Let G be a compact Lie group acting on a topological space M. For the topologists, the equivariant cohomology of M is defined to be the ordinary cohomology of the space $(M \times E)/G$, where E is any contractible topological space on which G acts freely. (This definition does not depend on the choice of E.)

The notion of equivariant cohomology plays an important role in symplectic geometry, algebraic geometry, representation theory and other areas of mathematics.

If M is a finite-dimensional manifold there is an alternative way of defining the equivariant cohomology groups of M involving de Rham theory.

We will prove the Berline-Vergne localization formula (which is a generalization of the Duistermaat-Heckman Theorem) expressing integrals of equivariant forms as sums over fixed points.

Other topics in class may include equivariant vector bundles and equivariant characteristic classes, Goresky-Kottwitz-MacPherson Theorem (GKM Theory), Guillemin-Sternberg supersymmetry formalism and a proof that the twisted de Rham complex indeed computes equivariant cohomology.

References

