Communcation over interference channels

Dustin Cartwright ${ }^{1}$

February 24, 2011
${ }^{1}$ work in progress with Guy Bresler and David Tse

Multiple-input multiple-output channel

- The transmitter sends a signal $v \in \mathbb{C}^{N}$ by transmitting across $N=3$ antennas.

Multiple-input multiple-output channel

- The transmitter sends a signal $v \in \mathbb{C}^{N}$ by transmitting across $N=3$ antennas.
- The receiver detects $H v \in \mathbb{C}^{N}$ across its N antennas, where each entry of the $H \in \mathbb{C}^{N \times N}$ depends on the signal path.

Multiple-input multiple-output channel

- The transmitter sends a signal $v \in \mathbb{C}^{N}$ by transmitting across $N=3$ antennas.
- The receiver detects $H v \in \mathbb{C}^{N}$ across its N antennas, where each entry of the $H \in \mathbb{C}^{N \times N}$ depends on the signal path.
- If H is known and invertible, then the receiver can reconstruct the message v.

Multiple users of the same channel

Multiple users of the same channel

- K transmitter-receiver pairs using the same channel.
- Determined by K^{2} channel matrices $H_{i j}$ of size $N \times N$.
- Reciever 1 only cares about transmitter 1's message, etc.

Strategies for interference alignment

- Each transmitter has a subspace $V_{j} \subset \mathbb{C}^{N}$ to transmit in.
- Each receiver has a subspace $U_{i} \subset \mathbb{C}^{N}$ and only pays attention to its signal modulo U_{i}.

Strategies for interference alignment

- Each transmitter has a subspace $V_{j} \subset \mathbb{C}^{N}$ to transmit in.
- Each receiver has a subspace $U_{i} \subset \mathbb{C}^{N}$ and only pays attention to its signal modulo U_{i}.

In order for this to work, we need:

- For $i \neq j, H_{i j} V_{j} \subset U_{j}$.
- $\left(H_{i i} V_{i}\right) \cap U_{i}=\emptyset$.

Strategies for interference alignment

- Each transmitter has a subspace $V_{j} \subset \mathbb{C}^{N}$ to transmit in.
- Each receiver has a subspace $U_{i} \subset \mathbb{C}^{N}$ and only pays attention to its signal modulo U_{i}.

In order for this to work, we need:

- For $i \neq j, H_{i j} V_{j} \subset U_{j}$.
- $\left(H_{i i} V_{i}\right) \cap U_{i}=\emptyset$.

If each $H_{i i}$ is generic, the second condition is satisfied automatically.

Questions

- For which N, K, and $\left(d_{1}, \ldots, d_{K}\right)$ will generic channel matrices have a solution?

Questions

- For which N, K, and $\left(d_{1}, \ldots, d_{K}\right)$ will generic channel matrices have a solution?
- What is the information capacity of this channel?

Questions

- For which N, K, and $\left(d_{1}, \ldots, d_{K}\right)$ will generic channel matrices have a solution?
- What is the information capacity of this channel?
- How to parametrize spaces of solution strategies?

Incidence correspondence

$$
\left(\mathbb{C}^{N \times N}\right)^{K(K-1)} \times \prod_{i=1}^{K} \operatorname{Gr}\left(d_{i}, N\right) \times \operatorname{Gr}\left(N-d_{i}, N\right)
$$

Subvariety of those

$$
\left(H_{12}, \ldots, H_{K-1, K}, V_{1}, \ldots, V_{K}, U_{1}, \ldots, U_{K}\right)
$$

such that

$$
H_{i j} V_{j} \subset U_{i} \text { for } 1 \leq i \neq j \leq K
$$

Incidence correspondence

$$
\left(\mathbb{C}^{N \times N}\right)^{K(K-1)} \times \prod_{i=1}^{K} \operatorname{Gr}\left(d_{i}, N\right) \times \operatorname{Gr}\left(N-d_{i}, N\right)
$$

Subvariety of those

$$
\left(H_{12}, \ldots, H_{K-1, K}, V_{1}, \ldots, V_{K}, U_{1}, \ldots, U_{K}\right)
$$

such that

$$
H_{i j} V_{j} \subset U_{i} \text { for } 1 \leq i \neq j \leq K
$$

This is a vector bundle over a product of Grassmannians.

Incidence correspondence

$$
\left(\mathbb{C}^{N \times N}\right)^{K(K-1)} \times \prod_{i=1}^{K} \operatorname{Gr}\left(d_{i}, N\right) \times \operatorname{Gr}\left(N-d_{i}, N\right)
$$

Subvariety of those

$$
\left(H_{12}, \ldots, H_{K-1, K}, V_{1}, \ldots, V_{K}, U_{1}, \ldots, U_{K}\right)
$$

such that

$$
H_{i j} V_{j} \subset U_{i} \text { for } 1 \leq i \neq j \leq K
$$

This is a vector bundle over a product of Grassmannians.
Question
Is the projection onto $\left(\mathbb{C}^{N \times N}\right)^{K(K-1)}$ surjective?

Existence of solutions

Theorem
Assume that $d=d_{1}=\cdots=d_{K}$ and $K \geq 3$. Then a generic set of channel matrices has a solution if and only if

$$
2 N \geq d(K+1)
$$

If so, the dimension of the solution variety is

$$
d K(2 N-d(K+1))
$$

Existence of solutions

Theorem
Assume that $d=d_{1}=\cdots=d_{K}$ and $K \geq 3$. Then a generic set of channel matrices has a solution if and only if

$$
2 N \geq d(K+1)
$$

If so, the dimension of the solution variety is

$$
d K(2 N-d(K+1))
$$

For non-constant d_{i}, we have the necessary conditions:

$$
\begin{aligned}
d_{i}+d_{j} \leq N & \text { for all } i, j \\
\sum_{i \in S} 2 d_{i}\left(N-d_{i}\right) \geq \sum_{i \neq j \in S} d_{i} d_{j} & \text { for all subsets } S \subset\{1, \ldots, K\}
\end{aligned}
$$

$K=3$

The threshold case for feasibility is

$$
\left(d_{1}, d_{2}, d_{3}\right)=(d, d, N-d),
$$

where $d_{1} \leq N / 2$.

$K=3$

The threshold case for feasibility is

$$
\left(d_{1}, d_{2}, d_{3}\right)=(d, d, N-d),
$$

where $d_{1} \leq N / 2$.

- After change of coordinates, can assume that all but one channel matrix is the identity.

$K=3$

The threshold case for feasibility is

$$
\left(d_{1}, d_{2}, d_{3}\right)=(d, d, N-d),
$$

where $d_{1} \leq N / 2$.

- After change of coordinates, can assume that all but one channel matrix is the identity.
- For dimension reasons, inclusions become equalities:

$$
V_{1}=U_{3}=V_{2} \subset U_{1}=V_{3}=U_{2} \supset H_{21} V_{1}
$$

An eigenvector-like problem

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^{N}$, subspace of dimension d
- $U \subset \mathbb{C}^{N}$, subspace of dimension $e=N-d$
such that

$$
V \subset U \quad \text { and } \quad H V \subset U
$$

An eigenvector-like problem

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^{N}$, subspace of dimension d
- $U \subset \mathbb{C}^{N}$, subspace of dimension $e=N-d$
such that

$$
V \subset U \quad \text { and } \quad H V \subset U
$$

- For $d=e=1$, this is equivalent to $V=U$ being the span of an eigenvector.

An eigenvector-like problem

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^{N}$, subspace of dimension d
- $U \subset \mathbb{C}^{N}$, subspace of dimension $e=N-d$
such that

$$
V \subset U \quad \text { and } \quad H V \subset U
$$

- For $d=e=1$, this is equivalent to $V=U$ being the span of an eigenvector.
- More generally, for $d=e>1$, take $V=U$ to be spanned by d eigenvectors. In particular, $\binom{N}{d}$ solutions.

An eigenvector-like problem

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^{N}$, subspace of dimension d
- $U \subset \mathbb{C}^{N}$, subspace of dimension $e=N-d$
such that

$$
V \subset U \quad \text { and } \quad H V \subset U
$$

- For $d=e=1$, this is equivalent to $V=U$ being the span of an eigenvector.
- More generally, for $d=e>1$, take $V=U$ to be spanned by d eigenvectors. In particular, $\binom{N}{d}$ solutions.
- For $e>d$, variety of solutions of dimension

$$
(N-(e-d))(e-d)
$$

Parametrizing the solution variety

Recall: Want to find V, U such that $V \subset U$ and $H V \subset U$.

- Set $\ell:=\left\lfloor\frac{d}{e-d}\right\rfloor$
- Choose $S \subset \mathbb{C}^{N}$ of dimension $d-\ell(e-d)$.

Parametrizing the solution variety

Recall: Want to find V, U such that $V \subset U$ and $H V \subset U$.

- Set $\ell:=\left\lfloor\frac{d}{e-d}\right\rfloor$
- Choose $S \subset \mathbb{C}^{N}$ of dimension $d-\ell(e-d)$.
- Choose $S+H S \subset T \subset \mathbb{C}^{N}$ of dimension $e-\ell(e-d)$.

Parametrizing the solution variety

Recall: Want to find V, U such that $V \subset U$ and $H V \subset U$.

- Set $\ell:=\left\lfloor\frac{d}{e-d}\right\rfloor$
- Choose $S \subset \mathbb{C}^{N}$ of dimension $d-\ell(e-d)$.
- Choose $S+H S \subset T \subset \mathbb{C}^{N}$ of dimension $e-\ell(e-d)$.
- Set

$$
\begin{aligned}
& U=S+T+\ldots H^{\ell-1} T \\
& V=T+\ldots+H^{\ell} T
\end{aligned}
$$

Parametrizing the solution variety

Recall: Want to find V, U such that $V \subset U$ and $H V \subset U$.

- Set $\ell:=\left\lfloor\frac{d}{e-d}\right\rfloor$
- Choose $S \subset \mathbb{C}^{N}$ of dimension $d-\ell(e-d)$.
- Choose $S+H S \subset T \subset \mathbb{C}^{N}$ of dimension $e-\ell(e-d)$.
- Set

$$
\begin{aligned}
& U=S+T+\ldots H^{\ell-1} T \\
& V=T+\ldots+H^{\ell} T
\end{aligned}
$$

Structure of whole variety seems complicated: when $e=d+1$, then it is the toric variety for the Minkowski sum of hypersimplices $\Delta_{e, N}+\Delta_{N, d}$.

Numbers of solutions

Return to

$$
K \geq 3 \quad d=d_{1}=\ldots=d_{k}
$$

Zero-dimensional when $N=\frac{d(K+1)}{2}$. The number of solutions is:

	K				
d	3	4	5	6	7
1	2	-	216	-	$1,975,560$
2	6	3700	$388,407,960$		
3	20	-		-	
4	70				
\vdots	\vdots				
d	$\binom{2 d}{d}$				

Number of solutions when $d=1$

Assume $d=d_{1}=\cdots d_{K}=1$ and $2 N=K+1$.
Degenerate each $H_{i j}$ to a rank 1 matrix:

$$
H_{i j} V_{j} \subset U_{j} \quad \Longleftrightarrow \quad V_{j} \subset \operatorname{ker} H_{i j} \text { or } U_{j} \supset \operatorname{im} H_{i j}
$$

Number of solutions when $d=1$

Assume $d=d_{1}=\cdots d_{K}=1$ and $2 N=K+1$.
Degenerate each $H_{i j}$ to a rank 1 matrix:

$$
H_{i j} V_{j} \subset U_{j} \quad \Longleftrightarrow \quad V_{j} \subset \text { ker } H_{i j} \text { or } U_{j} \supset \operatorname{im} H_{i j}
$$

Theorem
Number of solutions $=$ number of balanced orientations of the graph G
G has edges $t_{j}-s_{i}$ whenever $i \neq j$. Balanced orientation means that

$$
\text { in degree }(v)=\text { out degree }(v)=\frac{K-1}{2}
$$

for all vertices v of G.

Further questions

- If the d_{i} are not necessarily all equal, when does a feasible strategy exist?

Further questions

- If the d_{i} are not necessarily all equal, when does a feasible strategy exist?
- Can we parametrize the solution variety in more cases?

Further questions

- If the d_{i} are not necessarily all equal, when does a feasible strategy exist?
- Can we parametrize the solution variety in more cases?
- What if the receivers and transmitters have different numbers of antennas?

Further questions

- If the d_{i} are not necessarily all equal, when does a feasible strategy exist?
- Can we parametrize the solution variety in more cases?
- What if the receivers and transmitters have different numbers of antennas?
- What if the channel matrices have the form

$$
H_{i j}=\left[\begin{array}{cccc}
\tilde{H}_{i j} & 0 & \cdots & 0 \\
0 & \tilde{H}_{i j} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \tilde{H}_{i j}
\end{array}\right] ?
$$

