ERGODIC DECOMPOSITIONS OF GEOMETRIC
MEASURES ON ANOSOV HOMOGENEOUS SPACES.

MINJU LEE AND HEE OH

ABSTRACT. Let G be a connected semisimple real algebraic group and
I' a Zariski dense Anosov subgroup of G with respect to a minimal
parabolic subgroup P. Let N be the maximal horospherical subgroup
of G given by the unipotent radical of P. We describe the N-ergodic
decompositions of all Burger-Roblin measures as well as the A-ergodic
decompositions of all Bowen-Margulis-Sullivan measures on I'\G. As
a consequence, we obtain the following refinement of the main result
of [17]: the space of all non-trivial N-invariant ergodic and P°-quasi-
invariant Radon measures on I'\G, up to constant multiples, is homeo-
morphic to R =1 x {1 ... k) where k is the number of P°-minimal
subsets in I'\G.
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1. INTRODUCTION

Let G be a connected semisimple real algebraic group, i.e., the identity
component of the group of real points of a semisimple algebraic group defined
over R. Let I" < GG be a Zariski dense Anosov subgroup of G with respect to a
minimal parabolic subgroup P. Fix a Langlands decomposition P = M AN
where N is the unipotent radical of P, A is the identity component of a
maximal real split torus of G and M is the maximal compact subgroup of P
commuting with A. The subgroup N is a maximal horospherical subgroup
of G, and in fact, any maximal horospherical subgroup of G arises in this
way.

Lee and Oh respectively supported by the NSF grants DMS-1926686 (via the Institute
for Advanced Study) DMS-1900101.
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In our earlier paper [17], we showed that all N M-invariant Burger-Roblin
measures on I'\G, parameterized by R™kG~1 " are NM-ergodic and that
they describe precisely all non-trivial N M-invariant ergodic and P°-quasi-
invariant Radon (i.e., locally finite Borel) measures on I'\G, where P° is the
identity component of P. One cannot replace N M by N in these statements,
as the Burger-Roblin measures are not N-ergodic in general. The main aim
of this paper is to describe the N-ergodic decompositions of Burger-Roblin
measures as well as to classify all non-trivial N-invariant ergodic and P°-
quasi-invariant Radon measures on I'\G. When G has rank one, the class of
Anosov subgroups of G coincides with that of convex cocompact subgroups.
If P is connected in addition, which is equivalent to saying G % SLa(R), then
there exists a unique non-trivial N-invariant ergodic measure, as shown by
Burger, Roblin and Winter ([4], [20], [26]). This unique measure is called
the Burger-Roblin measure. We also mention that when I' < G is a lattice,
the classification of ergodic invariant measures for a maximal horospherical
subgroup action was obtained by Furstenberg, Veech and Dani ([10], [24],
[8]), prior to Ratner’s more general measure classification theorem for any
connected unipotent subgroup action [19].

We begin by recalling the definition of an Anosov subgroup. Let F :=
G /P denote the Furstenberg boundary, and F ) the unique open G-orbit
in F x F. A Zariski dense discrete subgroup I' < G is called an Anosov
subgroup (with respect to P) if it is a finitely generated word hyperbolic
group which admits a I'-equivariant continuous embedding ¢ of the Gromov
boundary 9T into F such that ({(x),¢(y)) € FP for all 2 # y in T ([15],
[11], [14], [25]). The class of Anosov subgroups include the Zariski dense
images of representations in the Hitchin component as well as Zariski dense
Schottky subgroups.

Denote by a the Lie algebra of A and fix a positive Weyl chamber at C a
so that log IV is the sum of positive root subspaces. Fix a maximal compact
subgroup K of G as in section 2, so that the Cartan decomposition G =
KATK holds for AT = expa™ (Def. 2.9).

Let Lr C a' denote the limit cone of I' (Def. 2.8), which is known to
be a convex cone with non-empty interior by Benoist [1]. Let ¢r : a —
R U {—00} be the growth indicator function of I' as defined by Quint (Def.
4.1). Consider the following set of linear forms on a:

r={yYea* >, (v) =Yr(v) for some v € int Lr}.

M

For each ¢ € Dy, we denote by mER and mg S respectively the Burger-

Roblin measure and the Bowen-Margulis-Sullivan measure on I'\G associ-
ated to 1 (see (4.6) and (4.8)). The Burger-Roblin measures are all sup-
ported on the unique P-minimal subset of I'\G:

E:={lg] eT\G:gP €A}
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where A C F denotes the limit set of I'. In [17], we showed that for T’
Anosov, each m}Z’R is N M-ergodic and the map

BR
Ib'—>m¢

gives a homeomorphism between D and the space of all N M-invariant er-
godic and P-quasi invariant Radon measures supported on £, up to constant
multiples. We also showed that all mEMS, Y € Dy, are AM-ergodic.

Denote by QYr the collection of all P°-minimal subsets of I'\G. Fixing
& € Yr, we set

Pr = {p e P:&p= 80}

By the work of Guivarc’h and Raugi [12], the subgroup Pr is independent of
the choice of & € Yr, and is a co-abelian subgroup of P containing P°. It
follows that for any & € Yr, the map [p] — Eyp defines a bijection between
P/Pr and Yr. Considering the partition & = |_|£Oemr &y, the following is
our main theorem:

Theorem 1.1. For any Anosov subgroup I' < G and 1 € Dg,
(1) ng =2 coewr ng\gO is an N-ergodic decomposition;
(2) mEMS =2 coewr mng\go is an A-ergodic decomposition.

In particular, the number of the N -ergodic components of ng as well as the

A-ergodic components of mEMS are given by #Yr = [P : Pr], independent

of .

See the subsection 7.6 and Theorem 4.4 for the proofs of (1) and (2)
respectively.
As P° C Pr, Pr is of the form MpAN where

Mr = {m eM: S()m:go}.

Moreover, by [3, Prop. 4.9(a)], the subgroup Mt can be explicitly de-
scribed as follows:

Mr = closure of {m € M : g *hamng € T for some h € N*,a € A,n € N}

for any g € G such that gI'g~! Nint ATM # (), where Nt denotes the
opposite horospherical subgroup to N. The subgroup Mr is not equal to M
in general: there exists a Zariski dense Schottky subgroup I' with Mr # M
[2], and for an Anosov subgroup I" which arises as the image of a Hitchin
representation into PSLy,(R), it is known that Mp = {e} [15].

Since each & € Yr is a second countable topological space, almost all
orbits are dense with respect to an ergodic measure with full support in &.
Hence Theorem 1.1 implies:

Corollary 1.2. Let & be a P°-minimal subset of T\G. Then
(1) for m5R|gO almost all x € &, xN is dense in Ey;
(2) for mgMS|gO almost all x € &y, TA is dense in supp mEMS Né& .
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Indeed, Corollary 1.2(2) holds for AT-orbits as well (see Corollary 4.11).
In view of our earlier work [17], Theorem 1.1 implies:

Theorem 1.3. The space of all N-invariant ergodic and P°-quasi-invariant
Radon measures on £, up to constant multiples, is given by {mER\gO tp €

Df, & € Yr} and hence homeomorphic to RronkG=1 5 (1 ... #M/Mr}.

We mention a recent measure classification result [16] which is based on
the above theorem.

On the proofs. For each ¢ € Dy, there exists a unique (I',¢)-Patterson-
Sullivan measure, say, v, on the limit set A C G/P. Denote by 7, the M-
invariant lift of v to G/P°. We first show that the I'-ergodic components
of 7y, and the A-ergodic components of mgMS are respectively given by their
restrictions to I-minimal subsets of G/P° and to P°-minimal subsets of
I'\G; hence Theorem 1.1(2). We define the closed subgroup, say E,,, of AM,
consisting of all vy-essential values (Definition 6.1), and show that elements
of the generalized length spectrum of I', whose t-images are sufficiently
large, are contained in E,,, (Proposition 7.8). By Proposition 7.4, this implies
that AM® is contained in E,,, from which we deduce Theorem 1.1(1), using

the N M-ergodicity of ng.

Acknowledgement We would like to thank Michael Hochman for helpful
conversations, especially for telling us about the reference [13]. We also
thank the referee for reading the manuscript carefully and making a useful
suggestion.

2. PRELIMINARIES

Let G be a connected semisimple real algebraic group and I' < G be a
Zariski dense discrete subgroup. We fix, once and for all, a Cartan involution
0 of the Lie algebra g of G and decompose g as g = £®p, where £ and p are the
+1 and —1 eigenspaces of 6, respectively. We denote by K the maximal com-
pact subgroup of G with Lie algebra €. We use the notation o for the coset
[K] in the associated Riemannian symmetric space G/K. We also choose a
maximal abelian subalgebra a of p, and set A := expa. Choosing a closed
positive Weyl chamber a™t of a, we also set AT := expa™. The centralizer of
A in K is denoted by M and we set N to be the contracting horospherical
subgroup: for a € int AT, N = {g € G: a "ga" — e asn — +oo}. Note
that log N is the sum of all positive root subspaces for our choice of A™.
Similarly, we also consider the expanding horospherical subgroup N*: for
a€intAT, Nt :={g€ G :a"%a™ — easn — +oo}. Weset P=MAN
which is a minimal parabolic subgroup of G. The quotient F = G/P is
known as the Furstenberg boundary of G and is isomorphic to K/M. We
let A C F denote the limit set of I" as defined in [1] (see also [17, Lem. 2.13]
for an equivalent definition), which is known to be the unique I'-minimal
subset of F.
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We fix an element wq of the normalizer of a such that Ad,,a" = —a™.
The opposition involution i: a — a is defined as i(u) = — Ady, u.

Definition 2.1 (Visual maps). For each g € G, we define
gt :=gPcG/P and g :=gwyP < G/P.
For all g € G and m € M, observe that g= = (gm)* = g(e*). Let F?
denote the unique open G-orbit in F x F:
FO =qg(et,e)={(gt,g7) e Fx F:geq}.
We say that &1 € F are in general position if (£,7) € F?.

2.1. A-valued cocycles.

Definition 2.2. The A-valued Iwasawa cocycle o2 : G x F — A is defined
as follows: for (g,£) € G x F, let 04(g,€) € A be the unique element
satisfying

(21) gk € Kor(g, N
where k € K is such that £ = k.

Definition 2.3. The A-valued Busemann function 4 : F x G x G — A is
defined as follows: for £ € F and g1, g2 € G, set

ﬁ?(glaQQ) = UA(gflag) O-A(gglvg)_l‘

2.2. AM-valued cocycles. The product map N* x P — G is a diffeomor-
phism onto its image which is Zariski open and dense in GG. Hence for each
¢ € NTet, we can define he € NT to be the unique element such that

(2.2) €= hee'.

Similarly, the product map K x A x N — G is a diffeomorphism, giving the
Iwasawa decomposition G = KAN. We can therefore define k¢ € K to be
the unique element such that

(2.3) hg € kgAN.
Definition 2.4 (Bruhat cocycle and Iwasawa cocycle). Let g € G and £ € F
be such that &, g€ € Ntet.

(1) We define the Bruhat cocycle b(g, &) € AM to be the unique element
satisfying
ghe € N+b(g,f)N.
Note that the condition £ € NTet allows us to get he € NT and the
condition g€ € NTet implies ghe € NTAMN.
(2) We define the Iwasawa cocycle 4 (g,£) € AM to be the unique
element satisfying

gke € kg™ (g, §)N.
Note that ghe € hgeb(g,§)N.
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We remark that although log o4 (g, &) was defined as the Iwasawa cocycle
in [17], we find it more convenient to use the above notation in this paper.
In order to define the AM-valued Iwasawa cocycle, it is necessary to choose
a Borel section of the projection K ~ G/AN — K/M ~ G/P. In the above
definition, we have used a section s : G/P — G/AN given by s(hP) = hAN
for all h € N1, so that it is continuous on N*et C F. It follows that for
each fixed g € G, the maps & — b(g,€) and € — o4M (g, &) are continuous
on the set {£ € NTet : gé € Ntet}.

Definition 2.5 (AM-valued Busemann map). For (£,¢1,92) € F x G x G
such that &, g7 ¢, 95, '€ € Ntet, we define

B?M(91792) = UAM(gflvg)UAM(ggl> )_1'

Remark 2.6. For fixed g1,g2 € G, the map £ — /B?M(gl,QQ) is continuous
on the set {£ € Ntet : g7¢,g;7¢ € Ntet},

We have the following whenever both sides are defined: for any g1, g2, g3 €
G and € € F,

(1) (cocycle identity) B£M (g1, 93) = BEM (g1, 92) BEM (92, 93);

(2) (equivariance) Bﬁjg(gggl,gggg) = B?M(gl,gg).
We define M to be the projection of 34M to M; we then have B?M (91,92) =
Bg‘(gl,gg)ﬁéw(gl,gg). It is simple to check the following:

Example 2.7. If g = hamn € NTAMN, then Bﬁf(e,g) =m.

2.3. Jordan projection and Cartan projection. Recall that for any
loxodromic element g € G, there exists ¢ € G such that

g = pame™!
for some element am € int AT M. Moreover such ¢ belongs to a unique coset
in G/AM. We set

Yg = 90+ eF
which is called the attracting fixed point of g. The element a € int A™ is
uniquely determined and called the Jordan projection of g. We denote it
by A(g). For a general element g € G, g can be written as a commuting
product gng.ge where gy, g, and g. are hyperbolic, unipotent and elliptic
respectively. The hyperbolic element g, belongs to AM up to conjugation,
and the Jordan projection A(g) of g is defined as the unique element of a™
such that g; € pexp A(g)me~! for some ¢ € G and m € M.

Definition 2.8. The limit cone L C a¥ is defined as the smallest closed
cone containing all A\(y) € at, y € T.

This is known to be a convex cone with non-empty interior [1].

Definition 2.9 (Cartan projection). For each g € G, there exists a unique
element u(g) € a™, called the Cartan projection of g, such that

g € Kexp(u(g)) K.
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3. GENERALIZED LENGTH SPECTRUM

In this section, we fix a discrete Zariski dense subgroup I' of G.

3.1. P°-minimal subsets of I'\G. Since A is the unique I-minimal subset
of F, it follows that the set

(3.1) E:={[g) eT\G:g" €A}

is the unique P-minimal subset of I'\G. We refer to [12, Thm. 2 and
Thm. 1.9] for results in this subsection. Set F° = G/P°. For any g € G
with g7 € A, the closure of I'g[P°] is a I-minimal subset of F°. Moreover
the following closed subgroup of M is well-defined:

(32) Mr = {T)’L eM:Aym = Ao}

for any I'-minimal subset Ay of F°. The subgroup M® is a co-abelian sub-
group of M and Mrp/M?® is isomorphic to (Z/2Z)P for some 0 < p < dimA.

For any I'-minimal subset Ag of Fy, the map s — Ags gives a bijection
between Mp\M and the collection Yr of all I'-minimal subsets of F°. If we
set A := {gP° € F°:gP € A}, then

A= || Ao
Ao€Xr

These results can be translated into statements about P°-minimal subsets
of '\G by duality. Each Ag € Yr is of the form E(Ag)/P° for some left
I-invariant and right P°-invariant closed subset E(Ag) of G. The map
Ag — T\E(Ap) gives a bijection between Yr and the collection of all P°-
minimal subsets of I'\G, say Yr. Moreover, if we set

(3.3) Pr := MpAN,
then Pp ={p € P: &p = &} for all & € Yr. We also have
£= || &
Eo€Yr

We remark that each P°-minimal subset of I'\G is in fact AN-minimal;
this follows from [12, Thm. 2].

3.2. Generalized length spectrum. We define
(3.4) TI'*:={y eI :there exists p € NTN with v € p(int ATM)p~'}.

Note that if v € T is loxodromic and y, € NTe™, then v € I'*. AsT'is
Zariski dense, the set of loxodromic elements of I' is Zariski dense in G [1].
It follows that I'* is Zariski dense in G' as well.

Definition 3.1. For v € I'*, we define its generalized Jordan projection 5\(7)
to be the unique element of int AT M such that

v =pA(y)e~! for some p € NTN.
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Definition 3.2. We call the following set the generalized length spectrum
of I':

AT) := {\(y) € AM : vy € T*}.
We denote by
s(I)
the closed subgroup of AM generated by X(I‘)

We refer to Remark 3.8 for the independence of s(I') on some choices.

Lemma 3.3. For all v € I'*, we have

Proof. Since v € I'*, we have vy = goj\(v)go*l for some ¢ = hn, where h € N+
and n € N. Set £ := y, = ¢T. In particular, hg = h and h € keAN. The
defining relations for b(v, ) and ,B?M (e,y) are

vh € hb(v,€)N and vk € ke (e, 7)N.
Now observe that
vh = eA(7)e " h = hnA(y)n~' € hA(y)N and
Vhe = @A) ke = k(b h)nA(y)n~ (B ke) € keA(7)N.
Therefore A(v) = b(~, &) = B?M(e,y). O

For each £ € ANNTe™, we define be(T) to be the closed subgroup of AM
generated by all b(vy, &) where v € T and v¢ € NTe™.

Lemma 3.4. The subgroup be(I') < AM is independent of { € AN NTet.

Proof. Let &1,& € AN NTet. To show that b, (I') = be, (T), it suffices to
check that b(v, &) € be, (T') for any v € T such that v&, € NTe™. Since A
is '-minimal, there exists a sequence -, € I' such that lim, . 7§11 = &o.
Since NTe™ is open and &, 7€ € NTe™, | we have v,&1, ymé1 € NTet for
all large n and b(’yfymgl) = b(’% 'Ynfl)b(’ynv 61) Hence

b(v,&2) = lim b(y, 1) = lm b(y7m, €0)b(vn, 1) 7" € bey (1),
from which the lemma follows. O
By Lemma 3.4, we may define
b(l') :=be(T") for any E € ANNTet.
In the rest of this section, we assume that
I Nint ATM # (.
Lemma 3.5. We have b(I") = s(I).
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Proof. We first claim that b(I') C s(I'). By Lemma 3.4, it suffices to show
that b(vy,e™) € s(I') for any v € T with vet € NTeT. Set so := agmg €
I'Nint ATM. Since ve™ and e~ are in general position, for all sufficiently
large n, sgv is a loxodromic element and z, := ysp, converges to et as
n — oo. Since ysn, € NTet, we have sgy € T'* for all large n. Now the
claim follows from

b(v.e) = lim by,za) = lim b(sf,ya,) b5y, )
= lim A(s5) ' A(sf) € s(T)

We next claim s(I") C b(I"). Let v € I'* be arbitrary. Note that y, € NTe™.
By Lemma 3.3, A(y) = b(v,¥,) € by, (I'). Since b(I') = b, (I') by Lemma
3.4, we have A(y) € b(T'), proving the claim. O

Proposition 3.6. We have
(1) b(I') = b(g~'Tg) for all g € G with g* € A;
(2) b(T") is a co-abelian subgroup of AM containing AM?®;
(3) b(I') = AMr.

Proof. Claims (1) and (2) are proved in [12, Thm. 1.9]. Claim (3) follows
since A C b(T") by (2) and the closure of {m € M : TN NTAmN # 0} is
equal to Mt [3, Prop. 4.9(a)]. O

Hence we deduce the following from Lemma 3.5 and Proposition 3.6.

Corollary 3.7. We have
S(F) = AMF.

Remark 3.8. We mention that as long as g € G satisﬁesAgi € A, we can use
9 € g INTN™ and £ € ANg 'NTe™ in defining I'*, A(v) and be(T'), and
get the same s(I') = AMr by [12, Prop. 1.8 and Thm. 1.9].

4. A-ERGODIC DECOMPOSITIONS OF BMS-MEASURES
As before, let ' be a discrete Zariski dense subgroup of G.

Definition 4.1 (Growth indicator function). The growth indicator function
Yr : at — RU{—oco} is defined as follows: for any vector u € a*,
Yr(u) = ||ul| - inf TC

open cones CCa™t
uel

where 7¢ is the abscissa of convergence of the series ) —HirMll,

el u(y)ec ©

We consider ¢r as a function on a by setting yr = —oo outside of a™.
For a linear form 1 € a*, a Borel probability measure v on A is called a
(T, ¢)-Patterson-Sullivan measure if for all v € I and £ € F,

drysv

A
(&) = e¥log B (e))
dv

(4.1)
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Set
Dt :={¢y €a”: ¢ >Yp,(u) = ¢r(u) for some u € int Lr}.

For each linear form ¢ € D}, Quint constructed a (I, 1)-Patterson-Sullivan
measure, say, vy [?, Thm. 4.10]. For an Anosov group I, it was shown in
(17, Thm. 1.3] that the map ¢ — vy, is a homeomorphism between D} and
the space of all I' Patterson-Sullivan measures.

4.1. Antipodality of I'. When I" is Anosov, we have the following so-called
antipodal property from its definition:

(4.2) {(&m) e AxA:E#£n) CFO.
Lemma 4.2. Let I’ be Anosov. If g € G satisfies g~ € A, then g~ 'A C
Ntetu{e }.

Proof. Suppose that £ € A and g€ # e~. Then ¢ # g~ in A. Hence by
(4.2), (&,97) € FP, or equivalently, (g7'¢,e7) € FP?). Since {n € F :
(n,e”) € F@} = Ntet, g-1¢ € Ntet, proving the claim. O

Corollary 4.3. Let ¢ € D. For any g € G with gt €A,

vp(ANgNtet) =1.
Proof. By Lemma 4.2, A — {g~} = AN gNTe". Hence the claim follows
from the fact that v, is atom-free [17, Lem. 7.8]. O

In the rest of this section, we assume that I' < G is an Anosov subgroup.
We will assume that

I' Nint AT M £ (;

this can be achieved by replacing I" by one of its conjugates, and hence we
do not lose any generality of our discussion by making such an assumption.
By Corollary 4.3, this assumption implies that

vy(ANNTet)=1 for any ¢ € D¥.

4.2. Hopf parametrization of G. The map i(¢M) = (g7, 9", ;ﬁ(e,g))

gives a G-equivariant homeomorphism between G/M and F®) x A, where
the G-action on the latter is given by

g.(§,m,a) = (95,977,5;2(679)@ for g € G and ((£,71),a) € F2 « A.

For the principal M-bundle G — G /M, we fix a Borel section s : G/M —
G so that s(hanM) = han for all han € NTAN. Now for any g € G, there
exists a unique my € M such that g = s(¢M)mgy. Then the map j(g) =
(i(gM), mg) gives a G-equivariant Borel isomorphism of G with F @) x AM
where the G action on the latter is given by

(4.3) g-(&m.am) = (g€, gm, By (e, g)am)
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whenever &, g6 € Nte™. We call this map the Hopf parametrization of G
(relative to the choice of s). We mention that this map was also considered
in [7].

The restriction of j to NTP is given by
(4.4) it9) = (g%,97,8,M(e.g)) forge NP
which gives a homeomorphism

NTP~{(¢,n,am) e F? x AM : ¢ € NTet}.

Fix ¢ € Df in the rest of this section. For ({1,&) € F@ define the

1-Gromov product:

(4.5) 61,6y = (log B (e, 9) + ilog B2 (e, )

where g € G is such that ¢g* = & and g~ = &.
In terms of the Hopf parametrization of G, the following defines a left
[-invariant and right AM-invariant measure on G:

A : A
(4.6) deMS (g) _ ew(log ,6’9+ (e,g9)+ilog /3g, (e:9)) dVT/J (g+)dV'¢;oi (g—) da dm
= elfr82bv duy (g1 )dvyei(97) da dm.
We denote by mgMS the measure on I'\G induced by rh}Z’MS and call it the

Bowen-Margulis-Sullivan measure (associated to 1). Note that its support
is equal to

(4.7) Q:={ze\G: 2% e A}.
In ([21], [17]), it was noted that mEMS is an AM-ergodic measure and that
it is infinite whenever rank G > 2.

Similarly, the Burger-Roblin measure mER on I'\G is induced from the
following left '-invariant and right N M-invariant measure on G:

A A
(4.8)  dmBR(g) = /180 (N T2URBL ) gy (Y dm, (g7) dadm,

where p denotes the half sum of all positive roots with respect to a™ and m,

denotes the K-invariant probability measure on G/P. Note that the support

ng is equal to &£, which was defined in (3.1). This was first defined in [9].
By Corollary 4.3,

mpM3 (G — Nt P) = 0=mpR(G - NTP).
4.3. Ergodic decomposition of mgMS. Recall from subsection 3.1:
A= || A and €= || &
Ao€Xr Eo€Yr

We denote by 7y, the M/M-°-invariant lift of vy to A C F°, ie., for f €
C(F°),

Dy (f) = vy ( Z m.f) = y¢(/ E1\/{771.]"(%771)

meM/M°
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where m.f(z) = f(xm).

Theorem 4.4. Let I' < G be an Anosov subgroup.
(1) The restriction iy to each I'-minimal subset of F° is I'-ergodic. In
particular, Uy = Y\ ey, Ppla, 18 a T-ergodic decomposition.
(2) The restriction of mBMS to each P°-minimal subset of I'\G is A-
ergodic.

In particular,
BMS BMS
g my, £

Eo€Yr
is an A-ergodic decomposition.

The rest of this section is devoted to the proof of this theorem. Set
Q:={geG:TgeQ}={gecG:g-cA}
Let B denote the Borel o-algebra on G. We set
Yy :={BNQ:BecBwith B=TBAN*}.
We also define 3 to be the collection of all B € B such that mBMS(BAB+)
mgMS(BAB,) = 0 for some By € Y. Recall the subgroup M < M given
n (3.2), and define
Yo:={BNQ:B¢c B with B=TBAM}.
The following is a main technical ingredient of the proof of Theorem 4.4:

Lemma 4.5. We have ¥ C ¥Xg mod my, BMS . that is, for all B € %, there
exists By € Yo such that mBMS(B A Bo) = ()

This lemma follows if we show that any bounded Y-measurable function

on ) is Yg-measurable modulo mEMS.

Let f be any bounded S-measurable function on €. We may assume
without loss of generality that f is strictly left I'-invariant and right A-
invariant [27, Prop. B.5]. There exist bounded Y*-measurable functions
f+ such that f = fi for mBMS -a.e. Note that fi satisfy fi(gn) = f1(9)

whenever g, gn € Q with n € Ni Set

flganm is measurable and

E:=gAM: f(gm)= fi(gm) = f-(gm) p C Q/AM.
for Haar a.e. me M

By Fubini’s theorem, E has a full measure on JAM ~ A® with respect to

the measure dvy, dvye;. For all small e > 0, define functions f¢, f : Q>R
by

F(0) = vty [ Slom) dim and [5(9) = sy [ F(gm) dm

where M. denotes the e-ball around e in M. Note that if gAM € FE, then f¢
and ff are continuous and identical on gAM. Moreover, as M normalizes
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subgroups A and N*, f¢ is strictly left I-invariant, right A-invariant and
fi(gn) = f5(g) whenever g,gn € Q with n € N*. Using the isomorphism
between Q/AM and A® given by gAM — (g7, g~), we may consider E as
a subset of A, We then define

Et:={¢eA: (&) €EE for vpeae n €A}
E-:={neA:(,n) € E foruygae & e}
Then E~ is vyo; -conull and EV is vy-conull by Fubini’s theorem. Set
E;_ ={{eA:({n) CE} and E;:={nel:({n) CE}
Note that E is vyei-conull for all £ € E* and that E," is vy-conull for
alln e E~.

Lemma 4.6. Let g € Q be such that gAM € E and g* € E*. Then for
any € >0, f¢(gmg) = f(g) for all my € Mp.

Proof. We will use the following observation in the proof. For am € AM,

suppose that there exist v € I', and a sequence hy,---,hy € NUNT such
that ygam = ghy---hg and ghy---h; € E for all 1 <1¢ < k. Then
fe(gam) = f*(vgam) = f*(gh1---hy) = f*(gh1 - hy_1) = -+ = f*(g),

by the N*-invariance of f%, the invariance of f by I' and A and the fact
that all three agree on E.
By Proposition 3.6, it suffices to prove that

fe(gb(g™ g, 9) = f°(9)

for any v € T'and ¢ € g7'AN Ntet. Setting b(g'vg,£) = (am)~!, we
may write ygam = ghiniho where hi,hs € NT and n; € N. Note that E*
are I'-invariant, as the measures Uy and Uyoi are I'-quasi-invariant. Since
gT € E* we get vgt € E*. Set

&o=g", m=g,
& = ght, m = ghing (=~vg97),
& = ghimihg (= vg™).

Choose a sequence & 0 € ETN E,J{O N E,;rl which converges to & as ¢ — oo.
This is possible because E* N E," N E is dense in A, as it is vy-conull from
the hypothesis that § = ¢~ € E~ and & = vg~ € E~. Let hyy € N be
the unique element such that (gh1 )" = & ¢, n1¢ € N the unique element
such that (ghi¢ni¢)” = vg~, and finally hoy € NT the unique element
such that (ghyeniehae)t = vg*. Since (ghieniehae)® = 79T, we have
gh1¢m10ha g = ygagmy for some a, € A and my € M. Note that agm, — am
as { — oo and that agmy € b(g~T'g). The sequences hy ¢, n1¢,hoe € NUNT
satisfy

o gh1yAM € E, as (gh1¢)™ = no and (gh10)* = &0 € Ejf;
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e ghiynigAM € E, as (ghignig)” = m and (ghienie)t = &y €
E+.
717
o ghiynighoyAM = vgAM € E, as gAM € E and FE is I'-invariant.
Therefore, f(gagmy) = f°(g) by the observation made in the beginning of
the proof. Since gAM € E, f¢ is continuous on gAM and hence

fo(gam) = lim f*(gagme) = f*(9)-
This finishes the proof. O

Proof of Lemma 4.5: Let f be any bounded S-measurable function on €.

For any € > 0, by Lemma 4.6, f¢ coincides with a Xg-measurable function

mgMS—a.e. Since lim._,o f¢ = f mEMS—a.e., f is a Xg-measurable function
BMS

my, - -a.e. as well. This proves the lemma. [

Corollary 4.7. There exists B € X such that any two distinct subsets in
{B.s : s € Mp\M} are measurably disjoint and ¥ is the finite o-algebra
generated by {B.s : s € Mp\M} mod mgMS.

Proof. First, note that the AM-ergodicity of mgMS implies that the o-
algebra

Y1 :={BNQ:B ¢ Bsuch that B=TBAM}
is trivial mod mg’Ms. It follows that for any B € ¥, and hence for any B € X

BMS BMS

by Lemma 4.5, with m, (B) > 0, the union Uge s\ pr B-s is my, > -conull.

Let P = {Ay,---,Ax} be a partition of Q) with maximal %k, among all
partitions of 2 satisfying

(1) A; € ¥ and mgMS(Ai) > 0,
(2) Q=A;U---U A mod mEMS and
(3) for any s € Mp\M, we have A;.s € {41, , Ax} mod mEMS.

It remains to set B = A; to prove the claim. O

4.4. R-ergodic decomposition of 7, on AP xR x M. Set A®) = (A x
A) N F@). The action of ' on A®) x R defined by

v.(&m,t) = (V& m. t + ¥(log Bk (e, 7))

is proper and cocompact, and the measure dm, := e["']wdylp dvye; dt on
A® x R descends to a finite R-ergodic measure m, on T\A®) x R ([22,
Thm. 3.2], [5, Thm. A.2]). We denote by dri,, the finite measure on

Z:=T\A® xR x M

induced by the I'-invariant product measure dm,, dm on A® xR x M; here
I acts on A® xR x M by

V(& mt,m) = (v&,ym, t + v (log Bl (e, 7)), Ble (e,7)m)
where (&,1) € A® ¢t € R and m € M.
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Define the Borel map ¥ : Q — A® x R x M by

V(g) = (97,9, (B (e:9)), Byt (e, 9)).

Note that for all y € T, a € A and m € M, W(ygam) = YV (9)Ty(1og a)Tm for
mBMS_almost all g € Q, where 7 stands for the right translation action by
elements of R x M. By abuse of notation, let ¥ :  — Z denote the map
induced by ¥ and 7 denote the action of R x M on Z induced by 7.

Recalling that Q0 = | |¢ ). (2N &), we set
Zgo = \I/(Q N 80) for each & € ero.

Hence the collection {Zg, : & € Yr} gives a measurable partition for
(Z,my).

Proposition 4.8. For each & € Yr, the restriction My |z, is R-ergodic,
0

and My = Z&)eﬁ)p mwyzgo is an R-ergodic decomposition. In particular,

Uylag is T-ergodic and Dy = 3\ ey, Pyl 18 a T-ergodic decomposition.

Proof. By Corollary 4.7, ¥ is generated by {B.s : s € Mp\M } mod mgMS for
some B € ¥. We first claim that 77, |y(p.s) is R-ergodic for each s € Mp\M.

Let f € C(Z) be arbitrary. The Birkhoff average f; : Z — R is defined
Mmy-a.e. by

T
fuly) = Jim / F(ym) tleggo;/o Py dt

T—oo T

Note that f; is well defined by the Birkhoff ergodic theorem and is R-
invariant. Hence, f3 o ¥ is defined mBMS_a.e. The desired ergodicity fol-
lows from the Birkhoff ergodic theorem if we show that f; o ¥ is constant
mgMS—a.e. on each B.s. Let w € int Lp be the unique vector such that
Y(u) = Yr(u) = 1 and let a; = exptu. Observing that f o ¥ is uni-
formly continuous on each zAN N Q whenever ¥ is continuous at x and
that f(U(x)) = f(¥(zas)) for all t € R, it is a standard Hopf argument

to show that f; o W coincides with N *_invariant functions mgMS—a.e. Hence

fy o ¥ is Y-measurable, implying that f; o ¥ is constant mgMS—a.e. on each

B.s. Therefore this proves the claim.

For each & € Yr, mqy,(V(B.s) N Zg,) > 0 for some s € Mp\M. It follows
from the R-ergodicity of my|y(p.s) that Myl (p.s) = M|z, . Therefore the
proposition is proved. O

The measure mEMS disintegrates over 7, via the projection F\A(Z) X

AxX M — F\A(Q) X R x M, where each conditional measure is the Lebesque
measure on exp(ker ).

Proof of Theorem 4.4. Since dmst|g0 dm¢|Z£0 d Lebyer, the R-
ergodicity of 1| Ze, proved in Proposition 4.8 implies the A-ergodicity of

BMS |5o U
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4.5. The set of strong Myrberg limit points. In [17], we defined Myr-
berg limit points of I'.

Definition 4.9. We now define the set of strong Myrberg limit points as
follows:

(4.9) A$ ={¢ e AnNTet : for each & € Yr, there exist
n € A and m € M such that Zg, =T'(¢,n,0,m)R,}.

Since 1y | Zg, is R-ergodic and finite for each & € Yr, the Birkhoff ergodic
theorem for the R-action implies:

Corollary 4.10. We have yw(A$) =1.

The same proof as the proof of [17, Prop. 8.2] shows that if g € & and
+ e A®
gt €Ny,
limsup \['gA™ = QN &.
Hence Corollary 4.10 implies (cf. [17, Coro 8.12]):

Corollary 4.11. For mgMS\go—almost allz € ENQ, each xAT and zwoA™
s dense in Ey N Q.

Let II denote the set of all simple roots of g with respect to a™.

Definition 4.12. For a sequence a,, € AT, we write a,, — oo regularly in
AT or loga, — oo regularly in a™, if a(loga,) — 0o asn — oo for all a € II.

The following is an important property of Anosov groups:

Lemma 4.13. Let I' be Anosov. For any g,h € G and a sequence 7y, — 0o
in T, u(gynh) — oo regularly in AT,

This lemma is a consequence of the fact that the limit cone of I' is con-
tained in int a™ U {0} (cf. [17, Thm. 4.3] for references).

In the Cartan decomposition g = ky(expu(g))ks € KATK, if u(g) €
inta™, then ki, ko € K are determined uniquely up to mod M, more pre-
cisely, if g = K} (exp u(g))k), then there exists m € M such that k1 = kjm
and ks = m~1k}. We write

ki1(g) =[k1] € K/M and ka(g) := [ko] € M\K.

Definition 4.14. Let o = [K] € G/K and let g, € G be a sequence. A
sequence g,(0) € G/K is said to converge to € F if p(g,) — oo regularly
in at and lim r1(g,) = &; we write lim, o gn(0) = &.

n—oo

Recall the map j from (4.4):

Lemma 4.15. Let & € Yr and & C G be its D-invariant lift. There exists
so € M /My such that

i(QNENNTP) = {(&n,amsg) € AP x AM : € € Ntet am € AMp}.
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Proof. Recall that T" N int ATM # () and hence e* € A. In particular,
j(@N & N N*TP) contains an element of the form (e, e, s0) € A?) x AM
for some sg € M. Note that for all v € ' N NTP, we have

’Y'(e—’_v 6_7 30) = (7+7 7_7 BérM(’Y_1> 6)80)'

Since ' Nint ATM # 0, My is equal to the closure of {m € M : TN
NTmAN # (0} by [3, Prop. 4.9(a)]. Recall also that for v € T N NTmAN,
é\i[ (v~1,e) = m. Therefore, using the fact that & is right My AN-invariant,

we deduce that the set j(©2 N & N N+ P) contains
{(vF,n,amso) € A® x AM : v e N NP, am € AMr}.
This proves the claim, since {y" € F:~v € 'N NTP} is dense in A. O

Lemma 4.16. Let p € G/K and n # & € A. For any £ € A$ —{n}, there
exists an infinite sequence y; € I' such that

(4.10) lim v, 'p=n, lim~,'¢=¢&, and lim ,Béw(’yi,e) =e.
i—+00 1—00 1—00

Moreover, there exists a neighborhood U of & such that, as i — oo, the
sequence v;€' converges to & uniformly for all ¢ € U.

Proof. Let £ and n be as in the statement. Fix any & € Yr. By the
definition of Ag, there exist £ € A and m € M such that T'(¢,€,0,m)RT is
dense in Zg,. Note that (£y,7n,0,m) € Zg, by Lemma 4.15. Therefore there
exist sequences v; € I' and ¢; — 400 such that

lim ~;7(€,€,0 + ti,m)
= }i}r&(’yz_lga ’71'_157 ¢(10g B?(’Yz, 6)) + U, Bé‘/l(’}/la e)m) = (507 m, 07 m)

The last two conditions in (4.10) immediately follow from this and the first
condition follows from [17, Lem. 8.9].

By passing to a subsequence, we may write v; = kiaifi_l where k; —
ko,¢; — foin K and a; € AT. As I' is Anosov, a; — oo regularly in A™.
We then have ¢, = 1. Note that v;¢’ — kg for all ¢’ € F with (¢/,n) € F?)
and this convergence is uniform on a compact subset of {¢' : (¢,n) € F®1.
Since (£9,71) € F?), there exists a neighborhood U of & such that v;& — kg
uniformly for all ¢’ € U. Since v, L¢ — & and hence Vi le e U for all large
i, we have ;(v; 15) — kg . Hence ¢ = k('f . The claim follows. ]

5. EQUI-CONTINUOUS FAMILY OF BUSEMANN FUNCTIONS

We fix a left G-invariant and right K-invariant Riemannian metric d on
G. For a subgroup H < G and e > 0, weset H. ={h € H : d(e,h) <e}. We
will use the notation Hp(.) to mean H.. for some absolute constant ¢ > 0.
Recall the notation o = [K] € G/K.

In this section, we prove the following proposition.
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Proposition 5.1 (Equi-continuity). Let ' < G be an Anosov subgroup. Fiz
g € NTP be such that g& € A. Let v, € T be a sequence such that for some
EeAN—{g7}, € — gt and v, 'g(0) — g~ as n — oo. Then, up to
passing to a subsequence of vy, the sequence of maps n B,‘;‘M(’yglg,g) is
equi-continuous at g*, i.e., for any € > 0, there exists a neighborhood U, of
gt in F such that for alln > 1 and for alln € U,

MM (g, 9) € B (vt g, 9)(AM)...

We first prove the following two lemmas using the structure theory of
semisimple Lie groups.

Lemma 5.2. There exists ¢ > 0 such that for all sufficiently small € > 0,
aGe C KeeaAee N foralla e AT,

Proof. For all sufficiently small € > 0, we have

Ge C Mo N5y Ao Noe) and N C Kooy Aoy Noge)-
Since aNFa~! € NI for any a € AT, it follows that

aGe C aMoe) N Aoie)Note) = Moe)(aNG (o a™ adoe Nog)
C Mo(e)(Koe) Ao Noe))aAoe Noe) C Koe)adoe N,

which was to be proved. O

Lemma 5.3. Let g, = kpanl,' € KATK where a, — oo regularly in AT
and k, — ko, £n, — lo in K as n — oo. Assume that both £ := k:o+ and
¢ ==L belong to NTeT, and set mo = mylko, Lo] to be

mo = /{?glkoeo_lkc eM

where ke, ke € K are defined as in (2.3). Then for all small ¢ > 0, there
exist neighborhoods V! and UL of & and ¢, respectively, such that

(B9t e) s € ULN g, ' VLY C amo(AM).
for all sufficiently large n > 1.

Proof. By the continuity of the visual maps, there exist neighborhoods V/
of & and U/ of ¢ such that k, € kcK. for all n € U] and k,, € kK. for all
n € V.. We may assume without loss of generality that kg e, M € K.
for all n > 1. Let € U.N g, 'V! be arbitrary. By definition,

Gk € kgno™ (g, mN, ie., kg gnky € kg kgno ™™ (gn,n)N.
Observe that
Ko gk € Ky gnkcKe = (kg hn)an (6, o) b ke K
C KeanK ly ke K. C KeanKo)ly ke
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On the other hand, since g,n € V.,
ko Lankny € ko tkguno ™ (gn, )N
C ky ke Ko™ (g, n)N C Kook "kea™ (g, m)N.
Combining these with the fact that £ 11{:4 € M, we get
anKoe) N Kogeyky kea™ (gn,n) (g k) "N # 0.

Since kj 1k5 € M as well, it follows from Lemma 5.2 that

UA(gnan) € anAo(g), and

oM (g, m) € (kg 'ke) ™ Moeyly ke C (kg Mke) ™ g e Moge.

Since 5§‘M(g;1,e) = oM (g,,n), and mg = (ky "ke) "y ke, this implies
the claim. g

Proof of Proposition 5.1: Set g, := g 'v,9. Then g,'(g7¢) — e
and g, (o) — e~ as n — co. By passing to a subsequence, we may write
gn = knant,, I ¢ KATK where the sequences k, and ¢,, converge to some
ko and £y in K respectively. Since I' is Anosov, it follows that a, — oo
regularly in A*. Combined with the hypothesis g, '(0) — e~ as n — oo, we
have {; = e, or equivalently, £y € M. Hence ¢§ = e™.

We claim that k:o+ = g%, Since a, — oo regularly in A1, for any
n € Ntet, g.n — ki as n — oo and the convergence is uniform on a
compact subset of NTet. Since g,!(¢g7%¢) — et as n — oo, g, (g7%)
is contained in a compact subset of NTet for all large n, it follows that
9n (g, (g71E)) — k§ as n — oo, which proves the claim.

Now let € > 0 be arbitrary. Since g~ € A, by Lemma 4.2, g7 'A — {e”} C
N+tet. Hence both et and ¢~ '¢ belong to Ntet. Applying Lemma 5.3
to the sequence g,, we obtain my = mglko, 4] € M, and some bounded
neighborhoods U, V! C NTet of e™ and g~1¢ respectively, such that

ﬂ;ﬁM(ggl,e) € anmo(AM),. ), for all ' € U. Ng V..
Since ki = g7'¢ € V/ and U, ¢ Ntet, and hence U! x {f5} ¢ F?), we
have g,U! C V!, and hence U. = U. N g,'V! for all large n > 1. Set

U. :=gU.N NTet. Note that g* € U..
Let € U.. Then g~ 'n € UL = U. N g,;1V! and hence

(51) 5;4*]\{[77(97;176> S aan(AM)E/Z'

Since g7 yn = gn(97'n) € knanl;, UL, we have g~ 'y,n — kj € Nte™,
and hence g~ !v,n € Ntet for all large n > 1. Therefore for all sufficiently
large n > 1, 6;]4M(fy,jlg, g) is well-defined and

B (v g, 9) = BN (97 v g, e) = B (a7t e)

Hence the lemma follows from the inclusion (5.1).
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6. ESSENTIAL VALUES AND ERGODICITY

As before, we let I' < G be an Anosov subgroup such that I'Nint AT M #
{e}. Fixing ¢ € Dy, let v = vy be the unique (I',4)-Patterson Sullivan
measure on A. By Corollary 4.3,

(6.1) v(NTet nA) =1.
Fix a Borel isomorphism G/N — F x AM given by
(6.2) gN — (g7, ;+M(e,g)) for g NTAM.

This isomorphism is G-equivariant for a Borel G-action on F x AM given
by
g(&, am) = (g¢, B8 (97", €)am)
for am € AM, g € G, and £ € NTe' with g¢ € NTe™.
The following then defines a I'-invariant locally finite measure on G/N by
(6.3) di([g]) = dv(g+)e?(1°8D da dm

where da and dm are Haar measures on A and M respectively.
Motivated by the work of Schmidt [23] (also [20]), we define:

Definition 6.1. An element am € AM is called a v-essential value, if for
any Borel set B C F with v(B) > 0 and any € > 0, there exists v € I" such
that

(6.4) v{¢e BNy 'B: M (v e) € am(AM).} > 0.

In view of (6.1), it suffices to consider Borel subsets B C NTe™ in this
definition, and hence ﬂ?M (v~ 1, e) is well-defined for all ¢ € BN~y B.

Let E, denote the set of all v-essential values in AM. By the follow-
ing lemma, am € E, if and only if (am)~! € E,; hence the condition
B?M(’y_l, e) € am(AM). in (6.4) can be replaced by B?M(e, v 1) € am(AM).
in the above definition.

Lemma 6.2. E, is a closed subgroup of AM.

Proof. Since the metric d restricted to M is bi-M-invariant, we have that for
all e > 0, M- = M., m™1M.m = M, for all m € M and M, oM, )5 C Me..
Let by,be € E,. Let B C F be a Borel subset with v(B) > 0 and let ¢ > 0.
Since b; € E,, for ¢ = 1,2, there exists ; € I' such that

By={¢eBny'B: M (vt e) € bi(AM). o}
By={¢€ BN~ 'B1: M (5 e) € ba(AM), o}

has a positive v-measure. Note that B C B N 72_171_13 and that for all
¢ € By , we have

BEM (gt e) = B (vt ) = B (vt e)BEM (5 e)
S bl(AM)E/QbQ(AM)E/Q C ble(AM)g.
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Hence b1by € E,,. This proves that E, is a subgroup of AM. Now suppose
that a sequence b; € E,, converges to some b € AM. Let ¢ >0 and B C F
be a Borel subset with v(B) > 0. Fix i large enough so that b;(AM)./, C
b(AM)., and let v; € T be such that v{¢ € BN 'B : Be(vy;le) €
bi(AM).;s} > 0. Then v{¢ € BN~ 'B : Be(v; 'e) € b(AM).} > 0.
This proves that b € E,,. Hence E, is closed. O

Lemma 6.3. Let by € E, be such that {bbogb~' : b € AM} C E,. Then for
any T'-invariant Borel function h : G/N — [0, 1], we have

h(zby) = h(xz)  for D-a.e. x.

Proof. In view of the homeomorphsim NTAMN/N — N*tet x AM given by
gN — (9", Byt (e,g)) and (6.1), it suffices to show that for any I'-invariant
Borel function h : Ntet x AM — [0,1], h(£,b) = h(E,bby) for v-ae. &
and for all b € AM. Suppose not. Then there exists by € AM such that
v{ € F:h(&b1) < h(&biby)} > 0or v{ € F:h(£b1) < h(&biby)} > 0.
We consider the first case; the second case can be treated similarly. Then
there exist r,e > 0 such that

Qu, :={6€NTeT 1 h(&, b)) <r—e<r+e<h(&biby)}

has a positive v-measure. By considering the convolution of h with the
approximation of identity functions on AM, we may assume without loss of
generality that the family h(,-), £ € NTe™, is uniformly equi-continuous
on AM. Hence there exists ¢/ > 0 such that for all £ € Q, and b € (AM)./,

(6.5) h(€,b1b) < 7 < h(€,bibob).

Since bybob; * € E, by the hypothesis and v(Qp,) > 0, there exists y € T
such that

Q= {6 € Qu N7 "Qu: Be(v 1 €) € bbby ' (AM) 10}
has a positive v-measure. We now claim that
h(f,bﬂ)) <r< h(,.)/(g, blb))
for all £ € Q and for all b € (AM).r/5. This yields a contradiction to the
I-invariance of h. Since Q C Qy,, we have h(&,b01b) < r for all b € (AM )
by (6.5). On the other hand, for all b € (AM )./, and £ € Q, we have
Be(v™1, e)bib € bbby (AM)r job1b C bybo(AM).,

since mflME//QmMgl/Q C M for allm € M. Since v§ € Qp, and (&, b1b) =

7€, Be(yL, €)bb), it follows from (6.5) that h(y(&,b1b)) > r. This proves
3

the claim. O

7. N-ERGODIC DECOMPOSITIONS OF BR-MEASURES

Let I' < G be an Anosov subgroup. We prove Theorem 1.1(2) in this
section.
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7.1. Ergodic decomposition of an infinite measure. The following ver-
sion of ergodic decomposition of any Radon measure can be deduced from
[13, Thm. 5.2].

Proposition 7.1 (Ergodic decomposition). Let G be a locally compact sec-
ond countable group. Let N < G be a closed subgroup and M < G be a
compact subgroup normalizing N. Suppose that NM acts continuously on a
locally compact, o-compact, standard Borel space (X, B), preserving a Radon
measure p on X.

(1) There exists a Borel map x v+ p, from X to the space of N -invariant
ergodic Radon measures on X and an M -invariant probability mea-
sure p* on X equivalent to u with the following properties:

(a) Wy = fzn for every x € X andn € N.
(b) For all nonnegative Borel function f : X — R, we have

/fduw =, <f$"SN> () for p-a.e. x € X,

where Sy := {B € B: B.n = B for alln € N}. In particular, we

have
uz/ po dp” ().
zeX

If 1 is finite, we can take pu* = p.

(2) Let T C Sy be the smallest o-algebra such that the map x — pig
is T-measurable. Then T is countably generated, T = Sy mod u,
wo(lylr) = 0 for all y & [ol7, and j,([£]5) = 0 for all 2,y € X.
Here [y]T = NyeceTC denotes the atom of y in T .

(3) For each m € M, we have iy = piz-m for p-a.e. v € X.

Proof. Fix an M-invariant positive function ¢ € L'(u) with [¢dp = 1.
Then du* := ¢ du defines an N-quasi-invariant and M -invariant probability
measure on X. By applying [13, Thm. 5.2] to p* with the cocycle p :
N x X — R given by p(n,y) = log %y_)l), we get a Borel map = — uk
from X to the space of N-ergodic probability measures such that for all
nonnegative Borel function f : X — R, we have

/fd,u; =E,(f|Snv)(z) for p*-ae. zeX,

and d(gp‘f)(y) = ‘p(z?y_)l). In particular, we have p* = [ p*du*(xz). Now
define a Radon measure p, on X by du, := édu;. A direct computation
shows that p, is N-invariant, ergodic for all x € X and (1) holds. (2) follows
from the corresponding statement on ) from [13, Thm. 5.2].

In order to prove (3), we compute that for a non-negative Borel function
f: X >R,

Ham(f) = B (fISN) (xm) = By (m. f|Sn) (2) = g (m.f);
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the second equality follows since Sy.m = Sy and p* is M-invariant. It
follows that u},, = pk.m for p-a.e. x € X; this implies (3). O

7.2. P°-semi-invariant measures. In terms of the coordinates G = G/P°x
AMP°N, we have

(7.1) dinh® = dinge?5 ") dadmdn.

Recall that a measure p on I'\G is P°-semi-invariant if there exists a
character x : P — R such that for all p € P°, p,u = x(p)u. Since x must
be trivial on NM®°, u is necessarily N M °-invariant and if we set x,, € a* to
be —log(x|a), we get that for all a € A,

Ay b = e_Xﬂ(lOg a)u

We set 1), := x,, +2p € a*.

Proposition 7.2. Let p be a P°-semi invariant and N -ergodic Radon mea-
sure supported on E. Let i denote its I'-invariant lift to G ~ G/P°x AM°N.
Then v, € Dy and dfi is proportional to dﬁwu\/\oewﬂ(log“)da dmdn for some
I'-minimal subset Ag € Yr, or equivalently, p is proportional to mgﬂgo for

some & € Yr.

Proof. Since fi is a right P°-semi-invariant measure on G ~ G/P° x AM°N,
up to a positive constant multiple, we have

dii = X189 45 da dm dn

for some Radon measure 7 on G/P° and x € a* [17, Proposition 10.25].
Since ayji = e X#(1089) 5 it follows ¥ = tu. Denote by = : G/P° — G/P
the projection map. Since i is right N-ergodic, U is a I'-ergodic measure on
G/P°. And since fi is I-invariant, w7 is a (I, 4,)-conformal measure on
G/P (cf. [17, Prop. 10.25]). In particular, ¢, € Df by [17, Thm. 7.7]. Let
Uy, be the M-invariant lift of vy, := m. to G/P°. Since 7 < 1, and 7 is
T'-ergodic, v is proportional to D%\ Ao for some I'minimal subset Ay € Vr
by Proposition 4.8. This completes the proof. [l

7.3. Essential values and Ergodicity. We fix ¢ € Dy for the rest of the
section. Let vy be the unique (I',9)-Patterson Sullivan measure on A. Let
E, " be the set of essential values as defined in Definition 6.1.

Proposition 7.3. If M° C E,, then for any & € Yr, mE’RLg0 is N -ergodic.

Vw}
Proof. Let mER = Mg dm*(z) be an N-ergodic decomposition as given
by Proposition 7.1 with X = I'\G. Let f € C.(I'\G) and consider the
map h(g) = mg(f) for all [g] € X. Note that h defines a I'-invariant
Borel function on G/N. Since M° is a normal subgroup of AM, Lemma 6.3
implies that h is M°-invariant for 2y-almost all. By Proposition 7.1(3), it
follows that M° < Stabps(m;) for almost all x; without loss of generality,
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we may assume that M° < Stabjs(m,) for all z € X. Hence the finite group
S := M°\M acts on {m, : x € X}. Set

1
my = W Z my.S.
seM°\M
Since ng is M-invariant, we have mER = [x Medm*(z). As Mgy = my.m
for all m € M, the map = — m, is NM-invariant. Since ng is NM-

ergodic, m,, is constant m-a.e. x € X. Therefore we may fix g € X so that
mER = My,. Set M, := Stabps(mg,). Then

1
BR __
ST VES VA 2 M

where mg,.s are mutually singular to each other. We claim that each m,.s
is A-semi-invariant with ¢m, s = ¢ for each s € M, \M. It suffices to
consider the case when s = [M*]. Let

A" :={a € A: a preserves the measure class of m,, }.

As A’ is a closed subgroup of A, it suffices to show that for any unit vector

u € aand any € > 0, exptu € A’ for some 0 < t < &. Let a = expnajr‘2

for n = #M/M*. Since mE’R is quasi-invariant under a and has n number

of ergodic components, it follows that for some 1 < k < n + 1, a"c.mx0
is in the same measure class as my,, implying that a* € A’. Hence A =
AL As mER is semi-invariant under A, the claim follows. Therefore, by

Proposition 7.2, my, is proportional to ng’go for some & € Yr. Hence
M, = Staby, ng‘go = Mr. Since the measures mg,.s are mutually singular

to each other, all &’s are distinct. Therefore ng = g,enr (&) ngLgO
for some constant ¢(&y) > 0. It remains to observe ¢(&y) = 1 as the supports
of m5R|gO are mutually disjoint from each other. O

Proof of Theorem 1.3. Let Or denote the space of all N-invariant ergodic
and P°-quasi-invariant Radon measures supported on &£, up to constant
multiples. We write Yr = {&; : 1 < i < k} with k = #Yr = #M/Mp.
Consider the map ¢ : D x {1,--- ,k} — Or defined by ¢(¢,i) = mg’R\g.
By Proposition 7.3, ¢ is well-defined. Since any measure contained in Or
must be P°-semi-invariant, being N-ergodic, Proposition 7.2 implies that ¢
is surjective. That ¢ is indeed a homeomorphism now follows because the
map Y — ng is a homeomorphism between D} and the space of all NM-
invariant ergodic and A-quasi-invariant Radon measures supported on &, up
to constant multiples, as shown in [17]. This implies Theorem 1.3, as D} is

homeomorphic to Rr#k&=1 [17].

7.4. The largeness of the length spectrum. Without loss of generality,
we may assume that I' N int ATM # () for the rest of section. Recall the



ERGODIC DECOMPOSITIONS 25

notation I'* from (3.4) and A(g) from Definition 3.1. We will need the
following:

Proposition 7.4. For any C > 1, the closed subgroup of AM generated by
{A(0) € AM : v9 € T*, (A (0)) > C} contains AM®.

By Corollary 3.7 applied to I'y, this proposition follows from the following
lemma.

Lemma 7.5. For any C > 1, there exists a Zariski dense subgroup I'y, < T',
depending on C, such that Ty, Nint ATM # 0 and

P(A(y)) > C  forally €Ty — {e}.
In particular, S\(Ffp) C {A(0) € AM : v € T*,9(A\(70)) > C}.

Proof. Recall that II is the set of all simple roots of g with respect to a™. By
[1, Lem. 4.3(b)], there exist € > 0 and {s1, s2} C I' such that s; € int AT M,
and for each m > 1, s7%, si* are (II, ¢)-Schottky generators and the subgroup
Ty, = (s7", s5") is a Zariski-dense (II, £)-Schottky subgroup of I" (see [1, Def.
4.1] for terminologies).

Fix m > 1 and let z € A(I';,) — {0}. Then z = A(w) for some w =
gt gt with g; € {sfm,sétm}, n; € N, g; # 91'_-:1@ = 1,---,{) where
we interpret ggiq := g1; this is because every element of a (I, €)-Schottky
group is conjugate to a word of such form. By [1, Lem. 4.1], there exists
R = R(e) > 0 (independent of w € I'y) such that

¢
IA(w) = > niX(gi)| < (R.
=1

Since w(A(s;d)) > 0 and )\(sj-[m) = m)\(sjﬂ), we can choose mgy € N such
that
P(A(s7™)) > [¢Y|R+C  for each j =1,2.
Set
Fw = Fmo-
Then for any z = A(w) € A(I'y,) — {0} as above,

l 1
0(z) > Ym0 ~ I9leR > S m(wA0) — IWIR) > €
i=1 =1

The lemma follows. O

7.5. Proof of Main proposition. Recall the a-valued Gromov product on
A®: for any &€ # n in A,

G(&,m) :=log Bk (e, h) +ilog B;* (e, h)
for h € G satisfying that h* = £ and h™ = 7. For any fixed p = g(0) € G/ K,
the following

dd,}p(é‘,'f}) = e_w(g(g_lﬁ,g_ln)) fOI- any é‘ # n ln A
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defines a virtual visual metric on A, satisfying a weak version of triangle
inequality [17, Lem. 6.11]. For £ € A and r > 0, set

By(&,7) :={ne€A:dyp(&n) <r}.
We recall the following two lemmas:

Lemma 7.6. [17, Lem. 6.12] There exists No(1,p) > 1 satisfying the fol-
lowing: for any finite collection By,(&1,71),- - ,Bp(&n,mn) with & € A and
ri > 0, there exists a disjoint subcollection By,(&;,,74,),- -+ ,Bp(&i,, ri,) such
that

Bp(ﬁl; TI)U' : UBP(§R7 T’n) C Bp(fi1;3N0(T/J7p)7’i1)U' : 'UIBp(é.iw 3N0(¢7p)riz)-

Moreover, Ny(1,p) can be taken uniformly for all p in a fixred compact subset
of G/K.

Lemma 7.7. [17, Lem. 10.6]. There exists a compact subset C C G such
that for any & € A, there exists g € C such that g7 = £ and g~ € A.

We set

Ny := max Ny(¢,p) < 00
peC(o)

with No(¢,p) and C given by Lemmas 7.6 and 7.7 respectively.

Proposition 7.8 (Main Proposition). For all vy € T'* satisfying ¥ (A(vo)) >
log 3No + 1, we have A(y) € By,

7.6. Proof of Theorem 1.1(1). By Propositions 7.4 and 7.8, E,,, contains
AM?®. Therefore Theorem 1.1(1) follows from Proposition 7.3.

The rest of the section is devoted to the proof of Proposition 7.8.

Definition of Br(7o,¢). We now fix ¢ > 0 as well as an element vy € I'™*
such that
¥(A(70)) > log 3No + 1.
Note that N L for all v € I' . We can choose g € C such that
9T =y, and g~ € A. Note that g7 € NTet, as 49 € T*. Set
p=g(0), n:=g , and & :=g" .
For any £ € A —{n, e}, we claim that there is R, = R.(§) > 0 such that

&M (9,¢) € BEM (9,€)(AM).

for all & € Bp(f,e‘”()‘(w”)‘(”gl))+2”¢’”€R5). Indeed, since e~ ¢ {&,g 1€},
we have £, g7'¢ € Ntet by Lemma 4.2. The claim follows as the map
& ﬁg}M(g, e) is continuous at .

By [17, Lem. 6.11], the family {B,(¢,r) : £ € A, > 0} forms a basis of
topology in A. For v € T, let r4(y) be the supremum of » > 0 such that for
all £ € B,(v&o, 3Nor), B?M(g,yyov_lg) is well-defined and

(7.2) BEM (9. 7707 9) € By (9, 7707 9)(AM)..
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If v¢ & {e, g} and hence vy, g '7& € Nte™, then ry(y) > 0.
For each R > 0, we define the family of virtual balls as follows:

Br(v0,€) = {Bp(v&o0,7) : v € I',0 < r < min(R, 74(7))}.

We remark that the difference of the definition of By in this paper and
our previous paper [17] lies in the definition of ry(v); in [17], we used the
A-valued Busemann function in (7.2) whereas r4(y) is defined in terms of
the AM-valued Busemann function here.

Theorem 7.9. [17, Thm. 5.3] There exists C = C(¢,p) > 0 such that for
ally €T and £ € A,

—(a(p,p)) — C < (log B¢ (vp, p)) < Y(alyp,p)) + C.
where a(p,q) := p(g~'h) for p= g(0) and q¢ = h(o).

For ¢ € G/K and r > 0, the shadow of the ball B(g,r) viewed from
p=g(0) € G/K and £ € F are respectively defined as

Or(p,q) :=={gkt € F: k€ K, gkint Ao B(q,r) # 0}
where g € G satisfies p = g(0), and
0,(&,q) = {h+ € F:h” =& hoe B(q,r)}.

Lemma 7.10. [17, Lem. 5.7] There exists k > 0 such that for any p,q €
G/K and r > 0, we have

sup |log B¢\ (p, q) — a(p.q)|| < rr.
£€0-(p,q)

We let C'= C(,p) > 0 and k > 0 be the constants given by Theorem 7.9
and Lemma 7.10 respectively. Since §y belongs to the shadow O, (sy) (n,p),
we can choose 0 < s = s(7y9) < R small enough such that

-1
(7.3) B, (&0, e (A(0)+A (7 ))+%|\1/J||5+205) C O (sn) (1, p).

Next, observe that the map &' — B¢(g,709) is continuous at &, as g & =
et € NTeT. Hence we may further assume that s is small enough so that

(7.4) B (9.709) € BN (9,709)(AM).  for all &' € B, (&,e*7s).
For each v € T, set
D(v&o,7) := B,(v&o, ﬁe—w(u(g*wg)ﬂi(g’W’lg))r) and
3NoD (7o, ) := By (véo, e Vo™ 19+~ v )y

Here note that a(y~'p,p) = u(g~"vg) and ia(y'p,p) = u(g~ v 'g).

Lemma 7.11. Let R > 0 and £ € A — {n}. Let v; € I be a sequence such
that 'y;lp — 1, 7{15 — &, and 5?4(%,6) — e ast — 0o. Then, by passing
to a subsequence, the following holds for all sufficiently small r > 0: there
exists ig = ig(r) > 0 such that for all i > iy, we have
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(1) € € D(viko,r) and D(viéo,r) € Br(y0,€); in particular, for any

R >0,
L)
rc U b
DEBR(70,¢)
(2) {88M (e, 7ir07 1) = € € 3NoD(vio, )} € A7) (AM) ().
Proof. Let g € G be such that p = g(o). Note that v; 'go — n = g~ and
v l¢ 5 & = ¢gT. By passing to a subsequence, we have a neighborhood

U. C F of & associated to the sequence ~; given by Proposition 5.1. Since
& € Ug, there exists Ry > 0 such that

Bp(fm620R1)7761Ep(§07€2CR1) c U..

Let 0 < r < min(s(yo), R:/2,R1,R). In view of [17, Lem. 10.12], we
have 3NyD(v:&,r) C %-IBp(gg,eQCr). In order to show that D(v;&,r) €
Br(70,¢), it suffices to check that for all & € B, (&, €2r),
B (v g 07 ) € BE (v g0y g M
this implies that r < rq(7;).
We start by noting that since r < s(7g), we have ﬂé\?(g, Y9g) € Bé\g(g, Yog)M-.
Since &, v, ¢’ € U., by Proposition 5.1, for all sufficiently large 4,
B (v g 077 9) = B (v 9, 9) B8 (9, 7%09) B (09,7075 ' 9)
= B¢/ (019,908 (9:709) 8501, (0719, 9) ™
€ B (v 9,9)88(9,7%09)BY (v 19, 9) Moy
= B (v 9.0 9) Moe)

which verifies that D(v;&p, ) belongs to the family Br(vo,€). The claim
that £ € D(v;&o,r) can be shown in the same way as in the proof of [17,
Lem. 10.12]. This proves (1).

(1) implies that for all sufficiently large ¢ and & € 3Ny D(v;&o,7), we have

(7.5) BaM (g, viv0v; ' 9) € B (g, 7077 " 9) (AM)...
Now note that for all & € 3NyD(v;&o,7),
BaM (e, viv07; ") = BeM (e, 9)B4™ (9, 7iv0v; ' 9)BE™M (vivo; g0 )
AM AM —1 AM —1
(7.6) = B (e 9)Be™ (g, vin0mi 9B =1 10 (e: )
On the other hand,

- —(log B4 (vivg *v; Lg.g)Hilog B2 . (vivg My g,
dp(%%% 15/7%50) — P(log B (vivg i " 9:9)+ilog B e (vivg 99))dp(£/’%£0)

-1
< e (A(0)+A (g ))+2II¢||€dp(§/7%§0)7
and hence

& 4oy 1 € By (yi€o, eV P00 A0 D)2l
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Since
(7.7) vifo = & asi—

by Lemma 4.16 and r < R./2, for all sufficiently large i and all ¢ €
3NoD(vio,7), the elements &, yiv0v; '€, and ;o all belong to the subset
Bp(§7 ew(A(70)+A(761))+2Hw”5R€)_ Hence

(7.8) B (e, 9), B2 1 (e,9), Bt (e, 9) € BN (e, g) M.

Yi%o Vi &
Combining (7.5), (7.6) and (7.8), it follows that for all £’ € 3NyD(v:&o,7),
BEM (e,7iv07; 1) € Bati(e, viv0v; )(AM) o).
Note that by Proposition 5.1 and (7.7), we get
BeM (vt e) = ﬁAM( Tt eBEM (v g, 9086 (g, €)
,go( 9B (v 9, 9)88M (g, €)
£ (e, 9) 7—1§(% 9:9)86™ (9, €)(AM) o2
:74—]\{[5( ; 772 )B7—1£<71 g, 9)52%5(976)(14]\4)0(5)
(7.9) = 67;15( i ae)(AM)O(a)
Since ﬁ ( “le) = Béw(e,’yi) — e as ¢ — oo by the hypothesis, (7.9)
implies that
(7.10) Bé\g('yi_l, e) € Moy for all large enough 1.
Since
Bt (e ") = Barta (€7 Birga (i vi0) Borte (Y0, %0, )
= B4 (v e)A0) B (i te)
we deduce from (7.10) that
BaM (e, 707 1) € M) (AM) o)
as desired. O

Lemma 7.12. Let B C F be a Borel set with vy,(B) > 0. Then for vy-a.e.

£ € B,

¢ € D(véo, 1), r < R, and

) vy (BND N _ 2

lim sup ”’i ol ?62)) D 5 (e o) € A(o)(AM). b =1,
R—0 W EATS0, for all & € 3NyD (&0, 1)

Proof. To each Borel function h : G/P — R, we associate a function h* :
G/P — R defined by
£e€ D= D(y&,r),r <R, and

. . 1 S0, 7)57
h*(€) = limsup V(D)/ hdvy : BaM (e, 77077 1) € M) (AM).
R=0 v b for all ¢ € 3NoD(y&, )
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By Lemma 4.16 and 7.11, h* is well defined on Az — {n} and hence vy-a.e.
on G/P by Corollary 4.10. We may then apply the same argument as in [17,

Proof of Prop. 10.17] to deduce h* = h vy-a.e. Hence the lemma follows by
taking h = 15. O

Proof of Proposition 7.8. Let B C F be a Borel set such that v (B) > 0
and let € > 0 be arbitrary. By Lemma 7.12, for vy-a.e. { € B, there exist
v eI and D = D(~&y,r) € Br(70,€) containing £ such that

(1) vp(D N B) > (14 e ¥C00 D=IWle)=1y, (B) and
(2) BaM (e, 107™") € A(70)(AM). for all € € 3NoD(v&o, 7).
We claim that

(7.11) {6 € Bnyyoy 'B: BM (e, 77077) € AM(v0)(AM).}

has a positive v-measure, which will finish the proof.
We have yy0y~tD C D by [17, Proof of Prop. 10.7]. Together with (2)
above, it follows that

BEM (e, v07™") € AM(0)(AM).  for all £ € yy0y ' D.

Consequently, (7.11) contains
(7.12) (DN B)Nyyy (DN B),

which has a positive vy-measure by [17, Proof of Prop. 10.7]. This proves
the claim. [

Remark 7.13. We remark that the approach of this paper shows the following
result when G has rank one.

Theorem 7.14. Let G have rank one, and I’ < G be a Zariski dense discrete
subgroup. Let v, be an ergodic I'-conformal probability measure on the limit
set of T'. Let mPMS and mBR be respectively the BMS and BR measures on
I'\G associated to v,. Suppose that mPMS is AM-ergodic. Then mPMS is
A-ergodic and mPR is N-ergodic.

In the rank one case, all the properties that we had to establish for Anosov
groups hold automatically from the negative curvature property of the as-
sociated symmetric space. As I' is Zariski dense, Theorem 4.4 proves that
mBMS is the sum of at most [M : M°] number of A-ergodic components.
Then the Hopf ratio ergodic theorem for the one-parameter subgroup A im-
plies that v, gives full measure on the set of strong Myrberg limit points of
T, i.e., Corollary 4.11 holds. Now the arguments in section 7 shows that the
set of v,-essential values is equal to AM, and hence mPR is the sum of at
most [M : M°] number of N-ergodic components. When G # SLa(R), M is
connected [26, Lem. 2.4] and for G ~ SLy(R), Mt = {+xe} by ([6], Lem. 2).
Hence Theorem 7.14 follows.
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