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ABSTRACT. Let M be a non-elementary convex cocompact hyperbolic
3-manifold and § be the critical exponent of its fundamental group. We
prove that a one-dimensional unipotent flow for the frame bundle of M
is ergodic for the Burger-Roblin measure provided é > 1.
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1. INTRODUCTION

In this paper we study dynamical properties of one-parameter unipotent
flow for the frame bundle of a convex cocompact hyperbolic 3-manifold M.
When the critical exponent of the fundamental group 71 (M) exceeds one, we
show that this flow is conservative and ergodic for the Burger-Roblin mea-
sure mPR: almost all points enter to a given Borel subset of positive measure
for an unbounded amount of time. Such a manifold admits a unique positive
square-integrable eigenfunction ¢ of the Laplacian with base eigenvalue.
Our result implies that a randomly chosen unipotent orbit, normalized by
the time average of the eigenfunction ¢y, becomes equidistributed with re-
spect to the Burger-Roblin measure.

2010 Mathematics Subject Classification. Primary 11N45, 37F35, 22E40; Secondary
37A17, 20F67.
Key words and phrases. Geometrically finite hyperbolic groups, Ergodicity, Burger-
Roblin measure, Bowen-Margulis-Sullivan measure.
Mohammadi was supported in part by NSF Grant #1200388.
Oh was supported in part by NSF Grant #1068094.
1



BURGER-ROBLIN 2

To state our result more precisely, let G = PSLy(C), which is the group of
orientation preserving isometries of the hyperbolic space H?. Let I' be a non-
elementary, torsion-free, discrete subgroup of G which is convex cocompact,
that is, the convex core of I' is compact. Equivalently, I'\H® admits a finite
sided fundamental domain with no cusps. Convex cocompact groups arise
in topology as fundamental groups of compact hyperbolic 3-manifolds with
totally geodesic boundary.

The frame bundle of the manifold M = T'\H3, which is a circle bundle
over the unit tangent bundle T'(M), is identified with the homogeneous
space X = I'\G. We consider the unipotent flow on X given by the right
translations of the one-parameter unipotent subgroup

(1.1) U= {u = G ?) .t €R).

This flow is called ergodic with respect to a fixed locally finite Borel
measure on X, if any invariant Borel subset is either null or co-null. We
denote by 0 the critical exponent of I', which is equal to the Hausdorff
dimension of the limit set of I ([37], [34]). When § = 2, X is compact
[34] and the classical Moore’s theorem in 1966 [23] implies that this flow is
ergodic with respect to the volume measure, i.e., the G-invariant measure.
When § < 2, the volume measure is not ergodic any more, and furthermore,
Ratner’s measure classification theorem [30] says that there exists no finite
U-ergodic invariant measure on X. This raises a natural question of finding
a locally finite U-ergodic measure on X. Our main result in this paper is
that when § > 1, the Burger-Roblin measure is conservative and ergodic.

The conservativity means that for any subset S of positive measure, the
U-orbits of almost all points in S spend an infinite amount of time in S.
Any finite invariant measure is conservative by the Poincaré recurrence the-
orem. For a general locally finite invariant measure, the Hopf decomposition
theorem [14] says that any ergodic measure is either conservative or totally
dissipative (i.e., for any Borel subset S, zu; ¢ S for all large |t| > 1 and a.e.
x € S). For § < 2, there are many isometric embeddings of the real line in
X, by t — xuy, giving rise to a family of dissipative ergodic measures for U.

We refer to the Burger-Roblin measure as the BR measure for short, and
give its description using the Iwasawa decomposition G = KAN: K =
PSUy, A ={as:s € R}, N ={n,: z € C} where

_(ef? 0 dn (10
ag = 0 675/2 and n, = L 1)

Furthermore let M denote the centralizer of A in K.

The groups A and N play important roles in dynamics as the right trans-
lation by as on X is the frame flow, which is the extension of the geodesic
flow on T!(M) and N-orbits give rise to unstable horospherical foliation on
X for the frame flow.
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Fixing o € H? stabilized by K, we denote by v, the Patterson-Sullivan
measure on the boundary 9(H?), supported on the limit set of I', associated
to o ([26], [34]), and refer to it as the PS measure. Sullivan showed that the
PS measure coincides with the d-dimensional Hausdorff measure of the limit
set of I'. Using the transitive action of K on (H?) = K/M, we may lift v,
to an M-invariant measure on K.

BR

Burger-Roblin measure Define the measure m°" on G as follows: for

P € Co(Q),
mBR(y) = / Y(kasn,)e % dvy(k)ds dz
G

where ds and dz are the Lebesgue measures on R and C respectively. It is left
I-invariant and right N-invariant. The BR measure mB® is a locally finite
measure on X induced by mPR. When § = 2, mPR is simply a G-invariant
measure, but it is an infinite measure if § < 2.

Roblin showed that the BR measure is the unique N M-invariant ergodic
measure on X which is not supported on a closed N M-orbit in X [31]. For
I' Zariski dense (which is the case if § > 1), Winter [36] proved that mBR
is N-ergodic, and this implies that mB® is the unique N-invariant ergodic
measure on X which is not supported on a closed N-orbit in X, by Roblin’s
classification. We note that the analogous result for G = PSLa(R) was
established earlier by Burger [5] when I' is convex-compact with 6 > 1/2.

The main result of this paper is:

Theorem 1.1. Let I' be a convexr cocompact subgroup of G which is not
virtually abelian. The U-flow on (X, mPR) is ergodic if § > 1.

We also show the conservativity of the BR-measure for § > 1, without
knowing its ergodicity a priori.

Remark 1.2. We remark that most of arguments in the proof of Theorem
1.1 works for a higher dimensional case as well. Namely, the same proof
will show that if G is the group of orientation preserving isometries of the
hyperbolic n-space, I' is a Zariski dense, convex cocompact subgroup of G,
U is a k-dimensional connected unipotent subgroup of G, then the U action
is ergodic with respect to the BR-measure on I'\G if 6 > n — k.

For a probability measure p on X, the Birkhoff pointwise ergodic theorem
(1931) says that the ergodicity of a measure preserving flow {u;} implies that
the time average of a typical orbit converges to the space average: for any
€ LY(X) and ae. © € X, as T — oo,

T
(1.2) ,}/0 w(xut)dt—>/xwd,u.

A generalization of the Birkhoff theorem for an infinite locally finite con-
servative ergodic measure was obtained by E. Hopf [11] in 1937 and says
that the ratio of time averages of a typical orbit for two functions converges
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to the ratio of the space averages: for any 11,1 € L'(X) with 1o > 0 with
fXd)gdu>0, as T — oo,

fo d}l xut dt N sziZ)l d:u
fO 1/12 azut)dt fX 77/}2 dM

For our X = I'\G with I" convex cocompact and § > 1, there is a unique
positive eigenfunction ¢g € L?(M) for the Laplacian with the smallest eigen-
value §(2 —9) and with ||¢gl|2 = 1, [34]. In the upper half-space coordinates,
H? = {z+jy: z € C,y > 0} with d(H?) = C U {oo}, the lift ¢y of ¢p to
H? is realized explicitly as the integral of a Poisson kernel against the PS
measure v, (with o = j):

. . 240 1y \°
wzrin = [ () ante)

The BR measure on X projects down to the absolutely continuous mea-
sure on the manifold M and its Radon-Nikodym derivative with respect to
the hyperbolic volume measure is given by ¢y.

We deduce the following from Theorem 1.1 and Hopf’s ratio theorem
(1.3):

Corollary 1.3. Let 6 > 1.

(1) For mPR almost all x € X, the projection of xU to M is dense.
(2) For any + € LY(X, mPR) and for almost all x € X,

fo (vuy)dt / & dmPR,
X

T—>°° f ¢o(zug)dt

ae xr € X.

(1.3)

We explain the proof of Theorem 1.1 in the case § > 1, in comparison
with the finite measure case. This account makes our introduction a bit
too lengthy but we hope that this will give a summary of the main ideas
of the proof which will be helpful to the readers. The proof of Moore’s
ergodicity theorem is based on the following equivalence for a finite invariant
measure u: j is ergodic if and only if any U-invariant function of L?(X, )
is constant a.e. Through this interpretation, his ergodicity theorem follows
from a theorem in the unitary representation theory that any U-invariant
vector in the Hilbert space L?(X, jug) is G-invariant for the volume measure
HG-

For an infinite invariant measure, its ergodicity cannot be understood
merely via L2-functions, but we must investigate all invariant bounded mea-
surable functions. This means that we cannot depend on a convenient the-
orem on the dual space of X, but rather have to work with the geometric
properties of flows in the space X directly. We remark that as we are working
with a unipotent flow as opposed to a hyperbolic flow, the Hopf argument
using the stable and unstable foliations of flows, which is a standard tool in
studying the ergodicity for hyperbolic flows, is irrelevant here.
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We use the polynomial divergence property of unipotent flows to estab-
lish that almost all U-ergodic components of mPR are invariant under the
full horospherical subgroup N. The N-ergodicity of the BR measure then
implies the U-ergodicity as well. This approach has been noted by Margulis
as an alternative approach to show the ergodicity of the volume measure ug
in the finite volume case.

However, carrying out this argument in an infinite measure case is subtler.
Indeed the heart of the argument, as is explained below, lies in the study of
two nearby orbits in the “intermediate range”. To the best of our knowledge,
such questions in infinite measure spaces have not been understood before.

Let us present a sketch of the argument in the probability measure case.
Let (X, i) be a probability measure space. Then it is straightforward from
(1.2) that for any generic point z, any 0 < r < 1, and any ¢ € C.(X)

1 T
(1.4) (1—7")T/rT (xuy)dt — /Xd)(a:)d,u.

Statements of this nature will be called a “window theorem” in the sequel.

We now explain how a suitable window theorem can be used in acquiring
an additional invariance by an element of N — U. This idea was used by
Ratner; see [29, 30] and the references therein. We also refer to [17, 18]
where similar ideas were used by Margulis in the topological setting.

Let N and U denote the transpose of N and U respectively. Denote by
N¢g(U) the normalizer of U in G.

Choose sequences of generic points z; and y; inside a suitably chosen
compact subset of X, moreover suppose that y, = zrgx with gx ¢ Ng(U) and
gy — e PutV = {<(1) Zf) 1t e ]R}, and assume that the V-component
and the U-component ! of gj are of “comparable” size.

Flowing by u;, we compare the orbits x;u; and yru; = xkut(ut_lgkut). The
divergence properties of unipotent flows (a simple computation in our case),
in view of our above assumption on g;’s, says that the divergence of the
two orbits is comparable to u, ! gwu. Furthermore, the (2, 1)-matrix entry of
u; ' gruy dominates other matrix entries. Let p(t) denote the (2,1)-matrix
entry of u; ! grue. This is a polynomial of degree two whose leading coefficient
has comparable real and imaginary parts. Therefore, the divergence of the
two orbits is “essentially” in the direction of N — U. Choose a sequence
of times T} so that p(7}) converges to a non-trivial element v € N — U.
Letting € > 0 be small, since p(t) is a polynomial, yxu; remains within an
O(e)-neighborhood of zxuv for any ¢t € [(1 — &)T}, T)]. Hence the window
theorem (1.4) applied to the sequence of windows [(1 — &)Ty, Tk] implies
that u(v) — p(vap) = O(e) and hence p(y) = p(v.ah) as € > 0 is arbitrary.
Repeating this process for a sequence of v,, — e, we obtain that the measure
W is invariant under N.

Lthese components are well defined for all gi close enough to e.
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We now turn our attention to an infinite measure case, assuming § > 1.
There is a subtle difference for the average over the one-sided interval [0, T']
and over the two sided [T, 7], and the average over [—T,T] is supposed
to behave more typically in infinite ergodic theory. We first prove that the
BR measure mBR is U-conservative based on a theorem of Marstrand [19],
which allows us to write an ergodic decomposition mBPR = fx e Where i,
is conservative for a.e. x. Letting x be a generic point for Hopf’s ratio
fIT*IrT Y1 (wug)dt ~ pa (P1) it
fIT_I'rT o (zut)dt Ha (¢'2) ' 1
is sufficient to prove that there is some ¢ > 0 such that for all T > 1,

(1.5) /] _] Yo (zug)dt > ¢ | pa(zue)dt.

I

theorem and Iy = [—T,T], in order to deduce

This type of inequality requires strong control on the recurrence of the
flow, and seems unlikely that (1.5) can be achieved for a set of positive
measure, see [1, Section 2.4]. Hence formulating a proper replacement of
this condition (1.5) and its proof are simultaneously the hardest part and
at the heart of the proof of Theorem 1.1.

We call x € X a BMS point if both the forward and backward endpoints of
the geodesic determined by x belong to the limit set of I'. These points pre-
cisely comprise the support of the Bowen-Margulis-Sullivan measure mBM3
on X, which is the unique measure of maximal entropy for the geodesic flow,
up to a multiplicative constant; see Section 2.3. We will call mBPMS the BMS
measure for simplicity. The support of mBMS is contained in the convex core
of I', and in particular a compact subset. By a BMS box, we mean a subset
of the form mONpAprM where zg € X is a BMS point, p > 0 is at most
the injectivity radius at x¢ and S, means the p-neighborhood of e in S for
any S C G.

Theorem 1.4 (Window Theorem). Let 6 > 1. Let E C X be a BMS box
and 1 € Co(X) be a non-negative function with ¥|g > 0. Then there exist
0<r<1andTy>1 such that for any T > Ty,

T

T
mB{z c B P(zug)dt < (1 — 7“)/ Y(zug)dty > 5 - mBR(E).
—rT -T

We call x a good point for the window Ip — I if

/ Wau)dt < (1—7) [ (wu)dt,

Lot It

or equivalently if [ - Y(zug)dt > r [ I Y(xug)dt. The window theorem
says that the set of good points for the window I — I.p has a positive
proportion of E for all large T'. It follows that for any € > 0, we can choose
a sequence Ty, = Tj(e) such that the set Ej, of good points for the window
[(1 — )Tk, Tk] (or [Ty, —(1 — €)Tk]), has positive measure. Let zy,y; =
Trgr € Ei. To be able to use this in obtaining an additional invariance, we
need to control the size as well as the direction of the divergence u}kl gEUT, -
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More precisely, we need to be able to choose our generic points y, = Trgi SO
that the size of g; is comparable with T%? and the size of its V-component
is comparable with that of U-component.

We emphasize here that we work in the opposite order of a standard
way of applying the pointwise ergodic theorem where one is usually given
a sequence gj and then find window I, depending on g (as the window
theorem works for any 7j). In our situation, we cannot choose T}, and
rather have to work with given T} (depending on ¢). So only after we know
which T}’s give good windows for e-width, we can choose good points xygy
for those windows. What allows us to carry out this process is that we have
a good understanding of the structure of the generic set along contracting
leaves. To be more precise, the PS-measures on the contracting leaves are
basically 6-dimensional Hausdorff measures on R?, and the assumption that
0 > 1 enables us to find g for the “right scale”, see Section 4.

Hoping to have given some idea about how the above window theorem
1.4 will be used, we now discuss its proof, which is based on the interplay
between the BR measure and the BMS measure. We mention that the close
relationship between the BR and the BMS measure is also the starting point
of Roblin’s unique ergodicity theorem for N M-invariant measures.

Unlike the finite measure case, mP® is not invariant under the frame flow,
which is the right translation by as in X. However, as s — +o00, the nor-
malized measure uBR = (a_s).mPR|g (the push-forward of the restriction
mBR| g by the frame flow a_;) converges to mBPMS in the weak* topology.

Under the assumption § > 1, the BMS measure turns out to be U-
recurrent and hence almost all of its U-leafwise measures are non-atomic.
This will imply that the analogue of (1.5) holds for “most” of the U-leafwise
measures of mBPMS,

The goal is to utilize this and the fact that pB® weakly converges to
mBMS " in order to deduce that many of the U-leafwise measures of mBR
must also satisfy (1.5). We mention that in general it is rather rare to be
able to deduce “interesting” statements regarding leafwise measures from
weak™ convergence of measures. One possible explanation for this is that the
leafwise measures of a sequence of measures may change “very irregularly”
as one moves in the transversal direction, e.g. approximation of Lebesgue
measure by atomic measures.

We succeed here essentially because we have a rather good understanding
of the N-leafwise measures of u2R®. To be more precise, we can show (i) the
N-leafwise measures of u2R change rather regularly, see Section 3, further-
more, (ii) the projection of an N-leafwise measure of uB% converges in the
L?-sense to its counterpart of mBPMS in most directions, see Section 5.1.

We emphasize that we establish the L2-convergence of these measures,
not merely the weak™® convergence, and this is crucial to our proof; see the
Key Lemma 5.12 and Section 7. The proof of this L?-convergence requires
a certain control of the energy of the conditional measures of xE® which is
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uniform for all s > 1. Our energy estimate is obtained using the following
deep property of the PS measure: for all £ in the limit set of I' and for all
small 7 > 0, v,(B(&,7)) < r? (with the implied constant being independent
of € and 1), together with the Besicovitch covering lemma. Lastly we remark
that our proof of the window theorem makes use of the rich theory of entropy
and is inspired by the low entropy method developed by Lindenstrauss in
[15].

Acknowledgment We are very grateful to Tim Austin for numerous helpful
discussions regarding various aspects of this project. We also thank Chris
Bishop and Edward Taylor for helpful correspondences regarding totally
disconnected limit sets of Kleinian groups.

2. ERGODIC PROPERTIES OF BMS AND BR MEASURES

2.1. Measures on T!(I'\H?) associated to a pair of conformal den-
sities. Let (H?,d) denote the hyperbolic 3-space and O(H?) its geometric
boundary. We denote by T!(H?®) the unit tangent bundle of H? and by =
the natural projection from T!(H?) — H?3.

Denote by {g° : s € R} the geodesic flow. For u € T!(H3), we set

m_g°(u)

ut = lim ¢°(u) and u” = li
5—00 S—>—00

which are respectively the forward and backward endpoints in (H?®) of the
geodesic defined by wu.

Definition 2.1. (1) The Busemann function 8 : 9(H?) x H? x H* — R
is defined as follows: for £ € 9(H?) and =,y € H3,

Bf(x’y) = Sll)rgo d(l‘,fs) - d(yfs)

where £, is a geodesic ray tending to £ as s — oo from a base point
o € H3, fixed once and for all.
(2) For u € T'(H3), the unstable horosphere H; and the stable horo-

sphere 1, denote respectively the subsets
{ve THH®) : v~ =u™, B, (w(u),7(v)) = 0};
[v e THH) : v+ = ut, B (w(u), m(v)) = O}.

Each element of the group PSLy(C) acts on C = C U {oo} as a Mobius
transformation and its action extends to an isometry of H?, giving the iden-
tification of PSLo(C) as the group of orientation preserving isometries of H?.
Note that (g(u))* = g(u®) for g € G. The map T}(H?) — 9(H?) given by
u > ut is called the visual map.

For discussions in this section, we refer to [31], [24] and [22]. Let I" be
a non-elementary (i.e., non virtually abelian) torsion-free discrete subgroup
of G. Let {u, : * € H3} be a T-invariant conformal density of dimension
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8, > 0 on O(H?). That is, each y, is a non-zero finite Borel measure on
O(H3) satisfying for any x,y € H?, £ € 9(H?) and v € T,

dpiy
dy
where Y, ji,(F) = pz (v~ 1(F)) for any Borel subset F' of 0(H?).

Let {u,} and {u,} be T-invariant conformal densities on O(H?) of di-
mension §,, and §,s respectively. Following Roblin [31], we define a measure

m#H on THI\H?) associated to the pair {,} and {y,}. Note that, fixing
o € H?, the map

Valbz = [yz and (¢) = e OnbBe(v.r)

u (uh u”, By (0, m(w)))
is a homeomorphism between T'(H?) with (O(H?) x 9(H3) — {(£,€) : ¢ €
O(H3)}) x R.

Definition 2.2. Set
dm“’”l(u) — OByt (0m(w) 6,18, — (0 (u)) dpo(u)dp! (u™)dt.

It follows from the I-conformal properties of {y,} and {x,} that m* is
I-invariant and that this definition is independent of the choice of o € H?.
Therefore it induces a locally finite Borel measure m## on T'(I'\H?).

2.2. BMS and BR measures on T!(I'\H?). Two important densities we
will consider are the Patterson-Sullivan density and the G-invariant density.

We denote by § the critical exponent of I', that is, the abscissa of conver-
gence of the Poincare series Pr(s) := > e5400) for o € H3. As T is
non-elementary, we have ¢ > 0. The limit set A(T") is the set of all accumula-
tion points of orbits I'(2), z € H3. As I acts properly discontinuously on H?,
A(T) C O(H3). Generalizing the work of Patterson [26] for n = 2, Sullivan
[34] constructed a I'-invariant conformal density {v, : z € H3} of dimension
§ supported on A(T"). Fixing o € H3, each v, is the unique weak limit as

s — 01 of the family of measures on the compact space A .= H?u Ooo (HP):

L 1 —sd(z,y(o
SR SRPEETCRO) 7;6 =D, 0
where d,,) is the dirac measure at v(0). This family will be referred to as
the PS density. When T' is of divergence type, i.e., Pr(d) = oo, the PS-
density is the unique I'-invariant conformal density of dimension § (up to a
constant multiple) and atom-free [31, Cor. 1.8].

We denote by {m, : z € H3} a G-invariant conformal density on the
boundary O(H?) of dimension 2, unique up to homothety. In particular,
each m, is invariant under the maximal compact subgroup which stabilizes
x.

Definition 2.3. (1) The measure m** on TH(T'\H?) is called the Bowen-
Margulis-Sullivan measure mPMS associated with {v,} [35]:

mBMS(u) = eMPut(@m(w) 8B, (om(w)) dvo(u™)dvy(u™)dt.
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(2) The measure m*™ on T(T'"\H?) is called the Burger-Roblin measure
mBR associated with {v,} and {m,} ([5], [31]):

mBR () = 2wt 0 (W) (88— (0m(W) gy (4 dyy (u ™) dt.

We will refer to these measures as the BMS and the BR measures re-
spectively for short. It is worth mentioning that the Riemannian volume
measure, in these coordinates, is m”™.

The quotient I'\C'(A(T")) of the convex hull C(A(T")) of the limit set mod-
ulo T is called the convex core of I', denoted by C(I'). A discrete subgroup
I" of G is called geometrically finite if a unit neighborhood of the convex core
C(T) has finite volume. It is equivalent to saying that T'\H* admits a finite
sided fundamental domain. A geometrically finite group I is called convex
cocompact if one of the following three equivalent conditions hold (cf. [4]):

(1) C(T") is compact;

(2) T\H? admits a finite sided fundamental domain with no cusps;

(3) A(T") consists only of radial limit points: £ € A(T") is radial if any ge-
odesic ray & toward £ returns to a compact subset for an unbounded
sequence of t.

The BMS measure is invariant under the geodesic flow. Sullivan showed
that for I' geometrically finite, it is ergodic and moreover the unique measure
of maximal entropy ([35], [25]). For I' convex cocompact, the support of the
BMS measure is compact, as its projection is contained in C(T").

Theorem 2.4. [9] If T is geometrically finite and Zariski dense, the PS
density of any proper Zariski subvariety of O(H?) is zero.

2.3. BMS and BR measures on X = I'\G. We fix a point o € H?
whose stabilizer group is K := PSU(2). Then the map g — g¢(o0) induces a
G-equivariant isometry between G /K and H3. Set
M := {my = diag(e®, e~")}.

By choosing the unit tangent vector X based at o stabilized by M, G/M
can be identified with the unit tangent bundle T!(H?) via the orbit map
g+ g(Xp). This identification can also be lifted to the identification of the
frame bundle of H? with G. These identifications are all I'-equivariant and
induce identifications of the frame bundle of the manifold T'\H? with T'\G.
We set X = I'\G. Abusing the notation, we will denote by mPMS and mPBR,
respectively, the M-invariant lifts of the BMS and the BR measures to X.
For g € G, we set gt = (¢gM)* where gM € G/M = T(H?).

For z = I'\I'g, we write = € A(T) if g* € A(T); this is well-defined
independent of the choice of g. With this notation, the supports of mBM3
and mBR are given respectively by

Q:={reX:zt,27 ¢ Al)}

and
OQpr:={reX:z” e A}
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The right translation action of the diagonal subgroup
A = {a, := diag(e*/?,e7%/?) : s € R}

on G is called the frame flow and it projection to G/M corresponds to the
geodesic flow. For this action, mPMS is A-invariant and mPR is A-quasi-
invariant: (a_,),mBR = e(2=9)sm,BR

Set

N::{nzz(i ?):w@} and N::{nzz(é i):ze@}

and for g € G,
H(g):=gN and H(g):=gN.

The restriction of the projection G — G/M induces a diffeomorphism
from H(g) (vesp. H(g)) to the horosphere Hyps (resp. Hgar) in T'(H?)
and hence the visual maps u — u® induce diffeomorphisms Pry(g) : O(H?) —
{97} — H(g) and Py, : O(H3) — {g7} — H(g), respectively, for each
g€ aqG.

Definition 2.5. Let y € G.
(1) Set
du%{ea)(v) = 20+ 07 OM) gy (vF) for v e H(y).

The measure ulﬁf@ ) is G-invariant: g*u%fa )= M;J(eg(y)); in particular,

it is an N-invariant measure on H(y).
(2) Set
ity (v) = P 0T g ().

We note that {,u,gsiy)} is a [-invariant family.

Fix a left G-invariant and right K-invariant metric on G which induces
the hyperbolic distance d on G/K.

Notation 2.6. (1) For p > 0 and a subset Y of G, we denote by Y, the
intersection of Y and the p-ball centered at e in G.

(2) The M-injectivity radius p, at x € X is the supremum of p such
that for B, := NPAPMNp, the map B, — z9B, given by g — xqg is
injective.

Definition 2.7. A box in X (around z() refers to a subset of the form

z0B, = 1oN,A,MN,

with 0 < p < pg, for some xyp € X. Note that x9B, coincides with
2oN,A,N,M. We call this box a BMS box if 2 € A(T), i.e., if zg be-
longs to the support of the BMS measure.
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We fix a box z9B,. Set Tp = NpAp and T, := NpApM. Since the
measures mBPMS and mPBR have the same transverse measures for the unstable

horospherical foliations, we have for any ¢ € C(x0B,),

mBMS(ﬂ)) — /

) D(ynm)dpis, (yn)do, 7 (y)dm
yexol,meM JneN,

- / ~ / lymn) LS (ymn)d(7, 7. @ m)(ym);
ym€xoT,M JneN, P

mP(y) = D(ynm)dpll (yn)do, 7 (y)dm

/yGIOTP 7m€M NP

D(ymn) Ay (ymn)d(D, 7 © m)(ym)

/ymEzOTPM neN,

BMS (

that is, dvg,1, = dﬁxofp ® dm denotes the transverse measure of m and

hence of mPR) on zo7,.

The following easily follows from Theorem 2.4:

Corollary 2.8. If I" is geometrically finite and Zariski dense, and F is a
boz in X, then mPR(O(E)) = 0.

2.4. BR measure in the Iwasawa coordinates G = K AN. The canon-
ical map ¢t : N — G/MAN = K/M has a diffeomorphic image S := +(N)
which is K /M minus a single point. By abuse of notation, we use the same
notation v, for the measure on K which is the trivial extension of the PS
measure v, on S? = K/M: for ¢ € C(K),

/K W dvy = /M /S P(sm) dvo(sX 7 )dm

where dm is the probability Haar measure of M. The lift of the BR measure
mBR on G can also be written as follows (cf. [24]): for v € C.(G),

mBR () = / Y(kasn,)e % dvy(k)ds dz
G

where kasn, € KAN, ds and dz are some fixed Lebesgue measures on R
and C respectively. As usual, this means that for ¥(T'g) = Zwel“ ¥ (vg) with

) € Ce(G), mPH(T) = mPR(4)).

2.5. BR measure associated to a general unipotent subgroup. A
horospherical subgroup Ny is a maximal unipotent subgroup of G, or equiv-
alently, No = {g € G : b"gb™™ — e as n — oo} for a non-trivial diagonal-
izable element b € GG. Since A normalizes N, it follows from the Iwasawa
decomposition G = K AN that any horospherical subgroup Ny is of the form
ko I Nky for some kg € K. The BR measure associated to Ny is defined to
be

mye (1) = mPR (ko))
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where ¢ € C.(X) and ko.1)(g) = 1(gko). As mBR is M = Ny (U)-invariant
(here Ng(U) being the normalizer of U in K), this definition does not
depend on the choice of ky € K. If Uy is a one-parameter unipotent subgroup
of G, its centralizer C(Uy) in G is a horospherical subgroup. The BR
measure associated to Uy means m]%f){ for Ng = C(Up).

2.6. Mixing of frame flow and its consequences. Some of important
dynamical properties of flows on X have been established only under the
finiteness assumption of the BMS measure. Examples of groups with finite
BMS measure include all geometrically finite groups [34] but not limited to
those (see [27]). Roblin showed that if [mBMS| < oo, then T is of divergence
type. In the following two theorems, we consider the groups I' with \mBMS] <
oo. We normalize v, so that [mBMS| = 1.

The following two theorems were proved by [36], based on the the previous
works of Babillot [2], Roblin [31], and Flaminio-Spatzier [9)].

Theorem 2.9. [36] Suppose that T is Zariski dense and |mBMS| =1,

(1) The frame flow on X is mizing with respect to mP™MS, that is, for
any 1,19 € L2H(X, mBMS), as s — +o0,

/X 1 (was) o () dmPMS () — mBMS (35, )mBMS (3).

(2) The BR measure mB® on X is N-ergodic.
(3) If T is geometrically finite, mPR is the only N-ergodic measure on
X which is not supported on a closed N -orbit.

Theorem 2.10. [36] Let I' be Zariski dense and |mBPMS| = 1. Then for all
1,19 € Co(X) or for 1 = xXp,, Y2 = XE, where E; C X is a bounded Borel
subset with mPMS(9(E;)) = 0, we have: as s — +00,

/X r(@a_ g (w) dmPR(z) — mBMS (g )ymBR (1),

We note that by the quasi-invariance of the BR measure,

/ b1(za_ ;) (x) dmPR(z) = =95 / 1(2)iba(zas) dmPR(z).
X X

In particular, the above theorem implies that if § < 2,

/ P1(x)a(zas) deR(x) —0 ass— +oo.
X

Lemma 2.11. If T is a discrete subgroup of G with 6 > 1, then I is Zariski
dense in G.

Proof. Let G be the identity component of the Zariski closure of I'. Suppose
Gy is a proper subgroup of G. Being an algebraic subgroup of G, Gy is
contained either in a parabolic subgroup of G or in a subgroup isomorphic
to PSLa2(R). In either case, the critical exponent of Gy is at most 1. This
leads to a contradiction and hence Gy = G. O



BURGER-ROBLIN 14

3. WEAK CONVERGENCE OF THE CONDITIONAL OF 2R
In this section, we suppose that I' is a Zariski dense discrete s{lbgroup of
G admitting a finite BMS measure, which we normalize so that [mBMS| = 1.
Fix a bounded M-invariant Borel subset £ C X with mPR(E) > 0 and
mBR(9(E)) = 0.
For each s > 0, define a Borel measure ,u%% on X to be the normalization
of the push-forward (a_) * mPR|g: for ¥ € C.(X),

1
W) = s [ Wleasy) ().

Equivalently,
BR 20 BR
1g,s (V) = mPR(E) [y U(z)xp(zas)dm™" (z).

Note that u . is a probability measure supported in the set Ea_,.
The followmg is immediate from Theorem 2.10:

Theorem 3.1. As s — 400, ,uEs weakly converges to mBPMS | that is, for
any ¥ € C.(X),
lim pBR () = mPMS(w).

s—+00

For simplicity, we will write for x € X,
Ay (n) = dpigfy (an) and duy®(n) = dugy, (an)

so that A\, and ubS are respectively the conditional measures of m
mBMS on zN.
Recall that p, denotes the injectivity radius at x.

BR and

Definition 3.2. Fix z € X. For s > 0, define a Borel measure A\g ;s on
xN,, as follows: for ¢ € C.(zN,,),

6(2—5)8
AEzs(Y) = mT(E) /nEN Y(xn)xg(znas)dz(n).

Recall the notation T, = NpApM for p > 0. Let zg € X and let 0 < p <
Pzo- For any box xoB, = x9T,N, and ¥ € C(z¢B,), we have

6(2—5)3
mBR(E)
)s

ex
2 1
- (zn)xE(znas)dAs(n)dvy, T, (©
mBR /:cexoTp /nENp ( S> ( ’ )

= / AE,z,s(qJ|wNp)dVroTp(x)'
zezxoT)

I

[ wepta)an® @

Hence \g ;s is precisely the conditional measure of u con N,
The aim of this section is to prove:
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Theorem 3.3. Suppose that x= € A(T) and 0 < p < p,. For any ¢ €
Ce(xN,),

ABa,s() — p> (1) as s — +o0.

The condition = € A(T') is needed to approximate the measure Ag ; s by
its thickening in the transverse direction.
For a function ¥ on X and € > 0, we define functions on X as follows:

Ul (y) ;= sup ¥(yg) and ¥ (y):= inf ¥(yg)
geO0, 9€0:

where O; is a symmetric e-neighborhood of e in G. We also set
Ef :=FO. and E- =Nueco. Eu.

Lemma 3.4. Let x € X and 0 < p < p,. For all small € > 0, there exists
€1 > 0 such that for any non-negative ¥ € C(xT:,N,) and any t € T;,, we
have

e N (T2) < Mgt (W) < A, (TT).

Proof. Let 0 < € < py — p. Consider the map ¢, : N — xtN given by
é¢(xn) = xtn, so that ¢f Ay = A\p. Since ¢; is a translation by n~'tn, there
exists €17 > 0 such that for all n € N, and t € T, n~Yn € O, and the
Radon-Nikodym derivative satisfies e™¢ < %(n) < ef.

Therefore )

Aot (U) = /\Ii(xn(n_ltn))d)\xt(n) < eg/ll:(xn)d)\x(n) =N (UT).
The other inequality follows similarly. O

Lemma 3.5. Letx € X and 0 < p < p,. For any ¢ > 0, there exists €1 > 0
such that for any non-negative ¥ € C(xT:, N,), any t € T;, and any s > 0,

6_8)\]35_@,5(\1]2_8) < AEu'TtvS(‘II) < eSAE:7$7S(\P£)'

Proof. Let &1 > 0 be as in Lemma 3.4. We may also assume that nO.,n~! C
O for all n € N,.
For t = (§ ,21) € NAM and n, € N with a + zw # 0, define

_ Z2wtaz—a"lz a+zw

wt(z) = atzw and bt»z = ( 0 wt(z)w—i-u(])ﬁl—zw)‘

Then by a direct computation, we verify that

(3.1) tnz = TLZ_,_,/)t(Z)bt,Z.

Therefore we may assume that €; > 0 is small enough so that for all
t € T., and n, € N,, we have {ny, ) : n. € Ny} C Ng, by, € T., and the
absolute value of the Jacobian of the map |y, is at most /2.

We observe that n,as = nz+¢t(z)as(a,sbt,za5) and since the conjugation
by a_, contracts NA for s > 0, we have n,as € oy (2)@s O M.
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Since E is M-invariant, we deduce that xp(2tn.as) < Xp+ (20, 4y, (2)0s)
for all t € T;, and n, € N,. Together with Lemma 3.4, we now obtain that
for any t € Ty, ,

AEazts(V) = 6(2_5)8/ U(ztn,)xg(xtn,as)dAz(z)
nzEN,
< 6(26)5/ UF(@n2) X o (705, () 05 ) ANt (2)
nzEN, €
< 686(2_5)8/ UE(@n2) X o (X154, () s ) AN (2)
nz€N, N
< 6266(2_5)8/ UF (@1, ()X p+ (T1206)d A2 (2)
TLZENP+5 c

< 6266(2_5)8/ U5 (zns)X g+ (znzas)dAg (2)
RZGNP+3E €
= eQEAEj,x,s(\Il;_a)

where the last inequality follows since N,;3. contains /N N supp(llf;a). The
other inequality can be proven similarly. ([

Theorem 3.3 follows from:

Theorem 3.6. Let = € A(I') and p < py. Let ip € C(xN,) be a non-
negative function. For € > 0, there exists sqg > 1 such that for any s > sq,

6_4EAE,x,s('¢) S /JJES(Q/}) S 648)‘E7$75(w)'

Moreover, if x+ € A(T) and 1 is positive, then the above integrals are all
non-zero.

Proof. Let €1 be as in Lemma 3.5. We note that as = € A(T), v(2T:,) > 0.
Hence there exists a non-negative continuous function ¢ € C(zT;,) with
v(¢) = 1. Define ¥ € C (2T, N,) by

U(xtn) = (axn)p(at) for xtn € 2T, N,.

Set ¥ (zn) = sup,cn. ¥(znu) and 7 (zn) = infyen. ¥(znu). Then by
Lemma 3.5,

PR (1) = / Apots (¥) vy, ()
ey

<e€f / AE;*"%s(w;rg)d)(l't)deTp (lit)
Z‘TEI

= es)\E;L \L,8 (1/};_5)

We can prove the other inequality similarly and hence

(3'2) e_EAE;’z75(¢2T€‘) S M%i(w) S eeAEé‘_,m’s(f(b;rE)’
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Since the map ¢ — pbP is continuous by [31, Lemma 1.16], we have
ety (1) < mPYS (W) < g (¢)

by replacing £; by a smaller one if necessary.
Since pBR (W) — mBMS(¥) by Theorem 3.1, we deduce from (3.2) that
there exists sg > 1 such that for all s > s,

We claim that
(3.4) e Ap s (V) < Apz , (V52) < € Ap (1)

which will complete the proof of the theorem by (3.3).
We can deduce from (3.2) that

e npe s(Vie) S Agr o (V) < Mgy ((W50) < it (V).
Since it follows from Theorem 3.1 that
e pp(T) < ug%ys(‘l’fg) < e ups(¥) for all large s > 1,
we have

CEUENY) S Ap o, (V3) S Mgz (VF) < e UEL(Y).
This implies
AEj,x,s(@b;g) < 645)‘E;,x,s(¢2_5)
and hence (3.4) follows. O

4. PS DENSITY AND ITS NON-FOCUSING PROPERTY WHEN § > 1

Let I" be a (non-elementary) convex cocompact subgroup of G.
The assumption on I' being convex cocompact is crucial for the following
theorem:

Theorem 4.1. For any compact subset Fy of X, there exists co = co(Fp) > 1
such that for any x € Fy with ™ € A(T') and for all0 <r < 1,

G < U @N,) < ar?
where N, = {xn, : |z| <r}.
Similarly, for any x € Fy with = € A(T") and for all 0 < r < 1, we have

calr‘s < uzs(m) (zN,) < cor?

for N, = {xn, : |z| < r}.

Proof. As Fy is compact, up to uniform constants, ugséz) (xN,) < vo(B(z™, 7))
where B(xt,r) is the ball around x* of radius r in d(H?) in the spherical
metric. As xt € A(T), the above result is then due to Sullivan [35] who
says Vo(B(&,7)) < 0 uniformly for all ¢ € A(T') and for all small 7 > 0 for
I" convex cocompact. ([l
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Lemma 4.2. Let § > 1 and Fy C X be a compact subset. For every e > 0,
there exists a positive integer d = d(e, Fy) such that for any x € Fy with
x= € A(T") and for all small 0 < r < 1, we have

o R(z \
Wiz |2 < v [S()] < R} < it (@),

Proof. Let r be small enough to satisfy Theorem 4.1. For an integer d > 1,
consider

Ba(x,r) = {zn, : |z| <r,|S(2)| < r/d}
which clearly contains the set in question. Theorem 4.1 implies that

0 _
ugs(m)(lgd(a:,r)) < codd—’; = cod" 709,

where ¢y > 1 is an absolute constant independent of d and r.
Let d = d(¢) > 1 be such that cod'~* < j'e. Then iy, (Ba(a,1)) <
€ P‘%S(x) (zN;), implying the claim. .

Lemma 4.3. There exists by > 1 such that for all small 0 <n < 1
NbalnAbalanalnM C NyAyNy M C Nyyy Apgn Npgn M.

Proof. The claim follows since the product maps N xAxNxM-— G by
(7, a,n,m) — nanm and N x A x N x M — G by (n,a,n,m) — nanm are
local diffeomorphisms at the identity. O

We will use the above results to prove the following proposition 4.4. The
proof is elementary and is based on the fact we have a good control of the
conditional measures on contracting leaves, i.e., N-orbits. However, the fact
that this statement holds is quite essential to our approach. Indeed, as we
explained in the introduction, one major difficulty we face is that the return
times for our U-flow do not have the regularity one needs in order to get the
required ergodic theorem on the nose. In our version of the window theorem,
the set where a window estimate holds depends on time; see Section 7, and in
particular Theorem 7.7 below. Usually in arguments with similar structure
as ours, this fact is fatal as one has very little control on the structure of the
“generic” set for the measure in question. In our case however the following
proposition saves the day and provides us with a rather strong control.

In the following proposition we fix a BMS box F = xONpAprM with
:B(jf eAT)and 0 < p < % inf,cq pr where by is as in Lemma 4.3 and p, is
the injectivity radius at z.

Proposition 4.4. Let § > 1. Fiz 0 < r < 1. There exist positive numbers
do = do(r) > 1 and sg > 1 such that for any Borel subset FF C E with
mBR(F) > r . mBR(E) and any s > so, there exists a pair of elements
Ts,Ys € F satisfying

(1) x5 = Yshy, for ny, € N,

(2) % < |ws| < % and

(3) [S(ws)| > Bl
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Proof. Let ¢g > 1 be as in Theorem 4.1 where Fj is the 2p-neighborhood
of . We will write B(z,p) = zN, in this proof. For all x € xqN,A,M,
x~ =z, and hence 2= € A(I'). Hence by Theorem 4.1,

(4.1) cg'n’ < u%s(x)(B(:L‘,n)) < con® forall 0 <y < 1.
Set di = %}W where v denotes the transverse measure of

mBR on xONﬂwo AMOM. We claim that there exists z € x9Ny, Ap,pM with

M%S(Z)(B(z, bop) N F) > 7 Suppose not; then

() < [ WES  (B(z.bop) 1 F) dv(2)
ZemONbOpAbOpM

< V(@0 NpopApgpM) =1 - mBPR(E)

which contradicts the assumption on F.

Set @ := B(z,bgp) N F N supp (MPHS(Z)) and for each s > 1, consider the
covering {B(zx,s™") C H(z) : € Q} of Q. By the Besicovitch covering
lemma (cf. [20]), there exists x > 0 (independent of s) and a finite subset
Qs such that the corresponding finite subcover {B(z,s7 1) : z € Qs} of Q is
of multiplicity at most k.

Note that for ¢ > 1, by (4.1),

My (Ure@. Bz, 5)) < 15207°c) pigy, (Ueeq Bl 3)) < w2q~ e’
Hence by taking ¢ > 1 large so that /@2q_’5(:gbgp‘S < ﬁ, we have
PS
MH(Z)(UEGQSB(xv é)) < ﬁ

If we set

[R(w)
1,

R(s,d) := Ugeq. {w € B(x, %) CS(w)] <

it follows from Lemma 4.2 that there exist do > 1 and sy > 1 such that for
any s > S,

WES (R(s,d2)) < i

Hence for any s > sg, the set

Q - (UersB(l', (715) U R(S, d2))

has a positive ,ugs(z)

such that (QNB(zs, 1)) — (B(s, q—ls)UR(s7 d2)) has a positive ,upﬁs(z) measure.
Picking y, from this set, we have found a desired pair x,,ys from F with
dp = max(q,d). O

measure (at least 37-). In particular, there exists z; € Q
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5. ENERGY ESTIMATE AND L2-CONVERGENCE FOR THE PROJECTIONS

Let I'" be a convex cocompact subgroup of G with § > 1 and fix a BMS
box E C X (see 2.7 for its definition). We have mB®(E) > 0 and by Lemma
2.11 and Corollary 2.8, mBR(9(E)) = 0.

In the entire section, we fix z € X with 2= € A(T') and 0 < p < %px.

Recall the definition of the measure A\g, s on zN,, from (3.2): for ¢ €
C([IJpr),

(2—0)s
e

A = d\ :
pealt) = gy [, HEmxeEna) i
5.1. Projections of ,u%s(x) and Ag ;. The N-orbit of x can be identified
with R? via the visual map xzn ~ (zn)* € O(H?) — {z~} and the identi-
fication of O(H?) — {x~} with R? by mapping 2~ to the point at infinity.
Therefore we may consider A\g ;s and HZS(J;) as measures on R2.

T Yeeems v} Yrem

In the sequel by a measure on [0,27] we mean the normalized Lebesgue
measure. For each 6 € [0,27), we set Uy = mgUme_1 and Vy = mngg_l.
We may identify Uy as the line in R? in the §-direction and Vj as the line in
the 6 + 7/2 direction.

We denote by pg : UgVy — Vy the projection parallel to the line Uy. For
T > 0, set

Up == {texp(if) : t € [-7,7|} and Vj := {itexp(if) : t € [-7,7]}.

Definition 5.1. Fix 0 < § < 7, 0 < 7 < p and s > 1. We define the
measures on zV; as follows: for ¢ € Cc(2V}]),

o) = [ o) i)

and

TLos@) = [ (o) Ao

That is, 010 and Oy, are respectively the push-forwards of /‘E{S(xﬂxvag
and )\E,:c,5|xV9PUg via the map py.

5.2. Energy and Sobolev norms of the projections. Consider the
Schwartz space S := {f € L*(xVp) : t*f®) € L?(xVp)}, where a, 3 € NU{0}
and f® is the 5-th derivative of f. Denote by &’ the dual space of S with
the strong dual topology, which is the space of tempered distributions. For
r > 0, we consider the following Sobolev space

H'(aVp) == {f € 8" : (L+|t)"f € L*(aVp)}
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with the norm )
[ £ll2r = 11+ ED" fll 2 (2ve)

where f denotes the Fourier transform of f.
We recall the notion of a-energy:

Definition 5.2 (a-energy). For a > 0 and a Radon measure p on R?, the
a-energy of u is given by

) == /}RQ /RQ ‘x_ly,adu(x)du(y)-

It is a standard fact that I,(u) can be written as

(5.1) —oz/R2/ 51+a WBEO) 4og4()

where B(x, /) is the Euclidean disc around z of radius /.

The a-energy of a measure p is a useful tool in studying the projections
of 4 in various directions. See [28, Proposition 2.2] or [21, Theorem 4.5] for
the following theorem:

Theorem 5.3. Let v be a Borel probability measure on R? with compact
support. If the 1-energy of v is finite, i.e., I1(v) < oo, then the following
hold:

(1) posv is absolutely continuous with respect to the Lebesgue measure
for almost all 6;
- - 1
(2) there exists ¢ > 1 (independent of v) such that for any 0 <r < 3,

Il+27" /‘D DPoxV )H27‘d9 <CI1+27-( )

where D(pgyv) is the Radon-Nikodym derivative of pg.v with respect
to the Lebesgue measure.

Lemma 5.4. Let Q C R? be a compact subset, ¢ > 0 and B > 0 be fized.
Let M be a collection of Borel measures on @ such that

(5.2) w(B(z,0)) < c¢- 08 forall p € M, x € supp(u) and £ > 0.

Then for any 0 < a < f3,

sup Io(p) < oo.
neM

Proof. Fix 0 < o« < . We use (5.1). Note that since u(B(z,?)) < pu(Q),
(5.2) has meaning only when ¢ is not too big. We use (5.2) only for 0 < £ < 1
and use the upper bound of M(Q) for £ > 1. We have

A1) = / / PO ) gy / / B D) i)

< e S Q)+ OER - (@)
= (@) (c+ (@)
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Now, since () is compact, the assumption implies that sup,,c vy w(@) < oo.
Hence I,(p) is uniformly bounded for all p € M. O

Corollary 5.5. Fiz 0 < 1 < p. The following holds for almost all 6:
(1) o7, is absolutely continuous with respect to the Lebesgue measure on
xVeT;
(2) its support has a positive Lebesque measure;
(3) its Radon-Nikodym derivative satisfies D(o7, p) € H"(zVy) for any
0<r<

Proof. It follows from Theorem 4.1 and Lemma 5.4 that for any 0 < a < 9,
Ia(/“['PHS(xO)|$ONp) < Q.
Now, the fact that the support of the projection has positive measure

follows from [19, Theorem I]. The other two claims follow from Theorem
5.3. ]

Weflix0<r< 65—1 for the rest of this section.

Terminology 5.6 (PL-direction). If # satisfies Corollary 5.5 with respect
to r, we will call 8 as a “PL” direction for (x,7), or simply for 7 when x is
fixed.

5.3. Uniform bound for the energy of \p . s, s > 1. In this subsection,
we set

)‘TE@,S = )\E,J:,s‘:va-
We will show that the collection M = {)\J[Ew s © 5 > 1} of measures on N,
satisfies the hypothesis of Lemma 5.4 with § = §. We may consider /\TE s

as a measure on R? supported on the p-ball around the origin.
Since E is a BMS box, E is of the form xq N, Ay, Ny, M for some 0 < ro <
puy where zf € A(D).

Lemma 5.7. For all s > 1, we have
esN,NFEa_s C {xn € xN,: d(xn,PI}(lz) (AT) —{z7})) <e °ro}

where Py : 0o (H?) — {27} — H(x) is defined in the subsection 2.3 and
d denotes the Euclidean distance: d(xn,,an,) = |z — 2|.

Proof. Suppose zn € E, so that zn = zgnyan,mga_s with |z| < ro. We
may write it as

TN = LTy At —sTNYTg—s o2mi0 5
If we set y := Tohyar—smg, then y* = xf. Hence y* € A(T). Since
TN = YN—s 2mio, and |e 2?02 < e75rg, the claim follows. O

Theorem 5.8. There exists ¢ > 0 such that for all s > 1, y € supp()\;fE os)
and any £ > 0,
Moo By, 0) <c- £
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where B(y,l) = {yn, : |z] < (}.

Proof. Since B(y,2p) contains zN,, it suffices to show the above for 0 < ¢ <
2p. Since supp(Agz,s) C Fa_s NxN,, it follows from Lemma 5.7 that for
each z € supp()\tEJ s)» B(z,3pe™?) contains B(w, pe~®) for some w € H(z)
with wt € A(T).

Hence by Theorem 4.1 we have
Ktz (B(2,3pe ™)) 2 pif) (B(w, pe™*)) = ¢ (3p)°e ™

where ¢p is as in Theorem 4.1 with Fy being the p-neighborhood of €.
Consider the covering of supp(/\TEﬁs) given by the balls B(z,3pe™ ), z €
supp(/\;; »s)- By the Besicovitch covering lemma we can choose a finite set
Js C supp()\;; ».s) such that the corresponding finite collection {B(z, 3pe™®) :

z € Js} has multiplicity at most £ (independent of s) and covers supp()\}rl .. <)

Now we consider two cases for /.
Case 1. 0 < ¥ < e 5.
In this case, for any y € supp(/\jE ».s), We have

My o By, 0) < mel?7932 < 7fd

Case 2. e7° < ¢ <2p. Let Jy s ={z € Js: B(2,3pe™®) C B(y,3()}. We
have

Mo (B@.0) < {Apas(B(z,3pe™)) : B(2,3pe™*) N By, £) # 0}

z€Js

< Z AEx,s(B(z,3pe” 7))
ZEJy,s

< Z 6(276)5(3[))26725
ZGJys

<co(30)*7° Y mpiyy) (B(z,3pe™))

z€Jy,s

< keo(3p)* ity (B(y, 30))
< 3%k (3p)2 7000,
Hence for all 0 < £ < 2p and y € supp(Agz.s),
Apos(B(y: 0) < a1/
for some constant ¢; > 0 independent of s > 1. O
Therefore by Lemma 5.4, we deduce:
Corollary 5.9. For any 0 < o < 0,

sup I, ()\E:ES) < 0.
s>1
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5.4. L?-convergence of projected measures.

T

Recall the notation oy, g .

and oy o from Definition 5.1.
Theorem 3.3 is used crucially in the following proposition:

Proposition 5.10. Fiz 0 < 7 < p, a PL-direction 8 € M for (x,7) and a
sequence s; — +00. If sup; | D(07 o )||2,r < 00, then
L2(zVj
D(O_T ) (I (9)

0.5 D(U;ﬁ) as i — 00.

Proof. By Theorem 3.3 and the assumption of % € A(T), Ay, |leupy; weakly

converges to u%s(x)]xUéaVGT as s; — oo. Therefore oy , . weakly converges to
o, , as i — oo. Hence it suffices to show that the collection

{D(070,,) € L*(2V{)}

z,0,s;

is relatively compact in L?(zV}). Since this collection is uniformly bounded
in the Sobolev space H"(xV, ) by the assumption, the claim follows from
the fact that we have H" (V) embeds compactly in L?(zVy) for any r > 0
(see [16, Theorem 16.1]). O

Recall that by a measure on [0, 27), we mean the Lebesgue measure nor-
malized to be the probability measure.

Theorem 5.11. Let s; — +0o be a fized sequence. For any € > 0 and any
finite subset {71, ..., 7.} of (0, p|, there exists a Borel subset ©(z) C [0, 27),
of measure at least 1 — e, such that
(1) every 0 € O.(x) is a PL direction for (x,7p) for each 1 <€ < n;
(2) foreach 6 € ©.(x), there exists an infinite subsequence {s;, } (depending
on (x,0)) such that for each 1 < € < n,

D("Z@)-

Proof. Recall that we fixed some 0 < r < (6 — 1)/2. By Corollary 5.9 and
Theorem 5.3, there is a constant L > 1 such that

D(a’t) ) L)

z,0,85,

sup/ D™, V2,d0<L for 1<(<n.
i 19T 7

Hence using Corollary 5.5 and Chebyshev’s inequality, we deduce that for
any € > 0, there exists some Ly > 0 such that if we let

Of = {0 :0is a PL direction for (x,7,) and ||D(a;f9’8i)H§7,, < Lo},

then for all i@ > 0, we have m(©F) > 1 — . Let ©; = N/OF and let
© = limsup; ©;. Then m(0©) > 1 —¢. For 6 € ©, 0 lies in infinitely many
of ©;’s, i.e., § € O, for some infinite subsequence {j;}. Hence the claim

follows from Proposition 5.10 applied to {sj, }. O
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5.5. Key lemma on the projections of )\Ex s+ The following is the key
technical lemma in the proof of the window theorem.

Lemma 5.12 (Key Lemma). Fiz 0 < 7 < p and a sequence s; — +oo. For
any € > 0, there exists a Borel subset ©(x) C [0,27) of measure at least
1 — € such that if § € O.(x) and EimH_1 C X s a sequence of Borel subsets
satisfying

AEzs; (N7 — Eimgl) — 0,
then there is an infinite subsequence {sj,} such that for any Borel subset
Op(z) C 2V,

limsupo? ., (Op(a)—po(Eimy ' NeN,)) < of 1t € Onfa) : DT )(®) = 0.

By Theorem 5.11, the Key Lemma follows from the following lemma.
Observe that this is a rather strong control on the conditional measures,
as one can easily construct counter-examples in a general setting. Here our
L?- convergence result of the projection measures to a “rich” measure is
crucially used.

Lemma 5.13. Fiz 0 < 7 < p and a PL direction 0 € [0,27), simultaneously
for (x,7) and (x,p). Let VVim;l C zN; be a sequence of Borel subsets and
{si} be a sequence tending to infinity. Assume the following holds asi — oco:
L2(xVq)
-

(1) D(oz9.,) Doz 9);
L2(zVp)
(2) D(U;ﬁ,e,s) : D(”ﬁ,e);

(3) Agas; (TN — Wimyt) — 0.
Then for any Borel subset Og(z) C zVy,

limisup o’ o . (Og(z) — pp(Wimy 1)) < Jz’e{t € Og(x) : D(0og)(t) = 0}.

2.0,5;
Proof. Set PT := {t € Og(z) : D(07 4)(t) > 0} and
LT = pp(Oy(x)Ug N Wimy ') = Op(z) N pe(Wimy ).
For ng > 1, define
Yng ={t € PT: D(074)(t) > n%? D(af )(t) < no}.
Let € > 0 be arbitrary. There exists ng = ng(¢) > 1 such that
opg(Xng) > (L —e)al o(P7).

Since D(o7 5 .) = D(07 ) in L?(zVj), denoting by A the Lebesgue measure
on xVpy, we have

726(00(2) = £1) = 73, (On(a) ~ £7)
< [ 1D(o) = DioTy, N
xVy

< |D(o79) = D(0gg.5) 12 - A@V)'/? — 0.
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Since 07 5 (Op(z) = LT) < Agu5: (N, — Wymy ') — 0 by the assumption

on Wimg,zﬁ&follows now that there is some iy = ig(ng) such that for all
1 > g,

o7 0(Opl) ~ £T) < &
Note that for any set T C X, with o7 4(1) < nig, we have ol ,(T) <e. To
see this, note that if

(1) < / D(07 4, 1)AA(D) < 5.
no T 3 ng

then A(T) < ;= and hence
750(1) = /T D(a% ) (£)AA(t) < moA(Y) < 5 <e.

Therefore we have
05,0(09(95) - L7)
< 0 o((Og(x) = L7) N 2ng) + 07 y((Oa(x) — L7) N (Op(x) = Xny))
<ete-al ) (Pg)+ap,(Op(z) —Pf).
Since € > 0 is arbitrary,
(5.3) lim sup 0579(09(:@ —L7) < 0579(09@) —Pg).

Now since D(c? , ) = D(d% ;) in L*(xV}’), we have

07 4(Op() — L) — 0¥ . (Op(w) — L£7)| < / ID(0% ,.,.) — D(0” )| dA — 0.

z,0,s; oV
Combined with (5.3), this implies that
limsupa? ,  (Op(x) = L7) < 07 4(Og(x) — Pj).

I7975i
7

6. RECURRENCE PROPERTIES OF BMS AND BR MEASURES

6.1. Theorems of Marstrand on Hausdorff measures. Let A C R2.
The s-dimensional Hausdorff measure of A is defined to be

H(A) = inf H(A).

where Hy(A) = {>_, d(W;)* : A C U2 Wi, d(W;) < n} and d(W;) denotes
the diameter of W;.
The Hausdorff dimension of A is
dim(A) = sup{s : H*(A) > 0} = inf{s : H*(A) = oo}.

A set A is called an s-set if 0 < H*(A) < oo. Following Marstrand [19],
a point £ € A is called a condensation point for A if £ is a limit point from
(&,0)N A for almost all § where (£, 0) denotes the ray through £ lying in the
direction 6.
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Let A be an s-set in the following three theorems:

Theorem 6.1. [19, Theorem 7.2] If s > 1, H*-almost all points in A are
condensation points for A.

Theorem 6.2. [19, Lemma 19] If s > 1, almost every lines L through H?-
almost all points in A intersect A in a set of dimension s — 1.

Theorem 6.3. [19, Theorem II] If s < 1, then the projections of A have
Hausdorff dimension s for almost all directions.

6.2. U-Conservativity of mPR. In the rest of this section, we assume that
I' is convex cocompact.

Theorem 6.4. [35] Forz € G, the measure ug%(x) onxN is a d-dimensional
Hausdorff measure supported on the set {zn € H*(z) : (zn)™ € A(T')}. Fur-
thermore, this is a positive and locally finite measure on xN.

For U = {u; = (1) : t € R}, we recall the definition of a conservative
action:

Definition 6.5 (Conservative action). Let p be a locally finite U-invariant
measure on X. The U-action on X is conservative for p if one of the following
equivalent conditions holds:

(1) for every positive Borel function ¢ of X,
Jier Y(zur)dt = oo for a.e. x € X;
(2) for any Borel subset B of X with u(B) > 0,
Jier xB(2U)dt = 00 for ae. x € B;

The following is Maharam’s recurrence theorem (cf. [1, 1.1.7]).

Lemma 6.6. If there is a measurable subset B C X with 0 < mPR(B) < oo
such that for almost all x € X, fooo xB(zuy)dt = oo, then U is conservative
for mBR.

Theorem 6.7. If § > 1, then U is conservative for mBR.

Proof. Recall the notation Q = supp(mPM®) and Qpgr = supp(mPR). Set
Fi={zeX :z € A(I'),zus ¢ Q for all large t >, 1 }.

Hence z € F means (zu;)* ¢ A(T) for all large t >, 1. We claim that

(6.1) mBR(F) = 0.

Suppose not. Then by the Fubini theorem, there is a set O C Qgr with
mBR(0) > 0 such that for all x € O, xmy € F for a positive measurable
subset of §’s. Note that v,({x~ € A(T') : z € O}) > 0 where v, is the PS
measure on A(T). Fix & ¢ A(T') and identify O(H?®) — {&} with R2. Since
Vola(m3)—{,} 1S equivalent to the d-dimensional Hausdorff measure H° on

A(T) € R? by Theorem 6.4, we have H°{z~ € A(T) : x € O} > 0. Note
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that Lg(z) := {(zmeus)t € R? = 9(H?) — {€} : t > 0} is the line segment
connecting 7 (at t = 0) and = (at t = o0). Hence x € O implies that
2~ is not a limit point of the intersection Lg(x) N A(T") for a positive set of
directions . This contradicts Theorem 6.1 and proves the claim (6.1).

Let O be an r-neighborhood of €2 for some small » > 0. If x € X —F, then
zup € Q and zuys € O for all |s| < r. Hence if zuy, € © for an unbounded
sequence t;, [, g xo(zus)dt = co. As mBR(F) = 0 and 0 < mPR(O) < oo,
this implies the claim by Lemma 6.6. U

6.3. Leafwise measures. Let W be a closed connected subgroup of N. Let
Mo (W) denote the space of locally finite measures on W with the smallest
topology so that the map v — [ dv is continuous for all ¢ € C.(W) (the
weak™ topology). A locally finite Borel measure p on X gives rise to a system
of locally finite measures [1}V] € Moo (W), unique up to normalization,
called the leafwise measures or conditional measures on W-orbits. There is
no canonical way of normalizing these measure. For our purpose here, we
fix a normalization so that pYY (N; N W) = 1. With this normalization, the
assignment x — 1YV is a Borel map, furthermore, for a full measure subset
X' of X, M% = u.,uZV for every x,zu € X'; for a comprehensive account on
leafwise measures we refer the reader to [7].

In the case when W = N, we have ,uzs( 2) = ulS and /fffa) = Ag,, which
are precisely the N-leafwise measures of BMS and BR measure respectively,
up to normalization. We will be considering the U leafwise measures of
mBMS as well as of u%i,.

We will use the following simple lemma.

Lemma 6.8. Let p be a locally finite M -invariant measure on X. For any
0< 7«1, and any 0 < 0 < 7 we have

” Ur
[y | = |1z’ |
for u a.e. x € X.

Proof. Since i is M-invariant, for T, = AprMp, we have

Ug T = -
|z’ | _ 1 p(xmglU mel(mGVprmé)l)) —
[1¥m,| P20 p(zmoUT (VpTp))
O

6.4. Recurrence for mPMS, Since the frame flow is mixing by Theorem
2.9 with respect to mPMS, we have:

MS

Proposition 6.9. For any non-trivial a € A, mPMS is a-ergodic.

Theorem 6.10. Let § > 1. For a.e. = € Q, (mPMS)Y is atom-free.

Proof. Setting F := {z € Q : (mPM5)U has an atom}, we first claim that
mBMS(F) = 0. Suppose not. Fix any non-trivial a € A. Since U is normal-
ized by a, F is a-invariant. Hence mPM3(F) = 1 by Proposition 6.9. Using
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the Poincare recurrence theorem, it can be shown that
Fli={z e Q: (mP")U is the dirac measure at e}

has a full measure in Q (cf. [13], [15, Theorem 7.6]).

Since for any = € Q, uES is a positive d-dimensional Hausdorff measure
on {zn € H(z) : (zn)T € A(T")} by Theorem 6.4 and (mBMS)¥ = (/LZS(QC)):EU
for a.e. z € (1, it follows that for a.e. x € €2, (u%s(x))g is the Dirac measure
at e. By the Fubini theorem, there exists x € {2 and a measurable subset
Dy C H(z) with NEIS(I)(DO) > 0 such that for each y € Dy, (ugs(ymg))yUme
is the dirac measure at ymy for a positive measurable subset of mgy’s. For
s > 0, denote by H* the s-dimensional Hausdorff measure on A(T") — {z™ };
so HO = MES(,E)- In the identification of H(x) with R? via the map y ~— y™,
this implies that there is a subset D)y C A(T') — {z~} C R? with H°(D}) > 0
such that for all £ € Dy, there is a positive measurable subset of lines L
through ¢ such that 0 < HO((A(T) — {z~}) N L) < co. This contradicts
Theorem 6.2 which implies that (A(I') — {z~}) N L has dimension 6 —1 > 0

for almost all lines L through &. O

Corollary 6.11. If § > 1, mBMS s U-recurrent, i.e., for any measurable
subset B of X, {t: xu; € B} is unbounded for a.e. x € B.

Proof. By [7, Theorem 7.6], Theorem 6.10 implies that (mPM3)U is infinite
for a.e. . [7, Theorem 6.25] implies the claim. O

6.5. Doubling for the (uBM5)U. As before, we assume [mBMS| = 1. Since
) is a compact subset, we have
(6.2) p:=sinf{p, 1z € Q} > 0.

Fix a small number € > 0. It follows from Theorem 6.10 that there exis2t
0 < B = B(e) < p and a compact subset QL C Q with mPM5(QL) > 1 - <
such that
(6.3) (m"M)[=38,38] < 5(m"M)[=(p— B),p - B] for all xe QL.

Since the covering {xB; : € Q,7 > 0} admits a disjoint subcovering of 2
with full BMS measure (see [20, Theorem 2.8]), there exist xo = z¢(¢) € Q2
and 0 < 7 < f(e) such that for By, (1) := voN;A- M N,

(6.4) mPMS (B, (1) N QL) > (1 - &) - mPMS (B, (7).

We fix 79 € QL and 7 > 0 for the rest of this section.

Recall the notation T, = N,A, M, so that By (1) = 20T-N;. Set v = vgy1,
for simplicity. Using Theorem 6.10, we will prove:

Theorem 6.12. Let 6 > 1. Let cg > 1 be as in Theorem 4.1 where Fy is
the 2p-neighborhood of Q. Then there exists a Borel subset ZP5(x0) C 20T
which satisfies the following properties:

(i) (EPS(20)) > (1= ¢ - e)v(@oTr);
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(ii) for any xmy € EL5(x), with @ a PL direction for (z,T), there exists
a Borel subset Og(x) of the set {t € xVp : D(07 5)(t) > 0} such that

S (0g(2)UE) > 2ubS(0y(2)UZT) > 2

= 4co

Despite the rather complicated formulation of this theorem, which is tai-
lored towards our application later, the theorem is intuitively clear. Indeed
By, (7) is chosen so that for “most” BMS points, we have (6.3). On the other
hand, in view of Corollary 5.5, for a PL direction #, the Radon-Nikodym
derivative D(U;ﬁ) is positive o7 ,-almost everywhere. Therefore, by Fubini’s
theorem, for “most” BMS points x € By, (7), “most” points in xN, satisfy
both (6.3) and the non-vanishing of the Radon-Nikodym derivative implies
Theorem 6.12. The precise treatment of the above sketch of the proof is
given in the rest of this subsection.

Lemma 6.13. Let xmy € xoT;. For any Borel subset Opy(xz) C pg(zN; N
QUmy ),

e (0y(2)Uf) = 24, (Op(x)UGT).
Proof. If t € pg(xN; N nggl) and hence t = zvy for vy € Vy where ztme_1 =

xvgug for z; € QL, we can write it as tmy = ztm(;lu(;lmg = zug for some

uop € U". Hence by (6.3),
Ue Uer—T U3T U27’
’/’[/tmg‘ Z ’Iu’Zt ‘ Z Q‘Mzt ’ 2 2‘/’l’tm0’
Using this and since O)y(x) C py(x N, N Qmy, '), we have

UP
WSO = [ oty = [ lul ko0
Opy(z) Oy ()

20 UQT -
2 [ oty =2 [ a7 o (0) = 205(0h(a)UR").
Op(2) 0Op(2)

O

Lemma 6.14. There exists a compact subset Q. C Q. with mBPM3(Q,) >
1 — €% such that

mPMS(Byy (1) NQ2:) > (1= €2) - mPY3(By,y (7))

and that
po(zN; N Qemyt) C {t € aVp: D(oz4)(t) > 0}

for all xmy € x0Ty with 6 a PL-direction for (x,T).
Proof. Setting zVj := {t € zVjy : D(07 4,t) = 0}, we have

BMS !
m> " (Uemgeaor, Vo Uy )

= [ VU ama)
zme€xoTr

UZ\ 0+
— / / 1(uF%)27 |doT, o (t)dv(mg) = 0.
zmy€ExoTr JtexVy
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Hence there exists an open subset O, of By, (7) which contains the subset
UzmpexoT, 2VyUF and mPMS(0,) < % -mPMS(B, (7). Now set Q. := Q. —
O.. It is easy to check that this (). satisfies the claim. O

We set
285 (0) = {x € 20Ty : pE5 (2N, N Q) > (1 — )5 (2N,)}.
Lemma 6.15. We have
V(EPS(20)) > (1 = & - e)v(woTy).
PS N~ ES N, .
Proof. Set by = infyep,1, % and by = SUpP,eq T, %. Since

zg € AT) and z§ = 2™, we have 27 € A(T') and hence it follows from
Theorem 4.1 that 064 < Z—f <3

Note that
mBMS (B, (1) N Q)
< / WS (N, du(y) + (1 - e) / WS (N, )dv(y)
EPS(z0) zoT-—EF5(20)

< mPM(Byy (1)) — gv(aoTy — EL5(0)) - gy (€0 Ny).
By Lemma 6.14, it follows that
. mPMS(B,, (1)) > Ev(aoly — EP5(20)) - uFS (o Vy)
and hence
&by w(@oTy) - gy (10N7) > gov(xoTr — EX%(x0)) - pry (20 N).

Therefore
v(zgT, — EX5(x0)) < e- g—fu(xoTT),
implying the claim. (]
By the M-invariance of mPMS, by Lemma 6.8,
/"LCEPTSH,Q Qe NaxmyN;) = Hacprsng (Qe NazNrmyp) = MxPS(QEmgl NxN;).
Note that for any zmgy € EF5(z¢), we have

_ -6
S (2 Ny 0 Qemy ) > (1 — ) pg(aN;) > -

= 2¢o°

By setting Og(z) := pap(zN, N Qemy '), we note that Op(z)UZ™ contains
NN nggl and hence for all small 0 < ¢ < 1,

uPS(0g(2)UFT) > (1 — &)l (N, N Qemyt) > 2

2¢0°

Therefore the above three lemmas prove Theorem 6.12.
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7. WINDOW THEOREM FOR HOPF AVERAGE

We will combine the results from previous sections and prove the window
theorem 7.7 in this section. We first show that the disintegration along U
of )As, notation as in Section 3, has certain doubling properties, see The-
orem 7.1. This is done by applying results in Section 5, in particular the
key lemma, to Ag ;s and the limiting measure pES | in combination with
Theorem 6.12, which gives a rather strong doubling property for the dis-
integration of the PS measure. As we mentioned in the introduction, in
general, the weak® convergence of measures does not give control on the
corresponding conditional measures, e.g., one should recall the well-known
discontinuity of the entropy. However, here the key lemma gives a good
control both on the prelimiting measures Ag ;s and the limit measure ,ug S,
and helps us to draw some connection between the conditionals.

In order to obtain the Window Theorem 7.3, we flow by a_g for a suitably
big s and bring [T, T to size [—p, p|]. We are now working with 7711%5S rather

than mﬁmmw g, and the desired estimate follows from Theorem 7.1

(E)

7.1. Window theorem for yp. Let I' be a convex cocompact subgroup
with § > 1. Let E be a BMS box. For simplicity, we set

Hs = /’L%E{g and )\m,s = )\E,z,s
defined in section 5. For 0 < r <1 and p > 0 as in (6.2), we put

= {x Qe (1s)i [=2pr, 2p7]
Es(r) :={z € Ea_: (us)¥[—2p, 2p]

Theorem 7.1. There exist 0 < ro < 1 and so > 1 (depending on E) such
that for all s > sg, we have

pEns(Es(ro)) < 1= ro.

Proof. Suppose not; then there is a subsequence r; — 0 and a subsequence
s; — 400 such that ,u%lzi(Es (ri)) > 1 —r. Set

>1—r}.

i = u%ﬁgi and E; := Eg, (1;).

Fix € > 0. Let 29 € 2L, 0 < 7 < p, co > 1 and ZF5(z0) be as in Theorem
6.12. Set qo := mPMS(B,, (7)) > 0 and

20T} = {y € 20Ts : As, y(Ei N yN;) > (1 _ %) Noyy(yN:)}-

Recall the measure v = vg,7, from Theorem 6.12. We claim that for all
large ¢ > 1, we have

(7.1) v(zoTy) > (1 —4y/ri)v(zoTr).
We will first show that for all large ¢ > 1,

(7.2) pi( By N Bao (1)) 2 (1 — 55)i(Bay (7).
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If this does not hold, by passing to a subsequence, we have that
1 =1y < pi(Es) = pi(Ei N Bao (7)) + pi(Es — Bao (7))
< Jpi] = 2 (Byy (7).

Since |u;| = 1, it follows that

2
7Ni(B960(T)) <L
q0
On the other hand, since p; weakly converges to mPMS by Theorem 3.1, we
have
1i( Bz (7))

— 1,
q0

which gives a contradiction. This shows (7.2). Now, by the same type of
argument as the proof of Lemma 6.15, we can show (7.2) implies (7.1).

Passing to a subsequence, which we continue to denote by r;, we assume
that 4%, \/r; <e/2 and 2r;/qo < € for all i. If we set

E*<1‘0) = N;xoT;,
then it follows that
v(2* (o)) > (1 —e)v(zoTy).
Hence for all sufficiently small ¢ > 0,
V(EPS(x0) NE* (o)) > (1 — (1 + ¢d)e) v(zoTy) > 0.

Let O.(z) be given as in the Key Lemma 5.11 for {p, 7} applied to the set
E and the sequence s;. Since supp(v) C {x € X : 2~ € A(I")}, we can find
xmg € Z*(xg) N E5(xg) (depending on £ > 0) with (zmg)~ = 2~ € A(T)
and 0 € O(z). Since 2+ = z{, we have 2 € A(T).

By the M-invariance of the measure p,, and as xmg € z¢1;, we have

Az,s; (Eimg_l NaxN;)
= )\xmg,si(Ei N xmgNT)

> (1= \/2) Aamg,s; (xmg N-)

=(1- %)AI,Si(CUNT)a

and hence
(7.3) Apsi (TN- — Ezmy ) — 0.

Let {s;,} be the corresponding subsequence given by Lemma 5.11 depend-
ing on (x,0). By passing to that subsequence, we set s; := sj,.

For Og(x) as in Theorem 6.12, we consider L; := pg(Og(x)Uj N Eimgl).
By Lemma 7.2 below,

)\x,sZ<LzU£) S ! )\x,sz<LzU02T)

1—r;
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Since L; = po(Eymy 1) N Oy(x) and {t € Oy(x) : D(o} g,t) = 0} =0, it
follows from the key Lemma 5.12 and (7.3) that for all large i > 1,
(7.4) Aasi (09 (2)Uf) = 03 ., (On(x))
(7.5) < (1+¢)o? 0.5 (Li) =1 +e)Ass, (xL;U).

Therefore we have

Ao (00(2)Uf) < {55205, (00()UFT)

< (14 26)Aa,s, (Op(2)U§7).

Recall we chose s; = sj, so that Theorem 5.11 holds for {p, 7}. Hence by
sending s; — 0o, the above implies

1z (0p(2)Ug) < (1+ 26)p,>(Op(x)UGT).
Together with Theorem 6.12, this gives
2 - MPS(Oe( YUFT) = 1> (Og(2)U37),

however, ut>(Op(z)UZT) > 8 > 0. This gives a contradiction and finishes
the proof of Theorem 7.1. U

Lemma 7.2. Let xmyg € xoT: for xo € Q and s > 0. For any Borel subset
Lo(x) C pg(zN- N Es(r)me_l) and for all sufficiently small 0 < r < 1,

(7.6) Aa,s(Lo(2)UL) < 2N s(Lo(2)UZT).
Proof. Set B
L = pg(xN; N Es(r)ymy ).

Note that if ¢ € L and hence t € po(Es(r)my 1), then tmy = zug for some
2zt € E4(r) and ug € UT. On the other hand, it follows from the definition
of Eq(r) that

2 2r
()%, 1 < 5l (us)z,

and hence

ur Up+T U2rp U2rp+7
(s )t | < !(us)z, | < ) < w8 < )i -

Therefore, since M S is M-invariant, by Lemma 6.8,

Nes(Lo(2)U7) =/ (o)) do? (1)

teLg(x)

_ / (o) e, | o (1)

te€Lg(z)

<L / (o) 2] do? (1)
€Ly (x)

:1;./ ()7 | do?, (1)
€Ly (z)

= L\ (Lo()UF)
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We deduce the following from Theorem 7.1:

Theorem 7.3. There exist 0 < r < 1 and Ty > 1, depending on E, such
that for all T > Ty

rT T
mBR{x cFE: XE(zug)dt < (1 —r) - / XE(zug)dty > r- mBR(E).
—rT =T

Proof. Setting

E(s,r):z{xEE:WEl— }
it suffices to prove that for some 0 < r < 1 and for all s large.
(7.7) mPR(E(s,r)) < (1 — rymBR(E).

We note that

(155 Y [=2rpe® 2rpe’]
E(s,r)={x € E: BT 200 2pe] = 1—r},

BR
where (,u Fo O)U denotes the leafwise measure of ,u mBR(|5).

Note that (7.7) follows from Theorem 7.1 if we show
mBR(E(s, 7)) = mB}(E) - ,u%i(Es(r)) forall 0 <r < 1.

We now show the above identity. Let s be fixed. Then for BR a.e. points
x, we have

(HER)Y [~2rpe*, 2rpe”]  [257, x(wasupas)dt o em
2 s 2 S 2,0 since m 1S U—lnvarlant
(MEQ) [—2pe®, 2pe’] o XB(ra—suas)dt

2
- pr XEa_, (yur)dt

Yy=Ta—s
2p XEa s (yut)dt
z 2rp, 2rp
= ( o z 0) - | since mPR is U-invariant
(MEQ s o) [—2p,2p]
(6— 2)5 BR 2rp, 2r
= ( )y [=2rp,2rp) by the definition of m%%
(€O )T [-2p, 2] ’
Hence a_sE(s,r) coincides with Es(r), up to a BR null set. This implies
the claim using the definition of M%ﬁ. ([l

7.2. Ergodic decomposition and the Hopf ratio theorem. In this
subsection, let p be a locally finite U-invariant conservative measure on X.
Let Moo (X) denote the space of locally finite measures on X with weak*
topology.

Let A denote a countably generated o-algebra equivalent to the o-algebra
of all U-invariant subsets of X. There exist a A-measurable conull set X’
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of X, a family {u, = u : 2 € X'} of conditional measures on X and a
probability measure p, on X which give rise to the ergodic decomposition
of w:

p= /u:c dps ()

where the map X' — My (X), = — g, is Borel measurable, pu, is a U-
invariant, ergodic and conservative measure on X and for any ¢ € L' (X, i),

u(p) = / ) )

see [7, 5.1.4].
The following is the Hopf ratio theorem in a form convenient for us ([11],
see also [38]).

Theorem 7.4. Let ¢, ¢ € L'(mBR) with ¢ > 0. Furthermore suppose that
P and ¢ are compactly supported. Then

fO l‘ut dt — lim fET Q/)(J,‘Ut)dt _ ux(¢)

i I pugdt T [0, deu)dt  Ha(d)
for p-a.e. x € {x € X : supp fo é(zuy)dt > 0}.2

Lemma 7.5. Fiz a compact subset E C X with p(E) > 0. Let ¢ be a
non-negative compactly supported Borel function on X such that ¢|p > 0.
For any p > 0 there exists a compact subset E,(¢) C E with u(E—E,(¢)) <
p- p(E) satisfying:

(1) the map x — iy is continuous for all x € E,(¢);

(2) infrep, pa(®) > 0;
(3) for any v € C.(X) the convergence

fo xut dt s Mz(ﬂ})
fo (zuy)dt pa ()

is uniform on E,(¢).

Proof. By Lusin’s theorem, there exists a compact subset E' C E with u(FE—
E') < £u(E) and the map x +— p, is continuous on E’. Since fOT d(zue)dt —
+oo for a.e. x € E by the conservativity of u, we have u,(¢) > 0 almost all
x € E. Since x — py(¢) is a measurable map, it follows again by Lusin’s
theorem that there exists a compact subset E” C E’ with u(E' — E”) <
Lu(E"), [3° ¢(zuy)dt = oo for all & € E”, and infycpr pip(¢) > 0.

We claim that for any € > 0 and any compact subset @) of X, there exists
a compact subset Ey = Ep(Q,e) C E” such that u(E” — Ey) < ep(E") and
for all ¥ € C(Q), the convergence

fo xut Mo (w)
fo a:ut —> Mx(¢)

2note that for a.e. z in this set u,(¢) > 0, see [38, Page 3].
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is uniform on Eyp. Let B = {¢;} be a countable dense subset of C(Q)
which includes the constant function xg. We can deduce from the Hopf
ratio Theorem 7.4 and Egorov’s theorem that there is a compact subset
Ey C E" such that u(E" — Ey) < Spu(E"), sup,ep, te(Q) < 00, and for each
1 € B, the convergence

Jo by (wuy)dt _, Ha(t)

(7:8) fo (zuy)dt pa (@)

is uniform on FE;. We will show the uniform convergence in F; for all
¢ € C(Q). For any n > 0, there exists 1; € B such that ||¢; — || < n. Let
To > 1 be such that

Jo Wilau)dt  pa(iy)
fo (xuy)dt pa ()

Jo xq(zuy)dt ~ He(XQ)
fo (zuy)dt pa ()

for all x € 1 and T' > Ty. Now for any « € Ey and T > Ty, we have
fo xut dt M:c<¢>
fo (wuy)dt pa (D)

fo [ (xus) — j, (zug)|dt
fo (xuy)dt

)

fo Ql)]o xut)dt ,U/:c(q/)jo)
fo (zuy)dt pa ()

fo XQ(wuy)dt ta (@)
< —fo ) 1% = sl +n+E 1 ()
1z (Q) 2 paz(Q)
S @ @)
<n(2ap +n+1)

pa(®)  pa(d)

N ’Mx(wjo) fz (1) ‘

1Y = jllo

where ag 1= sup,cp, ’:L’i((g)) < 00. This proves the claim. Let Q1 C Qo C - -

be an exhaustion of X by compact sets. Then E,(¢) := NiEo(Qi, 757)
satisfies all the desired properties. ([l

7.3. Window theorem for ¢ € C.(X) with ¢|g > 0. Let I" be a convex
cocompact subgroup with § > 1. Let A denote a countably generated o-
algebra which is equivalent to the o-algebra of all U-invariant subsets of X,
as before.
Since m
decomposition

BR i5 U-conservative by Theorem 6.7, we may write an ergodic

T e
rzeX’
where X' is a A-measurable conull set of X, mBR is a probability measure
on X, and for all z € X', pp, = p* is a U-invariant ergodic conservative
measure.
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Lemma 7.6. Let E and 0 < r < 1 be as in Theorem 7.3. Let ¢ € C.(X)
with ¥|g > 0. For any p > 0, there exists sy > 1 such that for all s > s,

mPR{z e E - Y(zu)dt < (L—r4p) [ Y(zu)dt} > (r—2p) - mPR(E).
Proof. For simplicity, set

Fy(s)={x € E: h Y(zuy)dt < (1 —r+p) ) P(zue)dt}.

—7rs —s
Let E,(xg) C E be as in Lemma 7.5. Since ¢|g > 0, there is a subset £,

of Ep(XE) such that mBR(E _ E,,o) < 2p . mBR(E) and inferL ‘Z:((Eg > 0.

Then for all large s (uniformly for all x € E,(xEg)),

S

vlouie = (245 + 0.9 [
where |az (1), s)| < a(s) = 0 as s — oo by Lemma 7.5.
Setting

rs S

Bsr)={zeE: | xplou)dt>(1—r)- / i (@u)dt),

—Trs —S

we claim that
E,N(E - E(s,r)) C F,(s) for all large s,

from which the lemma follows by Theorem 7.3. For any x € E;) N(E —

E(s,r)),

s rs

[ wwmat = (@t + acvrs)) [ xtoua
< (el + laa(wrs)(1 =) [ xpau)i

—S

S S

<(1-r) w(wut)dtJr(!ax(w,S)lJrax(¢7T8)|)(1—r)/ XE(Tur).

—S —S
Let s; > 1 be such that for s > s and for all z € E;,,

(laz (6, 5)| +las (@, rs))(1=7) _
|22t + a, (¢, 5)| -

I

this is possible since Z :((?) is uniformly bounded from below by a positive
number. Then the claim holds. [l

By taking p = /4 and replacing 3r/4 by r in the above lemma, we now
obtain:
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Theorem 7.7 (Window Theorem). Let 1) € C.(X) be a non-negative func-
tion such that 1|g > 0. Then there exist 0 < r < 1 and Ty > 1 such that
for any T > 1T,
rT
mPr e B Y(zug)dt < (1 —r / Y(zug)dt} > & - mPR(E).
—rT

It is worth mentioning that r obtained here may be rather small. The
following lemma demonstrates how the window estimates for a sequence will
be used.

Lemma 7.8. Let € > 0 and a sequence s — +00 be given. Let E and 1 be
as in Theorem 1.4. Fiz p > 0. Let x, € E (1) be a sequence satisfying

/Sk Y(xpug)dt > ¢ €/Sk (zpug)dt
( 0

1—8)Sk

for some ¢ > 0 independent of k. Then for any f € C.(X), as k — oo,

Jd s Flawuddt  p, (£)
S ey lmku)dt ™ i, (9)

Proof. By the Hopf ratio theorem, and Lemma 7.5, we have
S
/0 fxpug)dt = Z::(w / P(zpue)dt + ag, (s / Y(xpug)d

with limg_,o0 ag, (s) = 0, uniformly in {x)}. Therefore

o po () [°F
/( flapug)dt = #z:(w) /(1 | Y(xpug)dt
—€)Sk

1—¢€)sy

Sk (1—e)sy
+ az (s0) /0 (apu)dt — am, (1 — £)se) /0 D) dt-

Since

Sk (1_5)5k
o, (55) /0 () dt — ao, (1 — £)sp) /0 () dt

<l (55) + g (1 — )s2)] - /0 " p(apun)dt

_ Jaw(s1) + a0 (1 = £)si)] S ey, Y(@pue)dt

—_ )

cC-&

we obtain that

f(l €)s f t)dt _ M;pk(f) +0 (|azk(sk)+azk((17€)sk)|>
f(sllis)sk lapu)dt  pa () « '

Since ag, (sk)+ag, ((1—¢)si) — 0, uniformly in {z}}, the lemma follows. [

8. ADDITIONAL INVARIANCE AND ERGODICITY OF BR FOR 6 > 1

Let I' be a convex cocompact subgroup with § > 1.



BURGER-ROBLIN 40

8.1. Reduction. Let A, X’ and mBR = Jrex pzd(mBR),(z) be the decom-

position of mPR into U -ergodic components, see Section 7.2.

Our strategy in proving the U-ergodicity of mP® is to show that for a.e.
x € X, u, is N-invariant.

Fix a BMS box E and a non-negative function ¢ € C.(X) with ¢|g > 0.
Let 0 < r < 1 be as in the window theorem 7.7 and ro := 5. Recall
E,,(¢) C E from Lemma 7.5.

The next subsection is devoted to a proof of the following:

Theorem 8.1. For any xg € Ey, (1) Nsupp(mPR), uy, is N-invariant.

Lemma 8.2. There exists a BR-conull set X" such that if z,xn € X" for
n € N, then fgn = n.py.

Proof. Since N is abelian and U < N, n.u, is U-invariant and ergodic for

every n € N and for a.e. z. Now since mP® is N-invariant, we have mBR =

[ n.pzd(mPR), () is also a U-ergodic decomposition of mB® for each n € N.
The claim now follows from the uniqueness of ergodic decomposition. O

Corollary 8.3. mPR is U-ergodic.
Proof. Set
F :={z € X : u, is N-invariant}.

By Lemma 8.2, the characteristic function xr is an N-invariant measurable
function. Since mBR is N-ergodic by Theorem 2.9 and mBR(F) > 0 by
Theorem 8.1, it follows that mBR(X — F) = 0. That is, p, = mB® for a.e.
x, and since u,’s are U-ergodic components of mBR, the claim follows. [

8.2. Proof of Theorem 8.1. As we explained in the introduction, we will
flow two nearby points in the generic set and study their divergence in the
“intermediate range”. We first need to prove a refinement of the window
theorem, see Propositions 8.5 and 8.6 below.

Fix 29 € E,,(¢) Nsupp(mBh).

Proposition 8.4. There is a Borel subset E' C E such that mPY(E—E') =
0 and for any x € E' and all integers m > 1,

eN N B(xo, ;) N Ey(¢) # 0.

Proof. Set Ny, := {n, : |z| < k}. Since mBR is N-ergodic, by [10], there
exists a full measure subset E! of E such that for all z € E/,

i J20 XBGao1 iy )2z PR (B, 1/m) 0 By (1)
. Ty wlan:)dz mBR(y) |

It suffices to take E' := N, E,. O
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Since infep, (y) te(¥) > 0 and z — M%W)Mx is continuous on E,, (),
there exists a symmetric neighborhood O such that

gEO,xGEro(w) ,Um(w) a gEO#IEErO(w) ’u‘r(w)

Set Ky, := supp(y)O and K{/} := Ngeosupp(?)g. By Theorem 7.7, for all
s > Ty, the following set has BR measure at least 22mPR(E):

Es :={z € E,(¥) N Ey, (XKw) P (XKT’/)) :

rs

< 00

Y(zug)dt < (1 —7) ’ Y(zuy)dt}.

—Trs
Therefore for each s > Ty, there exists a compact subset G(s) of Es N E’
with mBR(G(s)) > LmPR(E).
We may write G(s) as G(s)+ UG(s)_ where

G(s)s = {z € G(s) /0 o)t < L5 /0 )t

0

0
G(s)- ={x € G(s): Y(zu)dt < L5- Y(xug)dt}.

—Trs —S
Therefore there exists an infinite sequence p; — oo such that mPR(G(p;) ) >
- for all i or mBR(G(p;)—) > % for all i.
In the following, we assume the former case that mPR(G(p;)+) > £ for
all 2. The argument is symmetric in the other case.

Proposition 8.5. Fix integers £,m > 1. There exist an infinite sequence
sk = sp(l,m) and elements x, = xp({,m),yr = yr(¢,m) € G(sg)+ which
satisfy the following:

(1) yp = Tpii, where c; s 2070 < Jwy| < sy 2070 and |S(wy)| >

R (wy)] o
T’“ where ¢y > 1 is independent of {, e, k.

(2) each xy, satisfies

Sk r Sk
/(1 ) Y(wrpug)dt > 4”1/0 Y(xpuy)dt
—€)sp

Proof. If © € G4 (s), then, as r < 1,

/Sw(xut) > T/sw(xut)dt

By subdividing [r, 1] into m subintervals I; = (r+ =D ey %)’S of length
—, there exists an integer 1 < j = j(x,s) < m such that

(r+j/m)s
/ wxutdt>/wa:ut
(

r+(j—1)/m)s
Let dy = do(r/16) > 0 be as in Proposition 4.4. Applying Proposition 4.4
to each G(p;)+ and a sequence (p;¢)?, we can find x;,y; € G(p;)+ satisfying
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Yi = Ty, with dy'p; 2071 < |w;| < dop; 2071 and |S(w;)| > I?szl Choose
a subsequence x;, of {x;} such that j(z;,,p;, ) is a constant, say, jo Setting
s = (r+2 D )piy.> Tk := x4, and Yy = y;,, we have

Sk
/(1 : Y(zpuy) dt> / Y(zpuy)d
—€)sg

and 7p;, < s < (r+1)p;,. Hence the claim follows with ¢; = do(r+1)%. O

We now use the fact that the two orbits xpu; and yru; stay “close” to
each other for all ¢ € [0, s, to show that y;’s in Proposition 8.5 also satisfy
the same type of window estimate. Let us fix some notation; writing yiu; =
Tt (U_tToy, Ut ), We set

L . . 1+ twy, Wi
pk(t) = U4y, Ut = < —tQ’LUk 1— twk>
and gx = pr(sk)-

Proposition 8.6. There are positive constants co = (1)) and g9 = £o(1)
such that for all e = % <egg and all k> 1,

Sk sk
/ Y(yrug)dt > c3 - E/ U (ypug)dt
(1—e)sk 0

where yi, = yi({,€) is as in Proposition 8.5.

Proof. There is a constant ¢ > 0 (independent of £) such that |px(t)g, '| < ce
for all t € [(1 — €)sg, sx]. Hence for all £ > 1 (independent of ), we have
p(t) € O for all t € [0, sg).

Claim (1): For some constant b; > 0, independent of ¢, we have for all
E>1,

(8.2) /0 " p(@pu)dt > by /O " ) dt

By the definition of Ky and K;/}, since yrur € TrurO, we have XK, (yrug) <
Xk, (Trug) for all t € [0, s]. In particular we have

Sk Sk
/ XK, (Trug)dt > / X, (Yrue)di.
0 0

On the other hand, we have

fosk Y(ypug)dt = % XK, (yrue)dt + ag,, (Y, si.) fosk XK, (zruq)dt;
JoF v(zpug)dt = % XK, (Tkue)dt + ag, (¥, 51) [oF Xi, (zpu)dt

with max{|az, (¢, sk)|, |ay, (¥, sk)|} < a(sg) = 0 as k — oo.
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As Hyp, () and Hay, (1)
My (XK;)) Ha (XKw)

by the choice of x; and i, there exists b > 0 such that for all large k& > 1,

are uniformly bounded from below and above,

Sk Sk Sk Sk
[ vt =6 [ e = [ anar = 2 [ vt
0 0 0 0

finishing the proof of Claim (1).
Claim (2): For some constant ba > 0, independent of ¢, we have for all
E>1,

(8.3) /(SIc XK, (Tru)dt < by /Sk Y(zpuy)dt.

1—¢)sk (1—€)sk

By Lemma 7.8 and its proof, we have

Sk z( ) Sk
(8.4) /( ic, ()t = 0% /( ) dt

1—¢)sg 1—¢)sg

Sk
| Aals)taesy)) | / (zpu)dt.
(

Te
1—€)Sk

tay (XK y,)
stants, it suffices to take k large enough so that (a(si)+a(esg)) < € to finish
the proof of Claim (2).

We have

Since is uniformly bounded from above and below by positive con-

/(Sk Y(ypug)dt = /Sk Y(xpuspr(t))dt

1—8)Sk (1_5)5k

> / Y erug)di / (i (8)) — o (exunge)|dt.
(

1—¢)sk (1—€)sk
By (8.3), for all large k,

Sk

/(Sk [ (zpuepr(t)) — (xpugr)|dt < C¢€/ XK, (Trug)dt

1—¢)sk (1—€)sk

Sk
< Cwbz€/( Y(xpur)

1—¢€)sy

By, (95)
Ky (¥)
is uniformly bounded from above and below, we can deduce that for some

c>1,

where ¢y, is the Lipschitz constant of ¢. Since g5 € O and hence

Sk

(8.5) ¢! /(’“ ¢(:ckut)dt§/8k w(xkutgk)dtgc/ W (wpue)dt.

1—¢)s (1—¢)sg (1—¢)sg
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Therefore the above estimates together with (8.2) imply that for all k large,

Aﬂ vlpan)de > (= egbae) [ vl

1—¢€)sy (1—¢)sk

-1 b Sk
> s 2E)re / (wpue)dt
0

bi(c™t — cybye)re [k
b e [

Now the proposition follows with co = 1781—5 and gg =

Tace- O
We will now flow x;, and y;, for the period of time [(1 — €)sg, sx]. By the
construction of these points, these two pieces of orbits are almost parallel
and they essentially differ by gx which is of size O(1). More importantly
these “short” pieces of the orbits already become equidistributed. This will
show that some ergodic component is invariant by a nontrivial element in
N —U and the proof can be concluded from there using standard arguments.
Fix £ € N. Let g, = 3 > 0 for i € N. We choose sj(e1,) and
zr(er, £),yr(e1,£) € G(sk(e1,€))4+ as in Proposition 8.5. Together with
Proposition 8.6, there exists a; > 0 independent of €1 and k such that

(e1,¢) k(e1,0)
/ Y(zp(er, Ouy)dt > 04151/ Y(xg(e1, f)ug)dt  and
1 0

—El)sk (51,5)

k(€1,0) sk(e1,0)
/( UV(yx(e1, O)uy)dt > ozlsl/ U(yg(e1, O)ug)dt.
1 0

781)Sk(€1,f)

By passing to a subsequence, we assume that xj(e1,4) = x¢, ¢, and hence

Yk(e1,€) = Yer 4, and py(si(e1,¥)) converges to Ny, , 1= ( 1 ?) e N

Vey 0
where — < |vz, | < G and [S(ve, 0)| > M

We proceed by mductlon by dividing the mterval [(1—&i)sk(ei, £), sk(e4, 0)]
into subintervals of length €;,1 as in the proof of Proposition 8.5, we can find
a sequence S (g;+1,¢) and subsequences x(g;41, £) of xr(g;,£) and yx (41, ¢)
of yr (i, ¢) satisfying

sk(€it1,L) sk(€it1,0)
/( (g (Eipr, O)ug)dt > 0416i+1/ P(k(€iv1, O)us)dt;
0

1—¢eit1)sk(€it1,0)

sk(€it1,0)

Sk(82+1,€)
/ V(yr(git1, Oug)dt > 041€z'+1/ Y(yr(eirt, O)ug)dt
(1=git1)sk(git1,0) 0

1
and pi(sk(git1,¢)) converges to some element Mo, 0 = (v (1)> eN
e €it1,0

R(ve.
where 4y < o, ] < % and [(u,, )] > Pt
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Clearly, as i — oo, we have zy(e;,¢) — x., ¢ and yr(e;, ¢) — ., 0. By
passing to a subsequence, we may assume that v, , converges to an element

vg € N. Note that - < |vg| < & and |S(vf)| > Iﬂ‘%gz)l_
Let o > 1 be large enough so that n,, € O for all £ > /.

Proposition 8.7. Let ¢ > {y and set xp := x., 4. For any f € Cc(X), we

have
ta, (f) _ Hay (120,-f)
fay (V) g (N, )
Proof. We claim that there exists a constant b > 0 such that for each i > 1,
the following holds for all k£ >; 1:
/’Lyk(si,z) (f) _ /’Lmk(fi,e) (nvsi,l’.'f)
)uyk(ai,ﬁ) (w) lu’CCk(Ei,Z) (nvgi,e'w)

< bg;.

(8.6)

We first deduce the proposition from this claim. Since both yy(e;, ), x (g, ¢)
belong to the set E, 5(3) and converge to xy, and f,¢ € C.(X) have

compact supports, fiy, ., 0)(f) = paz,(f) and py, i, 0)(0) = bz, (V) as k —
.

Since ny, ,.f converges to ny,.f pointwise as ¢ — oo and the supports of all
functions involved are contained in one fixed compact subset of X, we have

um(gi’@(nvai’e.f) — ,uxe(nvsi‘é.f) as k — oo. Similarly, uzk(givg)(nveiye.w) —
ta (Mo, 1) as k — oco. Hence (8.6) implies, by taking k& — oo, that

Nﬂcz(f) _ Ha, (nvsi,é'f)
Ha, (w) Ha, (nvsbe-lb)

Now by taking i — oo, this proves the proposition as &; — 0.

To prove Claim (8.6), fixing € := ¢;, we set v = v, sp = si(€i), Tk =
xi(gi, £) and y, = yg (i, £) for simplicity. By Lemma 7.8, we have, as k — oo,
f(sllie)sk f(ykut)dt -~ Hyy, (f)
f(slk_a)Sk Y(ypug)dt  py, (¥)

Since nje € O, similar calculation implies that, as k — oo,

< b&i.

(8.7)

f(slk—tE)Sk no - f(@ue)dt -, Hax (0-f)
f(slk_a)Sk Ny p(Tpue)dt g, (N 1)
Therefore the claim follows if we show for all large k >>; 1,
f(slk_e)sk [ (yrug)dt - f(sl’“_s)sk Ny f (Tpug)dt b
f(slk,g)s,c Y (ypur)dt f(slk,g)sk Ny (pug)dt | —

for some b > 0 independent of €. Let ¢y and ¢, denote the Lipschitz con-
stants of f and v respectively. Hence for all ¢t € [(1 — ¢)s, si] and large
kE>1,

(8.8)

(8.9)

| f(zrupr(t)) — f(zpuve)| < cp(e + 83 1) < 2ecy
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and
[ (zruepr(t)) — Y(apuve)| < cp(e + sy 1) < 2ecy.
We have

f(slk_g)sk f(yrue)dt B f(ik_g)sk J(zrupr(t))dt
f(slk )sk @Z)(ykut)dt B f(slk )sk @Z)(mkutpk(t))dt
f(l - - fzpug)dt f(l " o)s fxrupr(t)) — ny - f(zpue)dt
- f(slk_e)sk ¢($kutpk(t))dt f(slk_g)sk P(xpupr(t))dt
Let Ko = Ky U K¢. Then the above estimate, (8.5) and (8.8) with f =
XK,, imply that

f(silia)sk fzruepi(t)) — ny. f(xpue)dt e f( e XK, (Trug)dt
f(l —€) Sk xkutpk(t))dt - f(l —€) sk xkut)dt
1y, (Ko)
<Adcrce ——+=-.
d ey, (¥)

On the other hand we have
f(s1k—5) Ny f (Trug)dt
Jaoys, V@ruepr(t))dt
f(l €)sh J(zpu)dt (1 f(1 &) Y(xpupr(t)) — nvw(a:kut)dt)_l
)dt )

j’(slk e Ap(zpug)dt f(l )5, T (xpuy)dt
Similar estimate as above gives
f(sllig)slc Y(zrupr(t)) — nop(apug)dt < derce Py (K0)
S S 4CyCE ——————.
f(]_k 5)5 Ny- ¢(.’1}'kUt>dt v )uzk (w)

All these together imply there exists a constant ¢’ > 0 (depending on f and
¥ but independent of €) such that

S oysy, S (upue)dt — (14 ) JOoys, oo f () dt
f(lk—é‘)sk VY (ypuy)dt f(l’“_E)Sk Ny (T pus)dt
Now by (8.7), (8.8), this implies the claim (8.9).

/

+cCce.

The following proposition finishes the proof of Theorem 8.1.
Proposition 8.8. p,, is invariant under N.

Proof. The set {n € N : n.uy, = iz, } is a closed subgroup which contains

U. Let z; and vy be as in Proposition 8.7. Since ﬁ < Jug| £ % and

IS (vg)| > w, it suffices to show that (i, is invariant under n,, for all
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¢ > ly. Note that x € E (). Set Ng :={n € N : xyn € E,(¢)}. We have
for any n € Ny and f € C.(X),

pay ) i)t ()

Mz, (ndj) T fO xgutn dt Mzgn(w) .
On the other hand, by Proposition 8.7, we have

,uw(n.f) _ Hapny, (nf) _ Mmgn(nvg-f)
Kz, (n@b) Hagny, (n¢) “mbn(nvz'd])‘

Therefore for any n € Ny,

ngn(f) My (w)
M;vgn(nw-f) B Macz.n(nvrw) (7& 0)'

As xy € F', it follows from the definition of E’ that we can take a sequence
Ny such that zen., € E,(¥)NB(xg,m™!) and hence z¢n,, — ¢ as m — oo.
In particular,

Haq (nvz ) meoo Ha g, (nvz ) mooo Hapnm, (nw w) Hao (nvé )
It follows that p., and n,,.p, are not mutually singular to each other.

Hence by Lemma 8.2, 15y = Ny, flag - (]

Finally we state the following: recall the notation m%ﬁi from the subsec-
tion 2.5.

Theorem 8.9. If Uy is a one-parameter unipotent subgroup of G and T’

is a convex cocompact subgroup with § > 1, then m%ﬁ‘ is Up-ergodic for

No = Cg(Up).

Proof. Let kg € K be such that Uy = k‘alUk:O. If B C X is a Borel subset
which is Uy invariant, then Bkg is U-invariant. Hence by Corollary 8.3,
BR(Bk‘O) =0 or mBR(X Bky) = 0. By the definition of mN , it follows

that mY] No R(B)=0or m%lg‘(X B) =0. O
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