UNIQUENESS OF CONFORMAL MEASURES AND LOCAL
MIXING FOR ANOSOV GROUPS

SAM EDWARDS, MINJU LEE, AND HEE OH

ABSTRACT. In the late seventies, Sullivan showed that for a convex
cocompact subgroup I' of SO°(n,1) with critical exponent 6 > 0, any
I'-conformal measure on OH" of dimension § is necessarily supported on
the limit set A and that the conformal measure of dimension § exists
uniquely. We prove an analogue of this theorem for any Zariski dense
Anosov subgroup I' of a connected semisimple real algebraic group G of
rank at most 3. We also obtain the local mixing for generalized BMS
measures on I'\@ including Haar measures.

Dedicated to Gopal Prasad on the occasion of his 75th birthday with respect

1. INTRODUCTION

Let (X,d) be a Riemannian symmetric space of rank one and 90X the
geometric boundary of X. Let G = Isom™ X denote the group of orientation
preserving isometries and I' < G a non-elementary discrete subgroup. Fixing
o € X, a Borel probability measure v on X is called a I'-conformal measure
of dimension s > 0 if for all v € T" and £ € 90X,

drysv
dv
where f¢(z,y) = lim,_,¢ d(z, 2) — d(y, z) denotes the Busemann function.

Let § > 0 denote the critical exponent of I', i.e., the abscissa of the conver-
gence of the Poincare series Zyer e—#4(100) " The well-known construction
of Patterson and Sullivan ([9], [I3]) provides a I'-conformal measure of di-
mension § supported on the limit set A, called the Patterson-Sullivan (PS)
measure. A discrete subgroup I' < G is called convex cocompact if T acts
cocompactly on some nonempty convex subset of X.

(&) = e*Pe(00)

Theorem 1.1 (Sullivan). [13] IfT is convex cocompact, then any I'-conformal
measure on 0X of dimension § is necessarily supported on A. Moreover, the
PS-measure is the unique I'-conformal measure of dimension 4.

In this paper, we extend this result to Anosov subgroups, which may be
regarded as higher rank analogues of convex cocompact subgroups of rank
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one groups. Let G be a connected semisimple real algebraic group and P
a minimal parabolic subgroup of G. Let F := G/P be the Furstenberg
boundary, and F? the unique open G-orbit in F x F under the diagonal
action of G. In the whole paper, we let " be a Zariski dense Anosov subgroup
of G with respect to P. This means that there exists a representation
® : 3 — G of a Gromov hyperbolic group ¥ with I' = ®(X), which induces
a continuous equivariant map ¢ from the Gromov boundary 9% to F such
that (C(x),¢(y)) € FP for all z # y € 9X. This definition is due to
Guichard-Wienhard [5], generalizing that of Labourie [6].

Let A < P be a maximal real split torus of G and a := Lie(A). Given a
linear form ¢ € a*, a Borel probability measure v on F is called a (T',)-
conformal measure if, for any v € I" and £ € F,

drysv
dv
where 3 denotes the a-valued Busemann function (see for the defini-
tion). Let A C F denote the limit set of I', which is the unique I'-minimal
subset (see [1], [7]). A (T',%)-conformal measure supported on A will be
called a (I",1)-PS measure. Finally, a I'-PS measure means a (I',)-PS
measure for some 1 € a*.

Fix a positive Weyl chamber a™ C a and let L1 C a™ denote the limit cone
of I'. Benoist [I] showed that Lr is a convex cone with non-empty interior,
using the well-known theorem of Prasad [10] on the existence of an R-regular
element in any Zariski dense subgroup of G. Let ¢r : a - RU{—00} denote
the growth indicator function of I' as defined in . Set

Fo={y €a* 1 >r, ¥(u) =Yr(u) for some u € Lr Ninta™}. (1.3)

As I'is Anosov, for any ¢ € Df, there exist a unique unit vector v € int Lr,
such that ¢(u) = ¥r(u), and a unique (I",1)-PS measure v,;,. Moreover, this
gives bijections among

Df ~{u € int Ly : ||ul]| = 1} ~ {T-PS measures on A}
(see [4], [7]). When G has rank one, Dj = {d}. Therefore the following

generalizes Sullivan’s theorem We denote the real rank of G by rank G,
i.e., rank G = dima.

(é) — ew(ﬁ{(eﬁ)) (12)

Theorem 1.4. Let rank G < 3. For any ¢ € Dy, any (T',v)-conformal
measure on F is necessarily supported on A. Moreover, the PS measure vy,
is the unique (I',v)-conformal measure on F.

Our proof of Theorem is obtained by combining the rank dichotomy
theorem established by Burger, Landesberg, Lee, and Oh [2] and the local
mixing property of a generalized Bowen-Margulis-Sullivan measure (Theo-
rem , which generalizes our earlier work [4]. Indeed, our proof yields
that under the hypothesis of Theorem any (I',1)-conformal measure
on F is supported on the u-directional radial limit set A, (see (1.3)) where

P(u) = ¢r(w).
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We end the introduction by the following:
Open problem: Is Theorem [I.4] true without the hypothesis rank G' < 37

2. LOCAL MIXING OF GENERALIZED BOWEN-MARGULIS-SULLIVAN
MEASURES

Let G be a connected semisimple real algebraic group and I' < G a Zariski
dense discrete subgroup. Let P = M AN be a minimal parabolic subgroup
of G with fixed Langlands decomposition so that A is a maximal real split
torus, M is the centralizer of A and N is the unipotent radical of P.

In [4, Prop. 6.8], we proved that local mixing of a BMS-measure on
I'\G/M implies local mixing of the Haar measure on I'\G/M. In this section,
we provide a generalized version of this statement, where we replace the Haar
measure by any generalized BMS-measure and also work on the space I'\G,
rather than on I'\G/M. We refer to [4] for a more detailed description of a
generalized BMS-measure, while only briefly recalling its definition here.

Let a = Lie(A4) and fix a positive Weyl chamber a™ < a so that log N
consists of positive root subspaces. We also fix a maximal compact subgroup
K < G so that the Cartan decomposition G = K (expa™)K holds. Denote
by p: G — a* the Cartan projection, i.e., for g € G, u(g) € a* is the unique
element such that g € K exp u(g)K. Denote by Lr C a® the limit cone of
', which is the asymptotic cone of u(T), i.e., Lr = {limt;u(y;) € a® : t; —
0,v; € I'}. The Furstenberg boundary F = G/P is isomorphic to K/M as
K acts on F transitively with K N P = M.

The a-valued Busemann function 3 : F X G X G — a is defined as follows:
for £ € F and g, h € G,

Be(g.h) = 0(g™",€) —a(h™,€) (2.1)

where the Iwasawa cocycle o(g~!,€) € a is defined by the relation g~k €
Kexp(a(g~t€)N for € = kP, k€ K.

The growth indicator function ¢r : at — R U {—oco} is defined as a
homogeneous function, i.e., ¥r(tu) = tipr(u) for all ¢ > 0, such that for any
unit vector u € a™,

Yr(u) = inf TC (2.2)

u€C,open cones CCat

where 7¢ is the abscissa of convergence of Zv (v)ee e~ UM and the norm

elu
|| - || on a is the one induced from the Killing form on g.

Denote by wg € K a representative of the unique element of the Weyl
group Nk (A)/M such that Ad,,at = —a™. The opposition involution

i:a— ais defined by
i(u) = — Ady, (u).

Note that i preserves int Lr.
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The generalized BMS-measures m,, ,,. For ¢ € G, we consider the
following visual images:

gt =gPcF and g =guwyP € F.

Then the map
gM = (g+7gi7b = Bg* (679))

gives a homeomorphism G/M ~ F (2) % a, called the Hopf parametrization
of G/M.

For a pair of linear forms 1, ¢9 € a* and a pair of (I', ¢1) and (T, ¢2) con-
formal measures v and v, respectively, define a locally finite Borel measure
My 1y 00 G/M as follows: for g = (g%, 97,b) € F? x a,

ity 1y (g) = V1 B+ (€:9))+v2(B,— (e.9)) dvy (g7)dvs (g™ )db, (2.3)

where db = dl(b) is the Lebesgue measure on a. By abuse of notation, we
also denote by m,, ., the M-invariant measure on G induced by m,, ,,. This
is always left I'-invariant and we denote by m,, ,, the M-invariant measure
on I'\G induced by 1y, u,.

*

The generalized BMS*-measures m;, .

parametrization

Similarly, with a different Hopf

gM = (nga g b= /Bg+ (67 g))
(that is, g~ replaced by g* in the subscript for 3), we define the following
measure

din®. . (9) = V1 B+ (€,9))+42(8,- (e.9)) dvy (g+)dva(g™)db (2.4)

vi,V2

first on G/M and then the M-invariant measure dm;, ,, on I'\G. One can
check

mﬁlw = My 1, - WO. (2.5)

Lemma 2.6. If 1o =11 01, then my, v, =my, ,,.

Proof. When 13 = 11 oi, we can check that m,, ,,.wo = my, ,, which

implies the claim by (2.5)). O
PS-measures on gN*. Let N~ = N and Nt = wonal. To a given

(T', ¢)-conformal measure v and g € G, we define the following associated
measures on gN*: forn € Nt and h € N™,

dptgn+ o (n) = " P ay ((gn)*), and
dptgn- o (h) = e Carr= I dy((gh) ).

Note that these are left I'-invariant; for any v € I' and g € G, pgn+, =
pgn= .- For a given Borel subset X C I'\G, define the measure pign+ ,|x on
NT by

dpgn+ vl x (n) = Lx ([g]n) dpgn+ , (n);
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note that here the notation |x is purely symbolic, as pgn+,|x is not a
measure on X. Set P* := MAN*. Fore > 0and x=N,N*t, A, M, let
denote the e-neighborhood of e in x. We then set P¥ = NFA_M..
We recall the following lemmas from [4]:
Lemma 2.7. [4, Lem. 5.6, Cor. 5.7] We have:
(1) For any fized p € Co(N*) and g € G, the map NT — R given by
n = flgnnt o, (p) 08 continuous.

(2) Given € > 0 and g € G, there exist R > 1 and a non-negative
pg.e € Ce(NR) such that pgnn . (pge) > 0 for alln € NF.

Lemma 2.8. [4, Lem. 4.2] For any g € G, a € A, ng,n € NT, we have
d(0;1N9N+,V)(n) = eiw(loga)d:uganoN*,u(n%
where § : NT — N7 is given by 0(n) = angna™".

Lemma 2.9. [4, Lem. 4.4 and 4.5 For i = 1,2, let ¥; € a* and v; a
(T, 4)-conformal measure. Then

(1) For ge G, f € C.(¢gN*P), and nham € NTNAM,

M (f) =

/ (/ f(gnham)et™ =020 din da dpign.., <h>> Qg+, ().
N+ \JNAM
(2) Forge G, f € C.(¢gPN™), and hamn € NAMNT,

mlil,l/z (f) =

/ ( N f(ghamn) d/"ghumN*,m (n)) e—wgoi(log %) dmda d/’LgN,VQ (h)
NAM N

Local mixing. Let P° denote the identity component of P and )r denote
the set of all P°-minimal subsets of I'\G. While there exists a unique P-
minimal subset of T\G given by {[g] € T'\G : g7 € A}, there may be more
than one P°-minimal subset. Note that #9r < [P : P°] = [M : M°]. Set
Q={[g] €T\G : g* € A} and write

3Ir={YNnQcI\G:Y eYr}.

Note that for each Y € QYr, we have Y = (Y N Q)N and the collection
{YNQ)NT : Y € Yr} is in one-to-one correspondence with the set of
(M°AN™)-minimal subsets of T'\G.

In the rest of the section, we fix a unit vector v € Lr Ninta™, and set
a; = exp(tu) for t € R.

We also fix
Y1 €a*  and Yy :=1Yroi€a’.
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For each i = 1,2, we fix a (I", ¢;)-PS measure v; on F. We will assume that
the associated BMS-measure m = m,, ,, satisfies the local mixing property
for the {a; : t € R}-action in the following sense:

Hypothesis on m = m,, ,,: there exists a proper continuous function

U : (0,00) — (0,00) such that for all fi, fa € C.(I'\G),

Jim (o) [ i@ R an@) = 3 mlz()mla(r). - (210)

ZE3r

The main goal in this section is to obtain the following local mixing prop-
erty for a generalized BMS-measure my, , from that of m (note that A\; and
A2 are not assumed to be supported on A):

Theorem 2.11. For i = 1,2, let ¢; € a* and \; be a (I, p;)-conformal
measure on F. Then for all fi, fo € C.(I'\G), we have

: (p1—1p1)(tu) *
i U(t)e G fi(zar) fo(z) dmy, 5, (2)

= > mawlzne (f1)mh, 3, lzn (f2)-

ZE3r

Remark 2.12. If 2 = ¢ 0i, we may replace mjh)\Q by my, », in Theorem

by Lemma For general @1, p2, we get, using the identity (2.5)): for
all fi1, fa € C.(I'\G), we have

lim W(t)elPr—v1)tw) fi(za—t) f2(x) dmx, z, (2)
t——+o0 NG

- Z My, |l znt (1) Mg |z (f2)-

Z€E3r

In order to prove Theorem [2.11] we first deduce equidistribution of trans-
lates of pyn+ ., from the local mixing property of m (Proposition [2.13), and
then convert this into equidistribution of translates of p4n+ 5, (Proposition
2.17)).

Proposition 2.13. For anyz = [g] € \G, f € C.(T'\G), and ¢ € C.(N™1),

lim W(t) f (znay)d(n) dpgn+,, (n) = Z m|z(f) tgn+ 12N (9)-
t—+o0 N+ =

(2.14)

Proof. Let @ = [g], and &9 > 0 be such that ¢ € C.(NZ). For simplicity of
notation, we write dy,, = dp,n+,, throughout the proof. By Lemma
we can choose R > 0 and a nonnegative pg., € C.(Ng) such that

/J/gnN,I/Q (pg7go) > O fOI‘ all n e N;(_)'
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Given any € > 0, choose a non-negative function ¢. € C.(A:M.) satisfying
fAM ge(am)dadm = 1. Then

f(znag)(n) dp, (n) = (2.15)
N+

- f(znay)o(n) (W /NA Pg.eo(P)ge(am) da dm djign N ., (h)) dpiy, (1)

n en (R)ge(am
= [ (L, e et dodm i 1) di o)

We now define ®. € C.(¢gNF NgA.M.) C Co(G) and @, € C.(T'\G) by

- #(n)pg,cq (h)ge (am)
D.(go) :={ HonNwa(Poco)
0 otherwise,

if gg = gnham,

and @ ([go]) == > . er ®.(vgo). Note that the continuity of ®. follows from
Lemma We now assume without loss of generality that f > 0 and
define, for all € > 0, functions fsjE as follows: for all z € T'\G,

f(z):= sup f(zb) and f7(z):= inf f(zb).

beENT P, beNS P.
Since u € inta™, for every € > 0, there exists to(R,€) > 0 such that
a; 'Nga; C N, for all t > to(R,€).
Then, as supp(®.) C gN2t NrA:M,, we have
f(zna;) @ (gnham) < f5 (xnhamaz) ®.(gnham) (2.16)

for all nham € NTNAM and t > to(R,c). We now use f; to give an
upper bound on the limit we are interested in; f;_ is used in an analogous
way to provide a lower bound. Entering the definition of ®. and the above
inequality (2.16]) into (2.15) gives

lim sup (?) /N - (enan)o(n) dya, ()

t—+o00

< limsup ¥(t)

t—+00

/ / fgg (:):nhamat)fi‘g (gnham)dm da djignN v, (R) dpw, (1)
N+ JNAM

< limsup W(t)esl¥1—v2eil / / fo (znhamay)®. (gnham)
N+ JNAM

t——+o0

e(W1—v200)(loga) g, g dpbgn N,y (R) dpty, (n)

= lim sup W(¢)esIvr—vzell /Gfgt([go]at)és(go)drﬁ(go)

t——+o0

= limsup W(¢)eslVr—v2eil /1“\G 5= ([g0]ar)®<([g0]) dm([go]),

t—+o00
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where ||-|| is the operator norm on a* and Lemma[2.9) was used in the second
to last line of the above calculation. By the standing assumption (2.10f), we
have

fimsup ¥(t) [ (anan)otn) ity ()

t——+00
Ses“%#ﬁzom Z m‘Z(fS—;)m‘Z(q)€)
Ze3r

= eIV =20ll N £ (£ 5(2e),
Z€e3r

where Z C G is a D-invariant lift of Z. Using Lemma forall 0 <e <« 1,

rﬁ|Z((i)a)

N / (/ .1 ;(gnham)et1 220008 9) dq dm dugm(h)) dpw, (n) <
N+ \JNAM

eelv—vacill [ 2lWlzylon), ( /N  Pueo(W)az(am) dadm dugnN,y2<h>) dity, (1)

N+ HgnN,vo (pg,Eo)

< eE”W*WOiHMVJZN((;ﬁ),

where we have used the facts that Z is invariant under the right translation
of identity component M° of M, and suppvs = A as well as the identity
1;(gnha) = 155(gn)1a(gnh™) (we remark that supprs = A is not neces-
sary for the upper bound as 1 ;(gnha) < 1;,(gn), but needed for the lower
bound). Since € > 0 was arbitrary, taking ¢ — 0 gives

limsup W(t) /N+ f(xznay)od(n) du,, (n) < Z m|z(f) b, | 2N ().

t——+o0 ZE3r

The lower bound given by replacing fg; with f5_ in the above calculations
completes the proof. O

Proposition 2.17. For any x = [g] € T\G, f € C.(I'\G) and ¢ € C.(NT),

t—+00

lim W (¢)elPr—vn)) /N+f(:1:nat)¢(n) dppgn+ ), (1)

= Z M s zN+ () BN+ 0 | 2N (D).
Ze3r

Proof. For g9 > 0, set B, = P, NZ. Given zg € I'\G, let o(z0) denote
the maximum number r such that the map G — I'\G given by h — xgh
for h € G is injective on B,. By using a partition of unity if necessary,
it suffices to prove that for any zp € I'\G and ¢y = ep(zg), the claims
of the proposition hold for any non-negative f € C(zoB.,), non-negative
¢ € C(NZ), and = = [g] € xoBe,. Moreover, we may assume that f is given
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as

= Zf(’yg) for all g € G,
~yel

for some non-negative f € Ce(goBe,). For simplicity of notation, we write
px, = Hgn+ .z, - Note that for z = [g] € [g0]Be,,

£(lglnar)d(n) dpx, (n Z / Fygnagd(n) dus, (n).  (2.18)

N+

Note that f(vgnat) = 0 unless ygna; € goBs,. Together with the fact that
supp(¢) C N, it follows that the summands in are non-zero only for
finitely many elements v € I' N goBeya—s N g™ "

Suppose YgNZa; N goBEO # (). Then ’ygat € goP:,NT, and there are
unique elements p; , € P-; and n¢, € N such that

Ygar = gopent € goPe NT.

Let Ty denote the subset T'N go(Pey N*)a; 'g~!. Note that although I'; may
possibly be infinite, only finitely many of the terms in the sums we consider
will be non-zero. This together with Lemma gives

Hanan)o) duny ) = 3 [ Fagnaotn) i, ()

vyel’
= Z/ F(vgau(ag 'nar))¢(n) dux, (n)
vel:
—e —p1 logat Z / f fygatn)(ﬁ(atnat )dlvbga,t]\f+ )\1( )
vel:
_ e—<p1 (log at) Z/ gopt ,ynt Vn)¢(atnat )dﬂga,N+ )\1( )
vyel:

_ e_‘Pl(IOgat Z / gopt 7n)¢(at nt ,%n at ) d/v['gopt ’YN+ )\1( )
vels

Since supp( f) C goBs,, we have

Z / gopt 7n)¢(at Ty wln ay ) dﬂgopz SN+, )\1( n)

vel's
-1 -1 -1 7
<> | sup d(arngy a; (amna; ) | - / F(90Pt ) ditgp, N+ 2, (1)-
~veTy nENJr Nt
Since u belongs to int Lr, there exist tg > 0 and « > 0 such that

athat C N;Z ot for all r > 0 and t > tg.
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Therefore, for all n € N and ¢ > to, we have

¢(at n;wlat_l(atnat_l)) < qﬁ:()e,at (at nt_wl at_l), (2.19)

where

T (n) :== sup ¢(nb) forallme NT, e > 0.
beENT

We now have the following inequality for ¢ > to:

e%(logat) f([g]nat)¢(n) d,U)q (n)
N+
<D0 wlangy at) /N o Fgopean) dugop, v oy (). (2:20)
yel'y =0

By Lemma we can now choose R > 0 and p € CC(NE) such that
p(n) > 0 for all n € N*, and pg,n+,,(p) > 0 for all p € P;. Define
F € Co(g0P:yNf) by

NgopNJr w1 (P)

0 if g & goPeyNp.

o) = {p(n) Jwe F(90pv) ditgpnvs , (v) i g = gopn € goPey NiE

We claim that for all p € P., and Z € 3r such that gop~ € A,

[ Fanmm) gyl = [ Flaom) digpy ()

Ng

:/+(fﬂZN+)(90pn)d/«LgOpN+7)\1(TZ). (2.21)

N&,
Indeed, by the assumption suppr; = A and the fact QNZNT = Z, we have
the identity 1z(gopn) dpgypn+ ., (1) = Lzn+(gop) ditgepn+ 1, (1) and hence

/ F(ggpn) dMgOpN+,V1 ’Z(n)
N+

N /N+ F(gopn)1z(gopn) dptgypn+ ., (n)

n)l F
= /N+ % (/N+ f(gop’U) d:U’gOpN*,)\l (U)) dﬂgopN+,V1 (n)

€0

- /N+ /‘qup]l\)f(f)yl (p) </N+ QFHZ]\H) (gopv) dlu’gopN*,)q (U)> dﬂgopN+,u1 (n)

€0

:/N+ (FLzn+) (90pv) dptgopn+ , (V)

€0
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Summing up (2.21)) for all Z € 31 and using suppv; = A, we get
/ F(gopn) d}ugopN‘F V1 (n)

= 30 | Plaomm) dutp 20

ZE3r

=> / (flzn+)(gopn) dptgepn+ a, (n).
ZE3r

Hence we can write

[ Faown) dugp 2, ()

Ng,

= [ Ploum) g () + [ Banpn)igpne s, ()

Ng

for some A that vanishes on | J ze3. ZNT. Returning to (2.20), we now give
an upper bound. We observe:

ewitone) [ f(lghnan)otn) oy ()

Z d):oe—at (CLt nt_vl at_l) / f(gopmn) dpy, (n)
N+

yel't €0

IN

= 3 dhpeeelonid ) [ 4B gomem) dg e ()
yel't NR

Z N+ F+h)(90pt7 )¢:e at(atntry a; )d,ugoptA,N+ yl( )

Similarly as before, we have, for all t > tq and n € N,

O et art) = 6 o (anin(n) ™ at)

qb (Rieg)e—at (ar n;;n aljl)_ (2.22)

Hence ([2.20)) is bounded above by

= Z /N+ (F + ﬁ) (gopt,’yn)qs?-R—i-so)e*at (at nl;wlfn at_l) d'ugopt,wNJr,m (n)

vel
= Z / gopt;ynt;yatilnat)¢?R+€O)e—at( )d((et 'y) Hgop,, N+, Vl)(n)
Y€

where 6; (n) = nmat_lnat. By Lemma

I
d((Gm) Hgope N, ul)(n) = ¥l Ogat)dﬂgopt,vnt,va;1N+7V1(n)'
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Since goptntya; L= ~g, it follows that for all ¢ > ¢,

elP1—91)(log ar) f([g]natm(n) dpr, (n)

< Z/ F + h ) (ygnay) ZLR+ao)e—ﬂt (n) dppygn+ 1y (1)
yel'y

< [ S+ R gnan) | G ggemnelm) dis ).

~vel
Define functions F' and h on I'\G by
=Y F(yg) and h(lg]):=) h(vg).
~er vel
Then for any € > 0 and for all ¢ > tg such that (R + eg)e™* < e,

W(t)eler—v)logar) f(lglna)d(n) dpx, (n)
N+

< 00) [P+ b)(ghna) o () dps (o)
By Proposition letting € — 0 gives

limsup\I/(t)e(‘pl_%)(logat) f([ Jnai)g(n) dpx, (n)

t—4o00
< Z m‘Z(F+h)MV1‘ZN(¢)'
Ze3r

Note that m* = m by Lemma 2.6, Now, by Lemma [2.9 and the fact
m(h) = 0, we have

m|z(F + h) = m|;(F + ) = m|;(F) = m*| ;(F
N / </ + F1, 7(gohamn) d'ugohamN+ Vl > a8 dm da dfigoN o (1)
P \JN

= /P </N+(f]lZN+)(90hamn) dfbgoham N+ A (n)) V20118 9) G da dpgy vy ()

= m)\1,V2|Z~N+ (f) = m)\lyVQ‘ZN+(f)'

This gives the desired upper bound. Note that we have used the assump-
tion suppry = A in the fourth equality above to apply (2.21]). The lower
bound can be obtained similarly, finishing the proof. O

With the help of Proposition 2.13] we are now ready to give:
Proof of Theorem [2.11] By the compactness hypothesm on the supports
of f;, we can find g9 > 0 and z; € I'\G, ¢ = 1,---,¢ such that the map
G — I'\G given by g — z;g is injective on R., = P, N, and Ule TR,/
contains both supp f; and supp fo. We use continuous partitions of unity
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to write f; and fo as finite sums f; = Zle fii and fo = Z§:1 fa,; with
supp f1,; C z;R., /2 and supp fa2,; C 2R, /0. Writing p = ham € NAM and
using Lemma [2.9]

dmj, x,(hamn) = dupamn+ (n)e V2108 ) gy da dpu y, (R).
‘We have

fi(zay) fa(x) dmj{hA2 (x) = (2.23)
NG

> / Fri(aipnay) fa.i (2;om) dpipgmn+x, (n)e 208D dm da dpy », (h)
— JR.,

:Z/ / fri(zjpnay) fo,5(xjpn) dppamn+ a, (7)
i I NegAsgMeq \J N2

x e~ ¥20i(loga) 10 1, dpn x, (h)

Applying Proposition it follows:

hm \I’ (t)e(w _wl)(log at) f]. (l’at)fZ (ﬂj) dmil A2 (QT)
t—o0 \G ’

=SS sl (i) Z/ HxipN+,V1|ZN(f2,i(l‘jp-))
j Z€E€3r o EO
_¢201(10g a) dm da d,uN,)\z (h)
Z m)\1,l/2|ZN+ fl Z/ N:vipN+7V1(f27i]lZN(xjp'))
Ze3r Mool
e~ ¥20i(loga) g 10 d,U/N,)\Q (h)
Z m)q,VQ‘ZNJr fl me A2 f2 ilzN) = Z m)\17V2|ZN+(f1)milv>‘2’ZN(fZ)
Z€E3r oo

where the second last equality is valid by Lemma [2.9, This completes the
proof. [

3. LOCAL MIXING FOR ANOSOV GROUPS

Let I' < G be a Zariski dense Anosov subgroup with respect to P. For
any u € int Lr, there exists a unique

@Z):@Z}uGDIt

such that 9 (u) = ¢¥r(u) [7, Prop. 4.4]. Let vy denote the unique (I',)-PS
measure [7, Thm. 1.3]. Similarly, vy.; denotes the unique (I',4 o i)-PS-
measure.

In this section, we deduce (r := dima):
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Theorem 3.1 (Local mixing). For i = 1,2, let ¢; € a* and \,, be any
(T, @;)-conformal measure on F. For any u € int Lp, there exists £, > 0
such that for any f1, fo € C.(T'\G), we have

Jim tr=D/2glor—vu)(tu) G fi(zexp(tu)) fo(x) dmy  »,, ()

= b D Mg, wpualzve ()M, 2n(fo)-
ZE3r
Theorem is a consequence of Theorem [2.11] since the measure m =
My, vy, Satisfies the Hypothesis by the following theorem of Chow
and Sarkar.

Theorem 3.2. [3] Let u € int L. There exists k, > 0 such that for any
f17f2 € Cc(F\G), we have

lim t(r—l)/? f1 (-75 eXp(tu))fg (‘r) dml/wu,l/d,uoi (x)

t—+00 NG
- /iu E mV¢u,unoi|Z(fl)ml/d)u,ljwquZ(fQ)'
Z€E3r

Let m, denote the K-invariant probability measure on F = G/P. Then
m, coincides with the (G,2p)-conformal measure on F where 2p denotes
the sum of positive roots for (g,a™). The corresponding BMS measure dr =
dMm, m, is a G-invariant measure on I'\G. The measure dmE® o = = dMim g y;
was defined and called the N*M-invariant Burger-Roblin measure in [4].
Similarly, the N M-invariant Burger-Roblin measure was defined as def*

In these terminologies, the following is a special case of Theorem [3.1}

Corollary 3.3 (Local mixing for the Haar measure). For any u € int Lr,
and for any f1, fo € C.(T'\G), we have

im D20 [ (g exp(tu)) fo(x) de
—400 NG

B B
=y D mp Lz () mpszn(f2)
Z€3r
where Ky, is as in Theorem [3.3.

In fact, we get the following more elaborate version of the above corollary
by combining the proof of [4, Theorem 7.12] and the proof of Corollary .

Theorem 3.4. Let u € int Lr. For any fi1, fo € C.(I'\G) and v € ker 1,

lim ¢(r=1)/22o—wu)(tutViv) f1(zexp(tu + Vtv)) fo(z)dz
t—400 G

=y e TN mPR | (f1) mp T zn (f2)

Z€E3r
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where I : kerp, — R is given by

[Vl lull — (v, u)
I(v):=c- [|u]|2 (3.5)

for some inner product (-,-). and some ¢ > 0. Moreover the left-hand sides
of the above equalities are uniformly bounded for all (t,v) € (0,00) x ker i,
with tu + /tv € at.

4. PROOF OF THEOREM [L.4]

Let I' < GG be a Zariski dense Anosov subgroup with respect to P.

The u-balanced measures. Let Q = {[g] € I'\G : g= € A}. Following [2],
given u € int Lr, we say that a locally finite Borel measure my on I'\G is
u-balanced if

fOT mo(O1 N O exp(tu)) dt
lim sup
T—+o00 fO m() 02 N Oy exp(tu)) dt

for all bounded M-invariant Borel subsets O; C T'\G with Q Nint O; # 0,
i=1,2.
As an immediate corollary of Theorem 3.1} we get

?

Corollary 4.1. Let ¢ € a*. For any pair (Ay, Apoi) of (') and (I',p 0
i)-conformal measures on F respectively, the corresponding BMS-measure
M, Apoi S u-balanced for any u € int Lr.

Proof. Let 01,0y be M-invariant Borel subsets such that Q Nint O; #
for each i = 1,2. Let fi, fo € C.(I'\G) be non-negative functions such that
fi>1on O and fo <1 on Oy and 0 outside Os. Since int O N Q # 0,
we may choose fy so that m) b Ao (fz) > 0. For simplicity, we set mg =
M, A0+ BY Theorem and using the fact that mg is A-quasi-invariant,
we obtain that for any u € int Lr,
mo(O1 N O1 exp(tu))
lim sup
t—+00 Mo(O2 N Oz exp(tu))
. J fi(z) fi(x exp(—tu)
< limsu
B t—>+oopff2 ) f2(z exp(—tu))dmo(z)
g L 123 exp(ta))dmoo)
tstoo | fa(z) fo(z exp(tu))dmo(z)
— Jim sup tr=D2ele=vu)(tu) [ 1 (2) f1 (2 exp(tu) ) dmo ()
PP F D26l 0@ [ fy(2) fo (@ expl(tw) dmo(a)
. m>\<p,unoi(fl)

m;ﬁu Agpoi (f2)

de(IE)

)
)

This shows that mg is u-balanced. Ul

Recall Theorem [I.4] from the introduction:
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Theorem 4.2. Let rankG < 3. For any ¢ € Dy, any (I',%)-conformal
measure on F is necessarily supported on A. Moreover, the PS measure vy,
is the unique (I',v)-conformal measure on F.

Proof. Let u € int L1 denote the unique unit vector such that ¢ (u) = ¥r(u),
that is, 1) = v,. Let Ay be any (I',1))-conformal measure on F. We claim
that Ay is supported on A. The main ingredient is the higher rank Hopf-
Tsuji-Sullivan dichotomy established in [2]. The main point is that all seven
conditions of Theorem 1.4 of [2] are equivalent to each other for Anosov
groups and u € int Lr, since all the measures considered there are u-balanced
by Corollary In this proof, we only need the equivalence of (6) and (7),
which we now recall.
Consider the following u-directional conical limit set of I':

Ay = {g" € A: v;exp(t;u) is bounded for some t; — 400 and v; € I'}.
(4.3)
Note that A, C A. For R > 0, we set I', g := {y € I" : ||u(v) — Ru|| < R}.
Applying the dichotomy [2, Thm. 1.4] to a u-balanced measure m) Vs W
deduce

Proposition 4.4. The following conditions are equivalent for Ay :

(1) Ap(Ay) =1;
(2) 2 oer, n e~ V) = oo for some R > 0.

On the other hand, if rank G < 3, we have

T ) — o

'Yeru,R

for some R > 0 [2, Thm. 6.3]. Therefore, by Proposition we have
Ay(Ay) = 1 and hence Ay is supported on A in this case. This finishes the
proof of the first part of Theorem The second claim follows from the
first one by [7, Thm. 1.3]. O
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