and let V = VR ∪ VS ∪ VI . Then,

N(Z/`Z, n) = C` q
nP (n) +O

(
q(

1
2

+ε)n
)
,

N(Z/`Z, n;VR,VS,VI) = C`

(∏
v∈V

cv

)
qnPVR,VS ,VI (n) +O

(
q(

1
2

+ε)n
)
,

where P (X), PVR,VS ,VI (X) ∈ R[X] are monic polynomials of degree ` − 2. Furthermore, C`
is the non-zero constant given by

C` =
(1− q−2)`−1

(`− 2)!

`−2∏
j=1

∏
v∈VK

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
,(3)
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and for each place v ∈ V, we have

cv =



(`− 1)q− deg v

1 + (`− 1)q− deg v
if v ∈ VR,

1

`(1 + (`− 1)q− deg v)
if v ∈ VS,

`− 1

`(1 + (`− 1)q− deg v)
if v ∈ VI .

Furthermore, for ` = 2 we get the exact count

N(Z/2Z, n) =


2(qn − qn−2) n > 2, n even,

2q2 n = 2,

0 n odd.

We prove Theorem 1.1 by using class field theory to show that counting Z/`Z extensions
of Fq(X) is equivalent to counting continuous homomorphisms of the idèle class group of
Fq(X) to Z/`Z. This is the method carried out by [Wri89] for general abelian extensions
over function fields and number fields, and also in some recent work of Wood [Woo10] that
finds probabilities of various splitting types in abelian extensions of number fields. The idea
of obtaining statistics for the families of curves over finite fields by considering the family
of function field extensions attached to those curves was also used by Wood in [Woo12] for
the family of cyclic trigonal curves (corresponding to non-Galois cubic extensions of Fq(X)),
and by Thorne and Xiong [TX14].

We record below a special case of this result which will be needed in some applications
to the one-level density in a forthcoming paper [BCD+14]. Then, one needs to study the
number of Fqn-points of families of Fq-curves for large n, which can also be done using the
results of this paper. The key point is the explicit dependence of each of the coefficients of the
polynomial PV,E(X) with respect to the splitting/ramification conditions to ensure enough
cancellation in the ratio of the densities for the split and inert primes. More corollaries of
that type can be extracted from the proof of Theorem 1.1 if needed for other applications.

Corollary 1.2. Let v ∈ VK be a place, let ε ∈ {ramified, split, inert}, and let N(Z/`Z, n, v, ε)
be the number of extensions of Fq(X) with Galois group Z/`Z such that the degree of the
conductor is equal to n and with the prescribed behavior ε at the place v. Then,

N(Z/`Z, n, v, ramified) =
(`− 1)q− deg v

1 + (`− 1)q− deg v
C`q

nPR(n) +O
(
q(

1
2

+ε)n
)

N(Z/`Z, n, v, split) =
1

`(1 + (`− 1)q− deg v)
C`q

nPS(n) +O
(
q(

1
2

+ε)n
)

N(Z/`Z, n, v, inert) =
1

`(1 + (`− 1)q− deg v)
C`q

nPI(n) +O
(
q(

1
2

+ε)n
)
,

where C` is the non-zero constant defined by (3), PR(X) and PS(X) ∈ R[X] are monic
polynomials polynomial of degree `− 2 and PI(X) = (`− 1)PS(X).

4



Finally, we state the result for the distribution of points on `-cyclic covers of P1 of fixed
genus that can be obtained by Theorem 1.1. This distribution is given in terms of the same
random variables from [BDFL10].

Theorem 1.3. Let Hg,` be the moduli space of Z/`Z Galois covers of P1 of genus g. Then,
as g →∞,

|{C ∈ Hg,`(Fq) : #C(Fq) = m}|
|Hg,`(Fq)|

= Prob (X1 + . . . Xq+1 = m) +O`

(
1

g

)
,

where the Xi’s are independent identically distributed random variables with

Xi =



0 with probability
(`− 1)q

`(q + `− 1)
,

1 with probability
`− 1

q + `− 1
,

` with probability
q

`(q + `− 1)
.

1.1. Outline of the paper. In Section 2, we set up notation and use class field theory to
translate the counting of extensions to the counting of maps of the idèle class group. We
also prove a general form of the Tauberian theorem over function fields that we will need to
analyze the Dirichlet series for cyclic extension of Fq(X) which is a slight generalization of
a result in [Ros02]. In Section 3, we define Dirichlet characters over Fq(X), and we prove
analytic properties of some Dirichlet series that will appear in future sections. In Section 4,
we prove our main result, Theorem 1.1. In Subsection 4.1, we look at the particular case of
` = 2 where we can get exact results. Finally, we explain in Section 5 how to obtain statistics
for the point counting over the moduli space of cyclic `-covers, and we compare our results
with those of [BDFL10].

2. Background and setup

In this section, we set up notation and recall basic facts from Galois theory and class field
theory that allow us to rephrase our problem in terms of counting continuous homomorphisms
from the idèle class group of a function field to a cyclic group of prime order.

Fix ` a prime. Throughout the paper Fq denotes a finite field with q ≡ 1 (mod `) elements
and K = Fq(X) is the rational function field over Fq.

2.1. Notation. We will denote by GK the absolute Galois group of K, that is the Galois
group Gal(Ksep/K) of the separable closure of K. Let D+

K be the set of effective divisors of
K. For each place v of K we will use the standard notations Kv for the completion at v,
Ov for the local ring, κv for the residue field, and πv for a uniformizer at v. Recall that the
degree of a place v is given by deg v = [κv : Fq] and its norm is Nv = qdeg v, the number
of elements in the residue field κv. Of course, for a place vf associated to an irreducible
polynomial f ∈ Fq[X], we have that deg v = deg f . For the place at infinity associated with
the uniformizer π∞ = 1/X, we have that deg v∞ = 1.
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2.2. From covers to field extensions. A Z/`Z cover is a pair (C, π) where C
π→ P1 is an

`-degree cover map defined over K. Each Z/`Z cover (C, π) together with an isomorphism
Z/`Z → Aut(C/P1) corresponds to a Galois extension L of K = Fq(X) together with a

distinguished isomorphism τ : Gal(L/K)
τ→ Z/`Z. We refer to such extensions as `-cyclic

extensions. The genus of the curve C relates to the discriminant Disc(L/K) via the Riemann-
Hurwitz formula (see for instance [Ros02, Theorem 7.16]),

2gC − 2 = `(2gP1 − 2) + deg Disc(L/K).

Since q ≡ 1 (mod `), there is no wild ramification and each place v of K either ramifies
completely, splits completely or is inert. Thus

(4) Disc(L/K) =
∑

v ramified in L

(`− 1)v

and

2gC = (`− 1)

[
−2 +

∑
v ramified in L

deg v

]
,

where the sum is taken over the places v of K that ramify in L.

2.3. From field extensions to maps. Our translation from counting extensions to count-
ing maps has two steps. First, by Galois theory, `-cyclic extensions L/K with a distinguished

isomorphism τ : Gal(L/K)
τ→ Z/`Z are in one-to-one correspondence with the surjective

continuous homomorphisms GK → Z/`Z from the absolute Galois group of K to Z/`Z. By
class field theory, the maps GK → Z/`Z are in one-to-one correspondence with the maps
JK/K

× → Z/`Z from the idèle class group of K to Z/`Z.
Thus an `-cyclic extension L/K of given discriminant corresponds to a nontrivial con-

tinuous homomorphism ϕ : JK/K
× → Z/`Z. We first remark that it suffices to count the

maps

φ : πZ
∞ ×

∏
v

O×v → Z/`Z(5)

which are trivial on F×q , since any such map has a unique extension to JK/K
× → Z/`Z.

(Here πZ
∞ is the free abelian group generated by π∞.)

There are ` − 1 unramified surjective continuous homomorphisms JK/K
× → Z/`Z (one

for each generator of Z/`Z corresponding to the extensions K(
√̀
β), . . . , K(

√̀
β`−1)). There

is also the trivial map, that is also unramified everywhere. In terms of extensions, this
corresponds to a K-algebra. In terms of covers of P1, this corresponds to the split cover that
consists of ` disjoint copies of P1.

For each place v of K, the component φv : O×v → Z/`Z is the composition of ϕ with a
canonical map O×v → JK → JK/K

×. A place v ramifies in L if and only if the map φv is not
trivial on O×v . Let ψ∞ be the restriction of φ to πZ

∞.
Thus the conductor of the map φ is

Cond(φ) =
∑

v ramified in L

v,
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which is also the conductor of the extension L/K. As there is no wild ramification, the
discriminant-conductor formula (see for instance [VS06, Section 12.6]) yields

Disc(L/K) = (`− 1) Cond(L/K) = (`− 1) Cond(φ).(6)

We now address the global compatibility condition. Fix µ ∈ Fq, a generator of the mul-
tiplicative group F×q . For each place v of K, we note that the map φv : O×v → Z/`Z factors

through (Ov/(πv))×. Recall that deg v = [Ov/(πv) : Fq] and thus

Ov/(πv) ∼= Fqdeg v .

For each v, fix a choice of gv ∈ Ov whose image generates (Ov/(πv))× ∼= (Fqdeg v)× and such
that

µ = g
qdeg v−1
q−1

v .

Hence

φ(µ) : = φ(1, µ, µ, . . . )

= φ((1, µ, 1, 1, . . . )(1, 1, µ, 1, . . . ) · · · )
= φ(1, µ, 1, 1, . . . ) + φ(1, 1, µ, 1, . . . ) + . . .

=
∑
v

φv(µ).

This implies

φ(µ) =
∑
v

φv

(
g
qdeg v−1
q−1

v

)
=
∑
v

(
qdeg v − 1

q − 1

)
φv(gv).

We note that qdeg v−1
q−1

= qdeg v−1 + qdeg v−2 + · · ·+ q+ 1 ≡ deg v (mod `) since q ≡ 1 (mod `).

Thus to have F×q map to zero it is necessary and sufficient that

(7)
∑

v∈Cond(φ)

φv(gv) deg v ≡ 0 (mod `).

In order to count the extensions L/K with prescribed splitting/ramification conditions
at places v of K = Fq(X), we have to count the maps φ as in (5) satisfying the global
compatibility condition (7) with corresponding conditions at places v of Fq(X), which we
describe below.

If v is unramified, we need to distinguish between inert and completely split. Since v is
unramified, the map ϕv is trivial on O×v and therefore its image is dictated by ϕv(π

Z
v ). Since

this is a subgroup of a simple abelian group, we have only two possibilities: either ϕv is
surjective, which corresponds to v being inert; or ϕv is trivial, which corresponds to v being
completely split.

If v = v∞ we can read the splitting behavior from φ(π∞, 1, 1, . . . ). Namely, we have that
v∞ /∈ Cond(φ) if and only if φv∞(O×v∞) = 0. Therefore:

• v∞ splits completely in L when φv∞(O×v∞) = 0 and ψ∞(π∞) = 0,
• v∞ is inert when φv∞(O×v∞) = 0 and ψ∞(π∞) 6= 0.

Let v0 6= v∞ be unramified. We denote it as an element in the idèles by putting the
infinite component first and the v0 component second. Then since Frobv0 corresponds
to (1, πv0 , 1, 1, . . . ) under the correspondence from class field theory, v0 splits if and only
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if ϕ(1, πv0 , 1, 1, . . . ) = 0. By abuse of notation we also let v0 represent the monic irre-
ducible polynomial in K× corresponding to v0 and we choose πv0 = v0. Thus valv0(v0) =
1, val∞(v0) = − deg v0 and valv(v0) = 0 for v 6= v0, v∞. Since ϕ is trivial on K×, we know
that

0 =ϕ(v0, v0, . . . ) = ϕ(v0, 1, . . . ) + ϕ(1, v0, 1, . . . ) + ϕ(1, 1, v0, 1, . . . ) + . . .

=ϕ(π− deg v0
∞ , 1, . . . ) + ϕ(v0π

deg v0
∞ , 1, . . . ) + ϕ(1, v0, 1, . . . )+

+ ϕ(1, 1, v0, 1, . . . ) + ϕ(1, 1, 1, v0, 1, . . . ) + . . . .

Since v0 is monic and valv∞(v0π
deg v0
∞ ) = 0, we have that ϕ(v0π

deg v0
∞ , 1, . . . ) = 0. Denoting

by ϕv0(πv0) the term ϕ(1, 1, . . . , 1, v0, 1, . . . , 1) where the v0 is in the v0 place, we obtain,

ψ∞(π− deg v0
∞ ) + ϕv0(πv0) +

∑
v 6=v0,v∞

φv(v0) = 0.

Since v0 splits if and only if ϕv0(πv0) = 0, we see that:

• v0 splits if and only if φv0(O×v0) = 0 and

ψ∞(π− deg v0
∞ ) +

∑
v 6=v0,v∞

φv(v0) = 0.(8)

• v0 is inert if and only if φv0(O×v0) = 0 and

ψ∞(π− deg v0
∞ ) +

∑
v 6=v0,v∞

φv(v0) 6= 0.

2.4. Generating series and the Tauberian Theorem. As in previous work, our strategy
is to make use of the Tauberian theorem to deduce an asymptotic formula for the number
of field extensions L/K with discriminant of degree n from the analytic properties of the
generating series ∑

Gal(L/K)∼=Z/`Z

D(L/K)−s,

where D(L/K) is the norm of the discriminant Disc(L/K). As mentioned above, since we
are dealing with cyclic extension of prime degree `, the conductor-discriminant relation gives

Disc(L/K) = (`− 1) Cond(L/K) ⇐⇒ D(L/K) = N (Cond(L/K))`−1 ,

and it is more natural to write the generating series as∑
Gal(L/K)∼=Z/`Z

D(L/K)−s :=
∑
f∈D+

K

a`(f)

Nf (`−1)s
,

where a`(f) is the number of cyclic extensions of degree ` of K = Fq(X) with conduc-
tor f . We will then extend this analysis to study the extensions L that are counted by
N(Z/`Z, n;VR,VS,VI) as defined in Section 1 by understanding the generating series∑′

Gal(L/K)∼=Z/`Z
V,E

D(L/K)−s,
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where the sum now runs over the cyclic extensions of degree ` that satisfy all of prescribed
the splitting/ramification conditions. Again, we will write this Dirichlet series as∑′

Gal(L/K)∼=Z/`Z
V,E

D(L/K)−s :=
∑
f∈D+

K

a`(f,VR,VS,VI)
Nf (`−1)s

,

where a`(f,VR,VS,VI) is the number of cyclic extensions of degree ` of K = Fq(X) with
conductor f that satisfy all of the prescribed splitting/ramification conditions.

We now state and prove the version of the Tauberian theorem needed to analyze the
Dirichlet series above. More generally, let k be a positive integer, let a : D+

K → C, and F(s)
be the Dirichlet series

F(s) =
∑
f∈D+

K

a(f)

Nfks
.

We want a Tauberian theorem that will allow us to evaluate
∑

deg f=n a(f) in the situation

when the half-plane of absolute convergence is Re(s) > 1/k for some positive integer k,
and the function F(s) has a finite number of poles (of arbitrary multiplicities) on the line
Re(s) = 1/k. This is a slight generalization of [Ros02, Theorem 17.1].

Since the function q−ks, and therefore F(s), are periodic with period 2πi/(k log q), nothing
is lost by confining our attention to the region

Bk =

{
s ∈ C : − πi

k log q
≤ Im(s) <

πi

k log q

}
,(9)

and we will always suppose that s is confined to the region Bk.

Theorem 2.1. Let k be a positive integer, and let 0 < δ < 1/k. Let a : D+
K → C, and

suppose that the Dirichlet series

F(s) =
∑
f∈D+

K

a(f)

Nfks

converges absolutely for Re(s) > 1/k, and is holomorphic on {s ∈ Bk : Re(s) ≥ δ} except for
a finite number of poles on the line Re(s) = 1/k. Let u = q−ks and define F (u) = F(s).
Then, ∑

deg f=n

a(f) = −
∑
|u|=q−1

Resu
F (u)

un+1
+O

(
qδknM

)
,

where

M = max
|u|=q−kδ

|F (u)| = max
Re(s)=δ

F(s).

Proof. With the change of variable u = q−ks, we have that

F (u) =
∞∑
n=0

( ∑
deg f=n

a(f)

)
un,

and by hypothesis, F (u) is a meromorphic function on the disk {u ∈ C : |u| ≤ q−kδ},
except for finitely many poles with |u| = 1/q. Let Cδ = {u ∈ C : |u| = q−kδ}, oriented
counterclockwise. Choose any η > 1 and let Cη = {u ∈ C : |u| = q−η}, oriented clockwise.
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Notice that F (u)
un+1 is a meromorphic function between the two circles Cη and Cδ with finitely

many poles at |u| = 1/q. Thus, by the Cauchy’s integral formula,

1

2πi

∮
Cδ+Cη

F (u)

un+1
du =

∑
|u|=q−1

Resu
F (u)

un+1
.

Since q−η < 1, using the power series expansion of F (u) around u = 0, we have that

1

2πi

∮
Cη

F (u)

un+1
du = −

∑
deg f=n

a(f).

Therefore, we obtain∑
deg f=n

a(f) = −
∑
|u|=q−1

Resu
F (u)

un+1
+

1

2πi

∮
Cδ

F (u)

un+1
du.

Let M be the maximum of |F (u)| over Cδ. Then∣∣∣∣ 1

2πi

∮
Cδ

F (u)

un+1
du

∣∣∣∣ ≤Mqδkn,

which proves the proposition. �

3. Dirichlet characters and L-functions

In this section, we define `th-power residue symbols over Fq[X] (we recall that q ≡ 1
(mod `)). We refer the reader to [Mor91] for details. We then study some auxiliary functions
built out of the `th-power residue symbols that will be used in the proofs of our main results.

Recall that ` is a prime such that q ≡ 1 (mod `). Thus F×q contains the `th roots of

unity. In particular, b` = µ
q−1
` is one of these roots where µ is a fixed generator of F×q . Let

v = v(X) ∈ Fq[X] be a monic irreducible polynomial. We define the `-th power residue
symbol as follows. Let ( ·

v

)
`

: (Fq[X]/v(X))× → F×q
be defined by (

f

v

)
`

≡ f
Nv−1
` (mod v).

In other words, the `-th power residue symbol is given by an `-th root of unity.
Recall that the choice of µ determined for each place v a generator gv of

(Ov/(πv))× ∼= (Fq[X]/(v(X)))× ∼= (Fqdeg v)×

such that µ = g
qdeg v−1
q−1

v . We have

g
qdeg v−1

`
v =

(
g
qdeg v−1
q−1

v

) q−1
`

= µ
q−1
` = b`.

By the definition of the `-th power symbol,(gv
v

)
`
≡ b` (mod v).

10



We let σ be an `-order character from F×q → C×. Then,

χv,` := σ ◦
( ·
v

)
`

is a Dirichlet character χ : Fq[X]→ C× of modulus v, where we define χv,`(f(x)) = 0 if v(x)
divides f(x).

For the infinite place v∞, we further define

χv,`(v∞) =

{
1 deg v ≡ 0 (mod `),

0 deg v 6≡ 0 (mod `).

For χ a Dirichlet character, we denote by L(s, χ) the Dirichlet L-function

L(s, χ) =
∑

F∈Fq [X]
F monic

χ(F )

|F |s

where F varies over the monic polynomials of Fq[X], and by L∗(s, χ) the completed L-
function that includes the place at infinity. For a Dirichlet character modulo a monic poly-
nomial v, we have that

L∗(s, χ) = (1− q−s)−λvL(s, χ),

where λv is 1 if deg v ≡ 0 (mod `), and 0 otherwise.
Then, for χ nontrivial, we remark that both L(s, χ) and L∗(s, χ) are analytic and non-zero

for Re(s) > 1/2.
By `-power reciprocity, we can write the Kronecker symbol as

χv,`(v0) = σ ◦
(v0

v

)
`

= σ

((
(−1)(q−1)/`

)deg v0 deg v
(
v

v0

)
`

)
= Ψv0,`(v)χv0,`(v),(10)

where χv0,`(v) is the Dirichlet character modulo v0 defined above, and Ψv0,`(v) depends only
on the degree of v.

If v = v∞, let an be the principal coefficient of f . Then we define

χv∞,`(f) :=

{
σ(an) deg f ≡ 0 (mod `),

0 deg f 6≡ 0 (mod `).

We note that the above definition agrees with `-power reciprocity in the following way

(11) χv,`(v∞) =
(
(−1)(q−1)/`

)deg v
χv∞,`(v) =

{
1 deg v ≡ 0 (mod `),
0 deg v 6≡ 0 (mod `).

where we have used that v is a monic polynomial, which implies that χv∞,`(v) = 1 when

` | deg v, and that
(
(−1)(q−1)/`

)deg v
= 1 when ` | deg v and q odd, and is trivially 1 when q

is even since then we have even characteristic.
Finally, we remark that by the above, the Kronecker symbol codifies ramification in ex-

tensions in the usual way. Let f ∈ Fq[X] (not necessarily monic). Then,

χv,`(f) =


1 v splits in K(

√̀
f),

ξk` , for some 1 ≤ k ≤ `− 1 v is inert in K(
√̀
f),

0 v ramifies in K(
√̀
f),

where ξ` is a primitive `th root of 1.
11



Lemma 3.1. Let χ be a nontrivial Dirichlet character and let Ψ be a function on Fq[X] such
that Ψ(F ) = Ψ(G) when degF = degG. Then

L(s,Ψχ) =
∑

F∈Fq [X]
F monic

Ψ(F )χ(F )

|F |s

is an analytic function on C.

Proof. Let

A(n,Ψ, χ) =
∑

F∈Fq [X],
F monic,
degF=n

Ψ(F )χ(F ).

Then

L(s,Ψχ) =
∞∑
n=0

A(n,Ψ, χ)

qns
.

We note that

A(n,Ψ, χ) = Ψ(G)
∑

F∈Fq [X],
F monic,
degF=n

χ(F )

for any polynomial G of degree n, and thus A(n,Ψ, χ) = 0 if n is greater than or equal to
the degree of the modulus of χ by the orthogonality relations of characters.

�

Lemma 3.2. Let ξ` be a primitive `th root of 1. Let VR,VS and VU be finite subsets of places
of VK such that VS = {v1, . . . , vn} ⊂ VU , and VU ∩ VR = ∅. For each 0 ≤ j ≤ ` − 1, and
each tuple (k1, . . . , kn) 6= (0, . . . , 0) with 0 ≤ ki ≤ `− 1, let

Mj,k1,...,kn(s;VR,VS,VU)

:=
∏

v 6∈VR∪VU

(
1 +

(
ξj deg v
`

n∏
h=1

χv,`(vh)
kh + · · ·+ ξ

(`−1)j deg v
`

n∏
h=1

χv,`(vh)
(`−1)kh

)
Nv−(`−1)s

)
.

Then, each Mj,k1,...,kn(s;VR,VS,VU) converges absolutely for Re(s) > 1
`−1

and has analytic

continuation to the region Re(s) > 1
2(`−1)

.

In the case where we have only one place v0 ∈ VK with prescribed ramification ε0 ∈
{ramified, split, inert}, we will denote the above function by

(12) Mj,k(s; v0, ε0) :=Mj,k1(s;VR,VS,VU).

Proof. For the absolute convergence, we have that the convergence of
∏

v(1+(`−1)|Nv−s(`−1)|)
is equivalent to that of

∑
v

1
Nvs(`−1) and this convergence follows in the same way as the ab-

solute convergence for the zeta function ζK(s) in Re(s) > 1.
12



For the analytic continuation, we write

Mj,k1,...,kn(s;VR,VS,VU)

= C1
j,k1,...,kn

(s)
`−1∏
i=1

∏
v 6∈VR∪VU

(
1 + ξij deg v

`

n∏
h=1

χv,`(vh)
ikhNv−(`−1)s

)

= C2
j,k1,...,kn

(s)
`−1∏
i=1

∏
v 6∈VR∪VU

(
1− ξij deg v

`

`−1∏
h=1

Ψvh,`(v)ikhχvh,`(v)ikhNv−(`−1)s

)−1

,

where we have used `-power reciprocity (10), and where C1
j,k1,...,kn

(s) and C2
j,k1,...,kn

(s) are
analytic functions for Re(s) > 1/2(`− 1) as the Euler products converge absolutely in that
region. For each 1 ≤ i ≤ `− 1, each 0 ≤ j ≤ `− 1 and each tuple (k1, . . . , kn) as above, we
have that the functions

Li,j,k1,...kn(s) =
∏

v 6∈VR∪VU

(
1− ξij deg v

`

`−1∏
h=1

Ψvh,`(v)ikhχvh,`(v)ikhNv−(`−1)s

)−1

= L(s1,Ψi,j,k1,...,kh χi,j,k1,...,kh)

are twisted Dirichlet functions as in Lemma 3.1, where s1 = (`− 1)s,

Ψi,j,k1,...,kh(v) = ξij deg v
`

`−1∏
h=1

Ψvh,`(v)ikh

χi,j,k1,...,kh(v) =
`−1∏
h=1

χvh,`(v)ikh .

Then, Ψi,j,k1,...,kh(v) depends only on the degree of v, and χi,j,k1,...,kh(v) is a non-trivial Dirich-
let character since 1 ≤ i ≤ `− 1, and (k1, . . . , kn) 6= 0. Applying Lemma 3.1, this completes
the proof of the analytic continuation.

�

Let ξ` be a primitive `th root of 1. We now prove a result bounding the meromorphic
continuation of the functions

A(s) :=
∏
v

(
1 + (`− 1)Nv−(`−1)s

)
(13)

B(s) :=
∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)
(14)

on the line Re(s) = 1
2(`−1)

+ ε, for any ε > 0. We remark that the Euler products converge

(absolutely and uniformly) for Re(s) > 1/(`− 1).

Lemma 3.3. Let 0 < ε < 1
2(`−1)

. The functions A(s) and B(s) have meromorphic con-

tinuation to the region Re(s) > 1
2(`−1)

+ ε, and their only singularities are poles on the

line Re(s) = 1/(` − 1). Furthermore, both functions are absolutely bounded on the region
1

2(`−1)
< Re(s) < 1

`−1
.
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Proof. For Re(s) > 1
`−1

, we have

A(s) =
∏
v

(
1 + (`− 1)Nv−(`−1)s

)
= ζK((`− 1)s)`−1

∏
v

(
1 + (`− 1)Nv−(`−1)s

)
(1−Nv−(`−1)s)`−1

= ζK((`− 1)s)`−1
∏
v

(
1 + (`− 1)Nv−(`−1)s

) (
1− (`− 1)Nv−(`−1)s

+

(
`− 1

2

)
Nv−2(`−1)s +Nv−3(`−1)sO` (1)

)
= ζK((`− 1)s)`−1

∏
v

(
1−

(
`− 1

2

)
Nv−2(`−1)s +Nv−3(`−1)sO` (1)

)
= C(s)ζK((`− 1)s)`−1

∏
v

(
1−Nv−2(`−1)s

) `(`−1)
2

= C(s) ζK((`− 1)s)`−1

ζK(2(`− 1)s)
`(`−1)

2

,

where C(s) is analytic for Re(s) > 1
3(`−1)

+ ε. Thus for s = 1
2(`−1)

+ ε, as ε goes to zero,

the function A(s) converges to zero, and the result follows. The poles are given by those of
ζK((`− 1)s), namely s = 1/(`− 1), with multiplicity `− 1.

Similarly, for Re(s) > 1
`−1

, we have

B(s) =
∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)
=

`−1∏
j=1

ZK(ξj`u)
∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

) `−1∏
j=1

(
1− ξj deg v

` Nv−(`−1)s
)
,

where u = q−(`−1)s and

ZK(u) :=
1

(1− qu)(1− u)

is the zeta function of K.
14



Thus, we have,

B(s) =
`−1∏
j=1

ZK(ξj`u)
∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)
×

∏
v

(
1− (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

+

( ∑
1≤i<j≤`−1

ξi deg v
` ξj deg v

`

)
Nv−2(`−1)s +Nv−3(`−1)sO`(1)

)

= C(s)
`−1∏
j=1

ZK(ξj`u)
∏
v

(
1 + c(`)Nv−2(`−1)s

)
,

where

c(`) = −
(
ξdeg v
` + · · ·+ ξ

(`−1) deg v
`

)2

+
∑

1≤i<j≤`−1

ξideg v
` ξj deg v

`

= −
∑

1≤i≤j≤`−1

ξi deg v
` ξj deg v

`

=


− `(`−1)

2
` | deg v, ` > 2,

0 ` - deg v, ` > 2,

−1 ` = 1,

and C(s) is analytic for Re(s) > 1
3(`−1)

+ ε. Thus for s = 1
2(`−1)

+ ε, as ε → 0, the function

B(s) converges to 0, and the result follows.
The poles are those of ZK(ξj`u), namely, poles of order one at s = 1

`−1
+ 2jπi

(`−1)` log q
.

�

4. `-Cyclic Extensions

In this section, we will give the proofs of the main results of this paper. We will con-
tinue with the notation introduced in the earlier sections. Recall that, for a fixed prime `,
N(Z/`Z, n) denotes the number of extensions of K with Galois group Z/`Z such that the
degree of the conductor is n. As before, ξ` will always stand for a primitive `th root of 1.

Theorem 4.1. Let ` ∈ Z be a prime. We have

N(Z/`Z, n) = C` q
nP`(n) +O

(
q(

1
2

+ε)n
)
,(15)

where P`(X) ∈ R[X] is a monic polynomial of degree ` − 2, and where C` is the non-zero
constant given by

C` =
(1− q−2)`−1

(`− 2)!

`−2∏
j=1

∏
v

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
.

15



Proof. To count N(Z/`Z, n), we consider the Dirichlet series F(s), which is the generating
function with an added constant, namely,

F(s) := `+
∑

Gal(L/K)∼=Z/`Z

D(L/K)−s.

We claim that

F(s) =
`−1∑
j=0

∏
v

(
1 + (ξj deg v

` + · · ·+ ξ
(`−1)j deg v
` )Nv−(`−1)s

)
=

∏
v

(
1 + (`− 1)Nv−(`−1)s

)
+ (`− 1)

∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)
= A(s) + (`− 1)B(s).

Indeed, we recall from Section 2 that we have to count the maps φ : πZ
∞×

∏
vO×v → Z/`Z

satisfying (7). Let Cond(φ) be the conductor of such a map φ, and v a place of the conductor.

In the first line above, the ith term ξij deg v
` Nv−(`−1)s in each Euler product corresponds to the

map where φv(gv) = i for 1 ≤ i ≤ `− 1. Therefore, considering all the places v of Cond(φ),
the term in the jth Dirichlet series above corresponding to the global map φ equals(

ξ
∑
v jφv(gv) deg v

`

)
×N(Cond(φ))−(`−1)s

for 0 ≤ j ≤ `−1. Thus the sum of those terms over the index j will yield `N(Cond(φ))−(`−1)s

if
∑

v φv(gv) deg v ≡ 0 (mod `) and 0 otherwise, and we recover (7). Notice that the ` factor
multiplying N(Cond(φ))−(`−1)s is counting the different extensions with the same conductor

K(
√̀
f), K(

√̀
βf), . . . , K(

√̀
β`−1f) for β ∈ F×q not an `th power. Similarly, the constant ` in

the definition of F(s) accounts for the extensions K(
√̀
β), . . . , K(

√̀
β`−1) for β ∈ F×q not an

`th power, as well as the K-algebra given by the completely split cover.
Using the identity

1 + (`− 1)u

(1 + u)`−1
=

`−2∏
j=1

(
1− ju2

(1 + u)(1 + ju)

)
,

we write

A(s) =
∏
v

(
1 + (`− 1)Nv−(`−1)s

)
=

(
ζK((`− 1)s)

ζK(2(`− 1)s)

)`−1 `−2∏
j=1

∏
v

(
1− jNv−2(`−1)s

(1 +Nv−(`−1)s)(1 + jNv−(`−1)s)

)

and similarly,

B(s) =
∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)

=
∏
v

`−1∏
j=1

(
1 + ξj deg v

` Nv−(`−1)s
)∏

v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )Nv−(`−1)s

)
∏`−1

j=1

(
1 + ξj deg v

` Nv−(`−1)s
) .
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Recall from Lemma 3.3 that A(s) is a meromorphic function on Re(s) > 1
2(`−1)

with a

pole of order `− 1 at s = 1
`−1

in the region B`−1 as defined in (9). The function B(s) is also

meromorphic in Re(s) > 1
2(`−1)

, with simple poles at sj = 1
`−1

+ 2jπi
(`−1)` log q

for |2j| < ` in the

region B`−1.
We set u = q−(`−1)s, and write A(u) := A(s) and B(u) := B(s). Thus,

A(u) =

(
(1− qu2)(1 + u)

(1− qu)

)`−1 `−2∏
j=1

∏
v

(
1− ju2 deg v

(1 + udeg v)(1 + judeg v)

)

B(u) =
∏
v

`−1∏
j=1

(
1 + (ξj`u)deg v

)∏
v

(
1 + (ξdeg v

` + · · ·+ ξ
(`−1) deg v
` )udeg v

)
∏`−1

j=1

(
1 + (ξj`u)deg v

)
=

`−1∏
j=1

ZK(ξj`u)

ZK(ξ2j
` u

2)

∏
v

(
1 + b(v)udeg v

)∏`−1
j=1

(
1 + (ξj`u)deg v

) ,
where

b(v) = ξdeg v
` + · · ·+ ξ

(`−1) deg v
` ,

and

ZK(u) =
1

(1− qu)(1− u)
.

Fix any δ with 1
2(`−1)

< δ < 1
`−1

. Then A(u) and B(u) are meromorphic functions on the

disk {u : |u| ≤ q−δ}. We see that A(u) has a pole of order ` − 1 at u = 1/q and B(u) has
(`− 1)-many simple poles at u = (qξj` )

−1 for j = 1, · · · , `− 1. Then, applying Theorem 2.1
and Lemma 3.3 to F(s) = A(s) + (`− 1)B(s) with δ = 1

2(`−1)
+ ε for ε > 0, we have that

N(Z/`Z, n) = −Resu=q−1

A(u)

un+1
−

`−1∑
j=1

Resu=(qξj` )−1

B(u)

un+1
+O

(
q(1/2+ε)n

)
.(16)

We compute,

Resu=q−1

A(u)

un+1

= lim
u→q−1

1

(`− 2)!

d`−2

du`−2
(u− q−1)`−1 1

un+1

(
(1− qu2)(1 + u)

(1− qu)

)`−1 `−2∏
j=1

∏
v

(
1− ju2 deg v

(1 + udeg v)(1 + judeg v)

)

= lim
u→q−1

1

(`− 2)!

d`−2

du`−2

(
(−(1− qu2)(1 + u))`−1

q`−1un+1

) `−2∏
j=1

∏
v

(
1− ju2 deg v

(1 + udeg v)(1 + judeg v)

)
.

Let

(17) H`(u) :=
1

(`− 2)!

(
(−(1− qu2)(1 + u))`−1

q`−1

) `−2∏
j=1

∏
v

(
1− ju2 deg v

(1 + udeg v)(1 + judeg v)

)
.
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Then, using the product rule for derivatives, we get

Resu=q−1

A(u)

un+1
= lim

u→q−1

`−2∑
i=0

(
`− 2

i

)
di

dui

(
1

un+1

)
d`−2−i

du`−2−iH`(u)

= lim
u→q−1

`−2∑
i=0

(
`− 2

i

)
(−1)i(n + 1) · · · (n + i)

un+i+1

d`−2−i

du`−2−iH`(u)

=
`−2∑
i=0

(
`− 2

i

)
(−1)i(n + 1) · · · (n + i)qn+i+1 d`−2−i

du`−2−iH`(u)

∣∣∣∣
u=q−1

,

which proves that this residue is given by a polynomial evaluated in n.
We take a closer look at the main term of this polynomial, which is the dominating term

when n→∞. We obtain

Resu=q−1

A(u)

un+1
= lim

u→q−1

1

(`− 2)!

(−1)`−2(n + 1) · · · (n + `− 2)

un+`−1

(
(−(1− qu2)(1 + u))`−1

q`−1

)
×

`−2∏
j=1

∏
v

(
1− ju2 deg v

(1 + udeg v)(1 + judeg v)

)
(1 +O(1/n))

= − n`−2

(`− 2)!
(1− q−2)`−1qn

`−2∏
j=1

∏
v

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
(1 +O(1/n)).

For the other residues, coming from simple poles,

Res
u=(qξ

j0
` )−1

B(u)

un+1

= lim
u→q−1ξ

−j0
`

(u− q−1ξ−j0` )

un+1

`−1∏
j=1

(1− qξ2j
` u

2)(1 + ξj`u)

(1− qξj`u)

∏
v

(
1 + b(v)udeg v

)∏`−1
j=1

(
1 + (ξj`u)deg v

)
= lim

u→q−1ξ
−j0
`

−(1− qξ2j0
` u2)(1 + ξj0` u)

un+1qξj0`

`−1∏
j=1,j 6=j0

(1− qξ2j
` u

2)(1 + ξj`u)

(1− qξj`u)

∏
v

(
1 + b(v)udeg v

)∏`−1
j=1

(
1 + (ξj`u)deg v

)
= −(qξj0` )n(1− q−2)

`−1∏
j=1,j 6=j0

(1− q−1ξ2j−2j0
` )(1 + q−1ξj−j0` )

(1− ξj−j0` )

∏
v

(
1 + b(v)(q−1ξ−j0` )deg v

)∏`−1
j=1

(
1 + (q−1ξj−j0` )deg v

) .
We note that the line above is O(qn) and it contributes to the constant coefficient of P`(n).

Replacing the residues in (16) with the equations above completes the proof. �

In spite of the fact that Corollary 1.2 can be deduced from the statement of Theorem 1.1,
we will prove it first and independently of Theorem 1.1 as a way of introducing the key ideas
in the proof of Theorem 1.1.

Proposition 4.2. Let v0 ∈ VK be a place of K, let ε0 ∈ {ramified, split, inert}, and let
N(Z/`Z, n, v0, ε0) be the number of extensions of Fq(X) with Galois group Z/`Z such that
the degree of the conductor is equal to n and with the prescribed behavior ε0 at the place v0.
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Then,

N(Z/`Z, n, v0, ramified) =
(`− 1)q− deg v0

1 + (`− 1)q− deg v0
C`q

nPR(n) +O
(
q(

1
2

+ε)n
)

N(Z/`Z, n, v0, split) =
1

`(1 + (`− 1)q− deg v0)
C`q

nPS(n) +O
(
q(

1
2

+ε)n
)

N(Z/`Z, n, v0, inert) =
1

`(1 + (`− 1)q− deg v0)
C`q

nPI(n) +O
(
q(

1
2

+ε)n
)
,

where C` is the non-zero constant defined by (3), PR(X) and PS(X) ∈ R[X] are monic
polynomials of degree `− 2 and PI(X) = (`− 1)PS(X).

Proof. The generating function for the number of extensions counted in N(Z/`Z, n) ramified
at v0 is

FR(s) =
∑

Gal(L/K)∼=Z/`Z
v0 ramified

D(L/K)−s

= (`− 1)Nv
−(`−1)s
0

∏
v 6=v0

(
1 + (`− 1)Nv−(`−1)s

)
+(`− 1)b(v0)Nv

−(`−1)s
0

∏
v 6=v0

(
1 + b(v)Nv−(`−1)s

)
=

(`− 1)Nv
−(`−1)s
0

1 + (`− 1)Nv
−(`−1)s
0

A(s) + (`− 1)
b(v0)Nv

−(`−1)s
0

1 + b(v0)Nv
−(`−1)s
0

B(s).

where we have excluded the case of φv0(gv0) = 0 to account for v0 ramified.
With the change of variable u = q−(`−1)s, we obtain

FR(u) =
(`− 1)udeg v0

1 + (`− 1)udeg v0
A(u) + (`− 1)

b(v0)udeg v0

1 + b(v0)udeg v0
B(u).

Then, applying Theorem 2.1 and Lemma 3.3 with δ = 1
2(`−1)

+ ε for any ε > 0, we get

N(Z/`Z, n, v0, ramified) = −Resu=q−1

(`− 1)udeg v0

1 + (`− 1)udeg v0

A(u)

un+1

−(`− 1)
`−1∑
j=1

Resu=(qξj` )−1

b(v0)udeg v0

1 + b(v0)udeg v0

B(u)

un+1

+O
(
q(

1
2

+ε)n
)
.

For the residue involving the function A(u), we have

Resu=q−1

(`− 1)udeg v0

1 + (`− 1)udeg v0

A(u)

un+1
= lim

u→q−1

d`−2

du`−2

(`− 1)udeg v0

1 + (`− 1)udeg v0

H`(u)

un+1
,
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where H`(u) is given by (17). This yields

Resu=q−1

(`− 1)udeg v0

1 + (`− 1)udeg v0

A(u)

un+1

=
`−2∑
i=0

(
`− 2

i

)
(−1)i(n + 1) · · · (n + i)qn+i+1 d`−2−i

du`−2−i
(`− 1)udeg v0

1 + (`− 1)udeg v0
H`(u)

∣∣∣∣
u=q−1

,

and we obtain the polynomial in n as in the case of the proof of Theorem 4.1. As before, we
record the main coefficient as the term dominating when n→∞ to be

Resu=q−1

(`− 1)udeg v0

1 + (`− 1)udeg v0

A(u)

un+1

= − n`−2

(`− 2)!
(1− q−2)`−1qn

(`− 1)q− deg v0

1 + (`− 1)q−deg v0

`−2∏
j=1

∏
v

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
(1 +O(1/n))

= −C`
(`− 1)q− deg v0

1 + (`− 1)q− deg vq
qnn`−2(1 +O(1/n)).

For the residues involving the function B(u), we notice that, since the poles are of order
one,

Resu=(qξj` )−1

b(v0)udeg v0

1 + b(v0)udeg v0

B(u)

un+1
=

b(v0)(qξj` )
− deg v0

1 + b(v0)(qξj` )
− deg v0

Resu=(qξj` )−1

B(u)

un+1
.

The number above is equal to O(qn) and it will contribute to the constant coefficient of the
polynomial PR(n). This proves the result for the number of extensions ramifying at v0. We
now consider the case of extensions splitting at v0. First, we write the generating function
for the number of extensions of K unramified at v0 is, up to a constant,

FU(s) = `+
∑

Gal(L/K)∼=Z/`Z
v0 unramified

D(L/K)−s

=
`−1∑
j=0

∏
v 6=v0

(
1 +

(
ξj deg v
` + · · ·+ ξ

(`−1)j deg v
`

)
Nv−(`−1)s

)
=
∏
v 6=v0

(
1 + (`− 1)Nv−(`−1)s

)
+ (`− 1)

∏
v 6=v0

(
1 + b(v)Nv−(`−1)s

)
=

1

1 + (`− 1)Nv
−(`−1)s
0

A(s) +
(`− 1)

1 + b(v0)Nv
−(`−1)s
0

B(s).

Using the notation of Section 3, recall that b` = µ
q−1
` where µ is a generator of F×q (hence

b` is an `th root of unity in F×q ), and σ : F×q → C is a character of order `. Let ρ` = σ(b`),
which is then a primitive `th root of unity in C. For each v, denote by nv the positive integer
such that the image of v0 in (Ov/(πv))× is gnvv . Then φv(v0) = nvφv(gv). Hence by (8) v0 is
unramified and split if and only if φv0(O×v0) = 0 and

−(deg v0)ψ∞(π∞) +
∑

v 6=v0,v∞

nvφv(gv) ≡ 0 (mod `)
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which is equivalent to

ρ
− deg v0ψ∞(π∞)
`

∏
v 6=v0,v∞

ρ
nvφv(gv)
` = 1

for the primitive `th root of unity ρ` coming from the choice of primitive root b` ∈ F×q that
we fixed in Section 3.

Thus v0 6= v∞ is unramified and split if and only if φv0(O×v0) = 0 and

D(v0) := ρ
− deg v0ψ∞(π∞)
`

∏
v 6∈{v0,v∞}

χv,`(v0)φv(gv) = 1.(18)

Since D(v0) is a `th root of unity, we can rewrite (18) as

1

`

`−1∑
j=0

D(v0)j =

{
1 if v0 is unramified and split,

0 otherwise,
(19)

and this is the criterion that we will use in the generating series.
Analogously, we also have that v∞ is unramified and split if and only if φv∞(O×v∞) = 0 and

ρ
− deg v∞ψ∞(π∞)
` = 1,

since deg v∞ = 1.
We claim that the Dirichlet series for cyclic extensions splitting at a fixed place v0 6= v∞

is

FS(s) =
1

`2

`−1∑
j=0

`−1∑
k=0

`−1∑
r=0

ρ−rk deg v0
`

×
∏

v 6=v0,v∞

(
1 + (ξj deg v

` χv,`(v0)k + · · ·+ ξ
(`−1)j deg v
` χv,`(v0)(`−1)k)Nv−(`−1)s

)
×
(

1 + (ξj deg v∞
` + · · ·+ ξ

(`−1)j deg v∞
` )Nv−(`−1)s

∞

)
.

Recall from Section 2 that we have to count the maps φ : πZ
∞×

∏
vO×v → Z/`Z satisfying (7),

together with the splitting conditions (18) and φv0(O×v0) = 0. Let Cond(φ) be the conductor
of such a map φ, and v a place of the conductor. For each fixed j, k, r in the first line above,
the ith term ρ−rk deg v0

` ξij deg v
` χv,`(v0)ikNv−(`−1)s in the Euler product corresponds to the map

where φv(gv) = i and ψ∞(π∞) = r, for 1 ≤ i ≤ `−1. Considering all the places v of Cond(φ)
(including v∞, which is accounted for in the second line of the equation), the term in the
j, k, rth Dirichlet series above corresponding to the global map φ equals(

ξ
∑
v jφv(gv) deg v

`

)
× ρ−rk deg v0

`

∏
v 6=v0,v∞

χv,`(v0)kφv(gv) ×N(Cond(φ))−(`−1)s.

Summing over j, we obtain zero unless condition (7) is satisfied. Summing over r covers all
the possible values of ψ∞(π∞). Finally, summing over k yields zero unless condition (18) is
satisfied. Thus the sum of those terms over r, k, j, together with the correcting factor 1

`2
will

yield `N(Cond(φ))−(`−1)s if both conditions (7) and (18) are satisfied and zero otherwise.
We also remark that the constant term of FS(s) is ` if ` | deg v0 and 1 otherwise.
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When v0 = v∞, we have,

FS(s) =
1

`2

`−1∑
j=0

`−1∑
k=0

`−1∑
r=0

ρ−rk deg v∞
`

∏
v 6=v∞

(
1 + (ξj deg v

` + · · ·+ ξ
(`−1)j deg v
` )Nv−(`−1)s

)

=
1

`

`−1∑
j=0

∏
v 6=v∞

(
1 + (ξj deg v

` + · · ·+ ξ
(`−1)j deg v
` )Nv−(`−1)s

)
=

1

`
FU(s).

We note that since v0 is split in the first case, and v∞ is split in the second case, χv∞(v0) = 1
in the first case and χv0(v∞) = 1 in the second case. This results in the following symmetric
formula

FS(s) =
1

`2

`−1∑
j=0

`−1∑
k=0

`−1∑
r=0

ρ−rk deg v0
`

×
∏
v 6=v0

(
1 + (ξj deg v

` χv,`(v0)k + · · ·+ ξ
(`−1)j deg v
` χv,`(v0)(`−1)k)Nv−(`−1)s

)
which is valid for any place v0.

Separating the term with k = 0 from the terms with k 6= 0, we obtain,

FS(s) =
1

`
FU(s)

+
1

`2

`−1∑
j=0

`−1∑
k=1

(
`−1∑
r=0

ρ−rk deg v0
`

)
Mj,k(s, v0, split),

where Mj,k(s, v0, split) is given by (12).
Applying Theorem 2.1, and Lemmas 3.2 and 3.3 to the generating function FS(s), we get

N(Z/`Z, n, v0, split) = −1

`
Resu=q−1

1

1 + (`− 1)udeg v0

A(u)

un+1

−`− 1

`

`−1∑
j=1

Resu=(ξj`q)
−1

1

`(1 + b(v0)udeg v0)

B(u)

un+1

+O
(
q(1/2+ε)n

)
.

As before, the residue involving the function A(u) yields qn times a polynomial in n of
degree ` − 2. The main term when n goes infinity is given by the leading term of the
polynomial, and is

Resu=q−1

1

`(1 + (`− 1)udeg v0)

A(u)

un+1
= −C`qnn`−2 1

`(1 + (`− 1)q− deg v0)
.

Similarly the value of

Resu=(ξj`q)
−1

1

`(1 + b(v0)udeg v0)

B(u)

un+1

is O(qn) and it contributes to the constant coefficient of PS(n).
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We now consider the Dirichlet series for cyclic extensions for which a fixed place v0 is
inert. It is given by

FI(s) = FU(s)−FI(s)

=
`−1∑
j=0

∏
v 6=v0

(
1 +

(
ξj deg v
` + · · ·+ ξ

(`−1)j deg v
`

)
Nv−(`−1)s

)

− 1

`2

`−1∑
j=0

`−1∑
k=0

`−1∑
r=0

ρ−rk deg v0
`

∏
v 6=v0

(
1 + (ξj deg v

` χv,`(v0)k + · · ·+ ξ
(`−1)j deg v
` χv,`(v0)(`−1)k)Nv−(`−1)s

)

=
(`− 1)

`

`−1∑
j=0

∏
v 6=v0

(
1 +

(
ξj deg v
` + · · ·+ ξ

(`−1)j deg v
`

)
Nv−(`−1)s

)

− 1

`2

`−1∑
j=0

`−1∑
k=1

`−1∑
r=0

ρ−rk deg v0
`

∏
v 6=v0

(
1 + (ξj deg v

` χv,`(v0)k + · · ·+ ξ
(`−1)j deg v
` χv,`(v0)(`−1)k)Nv−(`−1)s

)
.

The main term is given by

(`− 1)

`
FU(s) =

(`− 1)

`

(
1

1 + (`− 1)Nv
−(`−1)s
0

A(s) +
`− 1

1 + b(v0)Nv
−(`−1)s
0

B(s)

)
.

The proof proceeds exactly as in the split case. In particular, this proves that

N(Z/`Z, n, v0, inert) = (`− 1)N(Z/`Z, n, v0, split) +O
(
q(1/2+ε)n

)
.

This concludes the proof of the Proposition 4.2. �

We are now ready to prove a more general statement.

Theorem 4.3. Let VR,VS,VI be three finite and disjoint sets of places of K. Let

N(Z/`Z, n;VR,VS,VI)

be the number of extensions of Fq(X) with Galois group Z/`Z such that the degree of the
conductor is n, and which are ramified at the places of VR, (completely) split at the places of
VS and inert at the places of VI . Let V = VR ∪ VS ∪ VI . Then,

N(Z/`Z, n;VR,VS,VI) = C`

(∏
v∈V

cv

)
qnPVR,VS ,VI (n) +O

(
q(

1
2

+ε)n
)

N(Z/`Z, n;VR,VS,VI)
N(Z/`Z, n)

=

(∏
v∈V

cv

)(
1 +O

(
1

n

))
,

where PVR,VS ,VI (X) ∈ R[X] is a monic polynomial of degree `− 2 and C` is given by

C` =
(1− q−2)`−1

(`− 2)!

`−2∏
j=1

∏
v∈VK

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
.
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In addition,

cv0 =



(`− 1)q− deg v0

1 + (`− 1)q− deg v0
if v0 ∈ VR,

1

`(1 + (`− 1)q− deg v0)
if v0 ∈ VS,

`− 1

`(1 + (`− 1)q− deg v0)
if v0 ∈ VI .

Proof. Let VU = VS ∪ VI .
We first construct the Dirichlet generating series with prescibed conditions for VR, VU ,

and VS = {v1, . . . , vn} ⊂ VU . In other words, for the elements v ∈ VI we will only prescribe
that they are in VU and we will ignore the inert condition for the moment. We claim that
the generating series is then

FVR,VS⊂VU (s)

=
1

`n+1

`−1∑
j=0

`−1∑
k1=0

· · ·
`−1∑
kn=0

`−1∑
r=0

ρ
−r

∑n
h=1 kh deg vh

`

×
∏

v 6∈VR∪VU

(
1 +

(
ξj deg v
`

n∏
h=1

χv,`(vh)
kh + · · ·+ ξ

(`−1)j deg v
`

n∏
h=1

χv,`(vh)
(`−1)kh

)
Nv−(`−1)s

)
×
∏
v∈VR

(
ξj deg v
` + · · ·+ ξ

(`−1)j deg v
`

)
Nv−(`−1)s.

Let us check that the formula above is correct. We want to count the maps φ with parameters
({rv} , r) which are ramified at the primes of VR, unramified at the primes of VU and split
at the primes of VS. Assume that we have 0 < rv ≤ `− 1 for all v ∈ VR, and rv = 0 for all
primes of VU . For each fixed j, k1, . . . , kn, the map φ with parameters ({rv} , r) corresponds
to the component( ∏

v 6∈VR∪VU

ρ
−r

∑n
h=1 kh deg vh

` ξjrv deg v
`

n∏
h=1

χv,`(vh)
rvkh

)
×

(∏
v∈VR

ξrvj deg v
`

)
×N(Cond(φ))−(`−1)s

of the Euler product. Summing over all j, k1, . . . , kn, we get that the coefficient ofN(Cond(φ))−(`−1)s

is given by(
`−1∑
k1=0

ρ−rk1 deg v1
`

∏
v

χv,`(v1)rvk1

)
× · · · ×

(
`−1∑
kn=0

ρ−rkn deg vn
`

∏
v

χv,`(vn)rvkn

)

×

(
`−1∑
j=0

ξ
j
∑
v|Cond(φ) rv deg v

`

)

=

{
`n+1 if

∑
v|Cond(φ) rv deg v ≡ 0 (mod `) and φ is split at v1, . . . , vn,

0 otherwise.

We now write the generating series as FVR,VS⊂VU (s) = F1
VR,VS⊂VU (s)+F2

VR,VS⊂VU (s), where
the first series contributes to the main term and the second to the error term. Taking
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(k1, . . . , kn) = (0, . . . , 0) in FVR,VS⊂VU (s), we have

F1
VR,VS⊂VU (s) =

1

`n

(∏
v∈VR

(`− 1)Nv−(`−1)s

1 + (`− 1)Nv−(`−1)s

∏
v∈VU

1

1 + (`− 1)Nv−(`−1)s
A(s)

+(`− 1)
∏
v∈VR

b(v)Nv−(`−1)s

1 + b(v)Nv−(`−1)s

∏
v∈VU

1

1 + b(v)Nv−(`−1)s
B(s)

)
,

where as usual j = 0 gives the function A(s) defined by (13) and the other values of j give
`− 1 copies of the function B(s) defined by (14).

Taking (k1, . . . , kn) 6= (0, . . . , 0) in FVR,VS⊂VU (s), we have

F2
VR,VS⊂VU (s) =

1

`n+1

`−1∑
j=0

`−1∑
k1,...,kn=0

(k1,...,kn)6=(0,...,0)

G(s) Mj,k1,...,kn(s;VR,VS,VU)

where

G(s) =
`−1∑
r=0

ρ
−r

∑n
h=1 kh deg vh

`

∏
v∈VR

(
ξj deg v
` + · · ·+ ξ

(`−1)j deg v
`

)
Nv−(`−1)s

is analytic for all s ∈ C, and where for each fixed vector (k1, . . . , kn) 6= (0, . . . , 0), and for
each 0 ≤ j ≤ `− 1, we have that

Mj,k1,...,kn(s;VR,VS,VU)

=
∏

v 6∈VR∪VU

(
1 +

(
ξj deg v
`

n∏
h=1

χv,`(vh)
kh + · · ·+ ξ

(`−1)j deg v
`

n∏
h=1

χv,`(vh)
(`−1)kh

)
Nv−(`−1)s

)
.

Let N ′(Z/`Z, n;VR,VS,VI) be the number of extensions where the degree of the conductor
is n and with the prescribed ramification conditions at the primes of VR and VS, and unram-
ified at the primes of VI , i.e. the extensions counted by the generating series FVR,VS⊂VU (s)
above. By Theorem 2.1, and Lemmas 3.2 and 3.3,

N ′(Z/`Z, n;VR,VS,VI) =

− 1

`n

(
Resu=q−1

∏
v∈VR

(`− 1)udeg v

1 + (`− 1)udeg v

∏
v∈VU

1

1 + (`− 1)udeg v

A(u)

un+1

+(`− 1)
`−1∑
j=1

Resu=(ξj`q)
−1

∏
v∈VR

b(v)udeg v

1 + b(v)udeg v

∏
v∈VU

1

1 + b(v)udeg v

B(u)

un+1

)
+O

(
q(1/2+ε)n

)
.

As before, the residue involving the function A(u) yields qn times a polynomial in n of
degree `−2, and the residues of B(u) are O(qn), so they contribute to the constant coefficient
of the polynomial, and not to the main term. The main term when n tends to infinity is
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then given by the leading term of the polynomial which is

− 1

`n

(
Resu=q−1

∏
v∈VR

(`− 1)udeg v

1 + (`− 1)udeg v

∏
v∈VU

1

1 + (`− 1)udeg v

A(u)

un+1

)

=
1

`n

∏
v∈VR

(`− 1)q− deg v

1 + (`− 1)q− deg v

∏
v∈VU

1

1 + (`− 1)q− deg v
C`q

nn`−2.(20)

We now proceed to add the conditions at the primes of VI = VU \ VS. Using inclusion-
exclusion, it is easy to see that

N(Z/`Z, n;VR,VS,VI) =
∑
ṼI⊂VI

(−1)|ṼI |N ′(Z/`Z, n;VR,VS ∪ ṼI ,VI \ ṼI).(21)

We can rewrite this in terms of generating series. Let FVR,VS ,VI (s) be the generating series
for the extensions counted by N(Z/`Z, n;VR,VS,VI). Then, it follows from (21) that

FVR,VS ,VI (s) =
∑
ṼI⊂VI

(−1)|ṼI |FVR,VS∪ṼI⊂VU (s)

=
∑
ṼI⊂VI

(−1)|ṼI |
(
F1
VR,VS∪ṼI⊂VU

(s) + F2
VR,VS∪ṼI⊂VU

(s)
)
,

and the main term will be given by the sum of the poles of the generating series F1
VR,VS∪ṼI⊂VU

(s).

Using (20), this is given by

C`q
nn`−2

∑
ṼI⊂VI

(−1)|ṼI |

`|VS |∪|ṼI |

∏
v∈VR

(`− 1)q−deg v

1 + (`− 1)q− deg v

∏
v∈VU

1

1 + (`− 1)q−deg v


= C`q

nn`−2

(
1

`

)|VS |(`− 1

`

)|VI | ∏
v∈VR

(`− 1)q− deg v

1 + (`− 1)q− deg v

∏
v∈VU

1

1 + (`− 1)q−deg v

= C`

( ∏
v∈VR∪VS∪VI

cv

)
qnn`−2,

where the cv are as in Theorem 4.3.
Dividing the last line by (15) completes the proof of the statement. �

4.1. Quadratic extensions. We now look specifically at the case ` = 2 as we obtain the
number of quadratic extensions of K with conductor n with no error term, and the ramified
case with a better error term without using the Tauberian theorem. The generating function
F becomes

F(s) = 2 +
∑

Gal(L/K)∼=Z/2Z

D(L/K)−s =
∏
v

(
1 +Nv−s

)
+
∏
v

(
1 + (−1)deg vNv−s

)
.

26



In this case,

A(s) =
∏
v

(
1 +Nv−s

)
=
∏
v

(1−Nv−2s)

(1−Nv−s)

=
ζK(s)

ζK(2s)
=

(1− q1−2s)(1 + q−s)

1− q1−s .

After making the change of variables u = q−s, we obtain

A(u) :=
(1− qu2)(1 + u)

1− qu
.

Analogously,

B(s) =
∏
v

(
1 + (−1)deg vNv−s

)
=

(1− q1−2s)(1− q−s)
1 + q1−s

which equals A(−u) after the change of variables u = q−s. Then,

F (u) = A(u) + A(−u)

= (1− qu2)

(
1 + u

1− qu
+

1− u
1 + qu

)
.

By identifying the coefficients in the power series expansion in u of the above rational
function for n > 0 with the coefficients of

2 +
∞∑
n=1

N(Z/2Z, n)un,

we finally obtain that

N(Z/2Z, n) =


(1 + (−1)n) (qn − qn−2) n ≥ 3

2q2 n = 2

0 n = 1

=


2(qn − qn−2) n > 2, n even,

2q2 n = 2,

0 n odd.

(22)

Remark 4.4. Recall that the number of square-free monic polynomials of degree d > 1 is
qd − qd−1. In this case, we are counting twice the number of square-free monic polynomials.
The counting happens twice since every monic square-free polynomial f gives two quadratic
extensions corresponding to K(

√
f ) and K(

√
βf ) where β is a non-square in F×q .

We now proceed to the ramified case.

FR(u) =
udeg v0

1 + udeg v0
A(u) +

(−u)deg v0

1 + (−u)deg v0
A(−u)

= (1− qu2)

(
udeg v0(1 + u)

(1 + udeg v0)(1− qu)
+

(−u)deg v0(1− u)

(1 + (−u)deg v0)(1 + qu)

)
.
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We have

A(u) = (1− qu2)
1 + u

1− qu

= 1 + (q + 1)u+ q2u2 +
∞∑
n=3

(qn − qn−2)un.

Thus,

udeg v0

1 + udeg v0
A(u) =

(
∞∑
k=1

(−1)k−1uk deg v0

)(
1 + (q + 1)u+ q2u2 +

∞∑
n=3

(qn − qn−2)un

)

=
∞∑
k=1

(−1)k−1uk deg v0 + (q + 1)
∞∑
k=1

(−1)k−1uk deg v0+1 + q2

∞∑
k=1

(−1)k−1uk deg v0+2

+
∞∑
k=1

∞∑
n=3

(−1)k−1(qn − qn−2)uk deg v0+n

=
∞∑
k=1

(−1)k−1uk deg v0 + (q + 1)
∞∑
k=1

(−1)k−1uk deg v0+1 + q2

∞∑
k=1

(−1)k−1uk deg v0+2

+
∞∑

m=3+deg v0

b m−3
deg v0

c∑
k=1

(−1)k−1(qm−k deg v0 − qm−k deg v0−2)um

=
∞∑

m=3+deg v0

1− q−2

1 + q− deg v0
qm−deg v0um +Oq(1)

∞∑
m=deg v0

um.

By identifying the coefficients of FR(u) with the power series
∞∑
n=1

N(Z/2Z, n, v0, ramified)un,

we obtain,

N(Z/2Z, n, v0, ramified) =
(1− q−2)

1 + q− deg v0
qn−deg v0 +Oq(1).

5. Distribution of the number of points on covers

We explain in this section how the results of this paper apply to the distribution for the
number of Fq-points on covers C on the moduli space Hg,`.

Consider an `-cyclic cover C → P1 defined over Fq and let L be the function field of
C. As mentioned in Section 2.2 the genus gC of the cover C is related to the discriminant
Disc(L/K) via

2gC = (`− 1) [−2 + 2 Disc(L/K)] ,

which implies

n =
2gC
`− 1

+ 2,(23)

where n is the degree of Cond(L/K).
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Recall that the zeta function of a curve C is given by

(24) ZC(u) = exp

(
∞∑
n=1

#C(Fqn)
un

n

)
.

Moreover,

ZL(u) = ZC(u)

with the usual identification u = q−s.
We recall that VK is the set of places of K. Suppose that L/K is a Galois extension. We

can write

ZL(u) =
∏
v∈VK

(
1− uf(v) deg v

)−r(v)
,(25)

where for each prime v, we denote by e(v), f(v), r(v) the ramification degree, the inertia
degree and the number of primes of L above v respectively.

Taking logarithm on both sides of the equality ZC(u) = ZL(u) using (24) and (25), we get

∞∑
n=0

#C(Fqn)
un

n
=
∑
v∈VK

∞∑
m=1

r(v)
umf(v) deg v

m
.

Equating the coefficients of un on both sides gives

#C(Fqn) =
∑
v∈VK

f(v) deg v|n

r(v)f(v) deg v.(26)

Note that formula (25) implies that the fiber above an Fq-point of P1 that corresponds to
the place v of degree 1 of K contains

` distinct Fq-points, if v splits completely,

1 Fq-point, if v ramifies,

0 Fq-points, if v is inert.

More generally, a place v of K corresponds to a Galois orbit of rational points of the same
degree of P1. The fiber above each point in the orbit contains

` distinct points of degree deg v if v splits completely,

1 point of degree deg v if v ramifies,

1 point of degree ` deg v if v is inert.

To get the distribution of #C(Fq) over Hg,`, we use the relative densities

N(Z/`Z, 2g
`−1

+ 2;VR,VS,VI)
N(Z/`Z, 2g

`−1
+ 2)

where we take the sets VR,VS,VI to be mutually disjoint, and such that VR ∪ VS ∪ VI is a
subset of the set of primes of degree 1 in VK .

29



Then, using (26) with n = 1 and Theorem 1.1, we get

|{C ∈ Hg,`(Fq) : #C(Fq) = m}|
|Hg,`(Fq)|

=
∑

`|VS |+|VR|=m

N(Z/`Z, 2g
`−1

+ 2;VR,VS,VI)
N(Z/`Z, 2g

`−1
+ 2)

∼
∑

`|VS |+|VR|=m

(
`− 1

q + `− 1

)|VR|( q

`(q + `− 1)

)|VS |( (`− 1)q

`(q + `− 1)

)q+1−|VR|−|VR|

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are the random variables of Theorem 1.3.

5.1. Affine models. We compare the results of this paper with the results of [BDFL10]
concerning the irreducible components H(d1,...,d`) of Hg,`. To describe those components, we
write the covers concretely in terms of affine models. Each such cover has an affine model
of the form

(27) C : Y ` = f(X) = βf1f
2
2 · · · f `−1

`−1

where the fi ∈ Fq[X] are monic, square-free, and coprime in pairs, of degrees d1, . . . , d`−1. The
degree of the conductor depends on the degrees d1, . . . , d`−1 and whether there is ramification
at the infinite place. The ramification at the infinite place is determined by whether the total
degree of the polynomial is divisible by `. When d1 + · · ·+ (`−1)d`−1 is a multiple of `, then
the cover does not ramify at infinity, otherwise there is ramification at infinity. In the first
case the degree of the conductor is d1+· · ·+d`−1 and in the second case it is d1+· · ·+d`−1+1.

By the Riemann-Hurwitz formula the genus of this cover is given by

gC = (`− 1)(d1 + · · ·+ d`−1 − 2)/2 = (`− 1)(n− 2)/2

in the first case, and

gC = (`− 1)(d1 + · · ·+ d`−1 − 1)/2 = (`− 1)(n− 2)/2,

in the second. Either way, we recover the relation (23) between the genus g and the degree
of the conductor n.

For a given conductor, each β ∈ F×q /(F×q )` yields a different cover given by formula (27).

That is, there is one such extension for each element of F×q /(F×q )`. Using the notation from
[BDFL10], we define

F(d1,...,d`−1) = {(f1, . . . , f`−1) : fi monic, square-free, pairwise coprime, deg fi = di, i = 1, . . . , `−1}.

Formula (3.1) of [BDFL10] says that

|F(d1,...,d`−1)| =
L`−2q

d1+···+d`−1

ζq(2)`−1

(
1 +O

(
`−1∑
h=2

qε(dh+···+d`−1)−dh + q−d1/2

))
,(28)
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where

L`−2 =
`−2∏
j=1

∏
v 6=∞

(
1− jq−2 deg v

(1 + q− deg v)(1 + jq− deg v)

)
.

The formula above may be rewritten as

|F(d1,...,d`−1)| =
(`− 2)!C`q

d1+···+d`−1

(1 + (`− 1)q−1)

(
1 +O

(
`−1∑
h=2

qε(dh+···+d`−1)−dh + q−d1/2

))
.

Now suppose that we want to count the number of covers of genus g. For a conductor
f1f

2
2 · · · f `−1

`−1 , there are ` different covers according to the class of leading coefficient as an

element of F×q /(F×q )`. Thus, we can write

(29) |Hg,`(Fq)| =
∑

d1+···+d`−1=2(g+2)/(`−1)
d1+···+(`−1)d`−1≡0 mod `

`|F[d1,...,d`−1]|,

where, for d1 + · · ·+ (`− 1)d`−1 ≡ 0 (mod `),

F[d1,...,d`−1] = F(d1,...,d`−1) ∪
`−1⋃
j=1

F(d1,...,dj−1,...,d`−1).

This gives

|Hg,`(Fq)| = (`− 2)!C`q
n

∑
d1+···+d`−1=n

d1+···+(`−1)d`−1≡0 mod `

`+ ET

= C`n
`−2qn + ET,

where ET denotes an error term and in the last line, we used that the number of solutions

of d1 + · · ·+ d`−1 = n is given by
(
n+`−2

n

)
∼ n`−2

(`−2)!
.

Then, the result of Theorem 4.1 is compatible with the result of Theorem 3.1 from
[BDFL10], in the sense that the summing the main terms of (28) gives the number of ele-
ments of Hg,` as computed with the techniques of this paper, even if the error terms coming
from (28) are only valid when d1, . . . , d`−1 →∞.
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Matilde Laĺın: Département de mathématiques et de statistique, Université de Montréal.
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