Communcation over interference channels

Dustin Cartwright¹

February 24, 2011

¹work in progress with Guy Bresler and David Tse

Multiple-input multiple-output channel

▶ The transmitter sends a signal $v \in \mathbb{C}^N$ by transmitting across N = 3 antennas.

Multiple-input multiple-output channel

- ▶ The transmitter sends a signal $v \in \mathbb{C}^N$ by transmitting across N = 3 antennas.
- ▶ The receiver detects $Hv \in \mathbb{C}^N$ across its N antennas, where each entry of the $H \in \mathbb{C}^{N \times N}$ depends on the signal path.

Multiple-input multiple-output channel

- ▶ The transmitter sends a signal $v \in \mathbb{C}^N$ by transmitting across N = 3 antennas.
- ▶ The receiver detects $Hv \in \mathbb{C}^N$ across its N antennas, where each entry of the $H \in \mathbb{C}^{N \times N}$ depends on the signal path.
- ▶ If *H* is known and invertible, then the receiver can reconstruct the message *v*.

Multiple users of the same channel

- K transmitter-receiver pairs using the same channel.
- Determined by K² channel matrices H_{ij} of size N × N.

Multiple users of the same channel

- K transmitter-receiver pairs using the same channel.
- Determined by K² channel matrices H_{ij} of size N × N.
- Reciever 1 only cares about transmitter 1's message, etc.

Strategies for interference alignment

- ▶ Each transmitter has a subspace $V_i \subset \mathbb{C}^N$ to transmit in.
- ▶ Each receiver has a subspace $U_i \subset \mathbb{C}^N$ and only pays attention to its signal modulo U_i .

Strategies for interference alignment

- ▶ Each transmitter has a subspace $V_i \subset \mathbb{C}^N$ to transmit in.
- ▶ Each receiver has a subspace $U_i \subset \mathbb{C}^N$ and only pays attention to its signal modulo U_i .

In order for this to work, we need:

- ▶ For $i \neq j$, $H_{ij}V_j \subset U_j$.
- $\blacktriangleright (H_{ii}V_i)\cap U_i=\emptyset.$

Strategies for interference alignment

- ▶ Each transmitter has a subspace $V_i \subset \mathbb{C}^N$ to transmit in.
- ▶ Each receiver has a subspace $U_i \subset \mathbb{C}^N$ and only pays attention to its signal modulo U_i .

In order for this to work, we need:

- ▶ For $i \neq j$, $H_{ij}V_j \subset U_j$.
- $\blacktriangleright (H_{ii}V_i)\cap U_i=\emptyset.$

If each H_{ii} is generic, the second condition is satisfied automatically.

Questions

▶ For which N, K, and (d_1, \ldots, d_K) will generic channel matrices have a solution?

Questions

- For which N, K, and (d_1, \ldots, d_K) will generic channel matrices have a solution?
- ► What is the information capacity of this channel?

Questions

- For which N, K, and (d_1, \ldots, d_K) will generic channel matrices have a solution?
- What is the information capacity of this channel?
- ▶ How to parametrize spaces of solution strategies?

Incidence correspondence

$$\left(\mathbb{C}^{N\times N}\right)^{K(K-1)}\times\prod_{i=1}^{K}\operatorname{Gr}(d_i,N)\times\operatorname{Gr}(N-d_i,N)$$

Subvariety of those

$$(H_{12},\ldots,H_{K-1,K},V_1,\ldots,V_K,U_1,\ldots,U_K)$$

such that

$$H_{ij}V_j \subset U_i$$
 for $1 \leq i \neq j \leq K$

Incidence correspondence

$$\left(\mathbb{C}^{N\times N}\right)^{K(K-1)} imes\prod_{i=1}^K\operatorname{\mathsf{Gr}}(d_i,N) imes\operatorname{\mathsf{Gr}}(N-d_i,N)$$

Subvariety of those

$$(H_{12},\ldots,H_{K-1,K},V_1,\ldots,V_K,U_1,\ldots,U_K)$$

such that

$$H_{ij}V_j \subset U_i$$
 for $1 \leq i \neq j \leq K$

This is a vector bundle over a product of Grassmannians.

Incidence correspondence

$$\left(\mathbb{C}^{N\times N}\right)^{K(K-1)}\times\prod_{i=1}^{K}\operatorname{Gr}(d_i,N)\times\operatorname{Gr}(N-d_i,N)$$

Subvariety of those

$$(H_{12},\ldots,H_{K-1,K},V_1,\ldots,V_K,U_1,\ldots,U_K)$$

such that

$$H_{ij}V_j \subset U_i$$
 for $1 \leq i \neq j \leq K$

This is a vector bundle over a product of Grassmannians.

Question

Is the projection onto $(\mathbb{C}^{N\times N})^{K(K-1)}$ surjective?

Existence of solutions

Theorem

Assume that $d=d_1=\cdots=d_K$ and $K\geq 3$. Then a generic set of channel matrices has a solution if and only if

$$2N\geq d(K+1).$$

If so, the dimension of the solution variety is

$$dK(2N-d(K+1))$$

Existence of solutions

Theorem

Assume that $d = d_1 = \cdots = d_K$ and $K \ge 3$. Then a generic set of channel matrices has a solution if and only if

$$2N \geq d(K+1).$$

If so, the dimension of the solution variety is

$$dK(2N-d(K+1))$$

For non-constant d_i , we have the necessary conditions:

$$d_i + d_j \le N \quad \text{ for all } i, j$$

$$\sum_{i \in S} 2d_i(N - d_i) \ge \sum_{i \ne j \in S} d_i d_j \quad \text{ for all subsets } S \subset \{1, \dots, K\}$$

$$K=3$$

The threshold case for feasibility is

$$(d_1, d_2, d_3) = (d, d, N - d),$$

where $d_1 \leq N/2$.

$$K=3$$

The threshold case for feasibility is

$$(d_1, d_2, d_3) = (d, d, N - d),$$

where $d_1 \leq N/2$.

► After change of coordinates, can assume that all but one channel matrix is the identity.

$$K=3$$

The threshold case for feasibility is

$$(d_1, d_2, d_3) = (d, d, N - d),$$

where $d_1 \leq N/2$.

- After change of coordinates, can assume that all but one channel matrix is the identity.
- For dimension reasons, inclusions become equalities:

$$V_1 = U_3 = V_2 \subset U_1 = V_3 = U_2 \supset H_{21}V_1$$

Given generic $N \times N$ matrix H, find

- ▶ $V \subset \mathbb{C}^N$, subspace of dimension d
- ▶ $U \subset \mathbb{C}^N$, subspace of dimension e = N d

such that

$$V \subset U$$
 and $HV \subset U$

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^N$, subspace of dimension d
- ▶ $U \subset \mathbb{C}^N$, subspace of dimension e = N d

such that

$$V \subset U$$
 and $HV \subset U$

▶ For d = e = 1, this is equivalent to V = U being the span of an eigenvector.

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^N$, subspace of dimension d
- ▶ $U \subset \mathbb{C}^N$, subspace of dimension e = N d

such that

$$V \subset U$$
 and $HV \subset U$

- ▶ For d = e = 1, this is equivalent to V = U being the span of an eigenvector.
- ▶ More generally, for d = e > 1, take V = U to be spanned by d eigenvectors. In particular, $\binom{N}{d}$ solutions.

Given generic $N \times N$ matrix H, find

- $V \subset \mathbb{C}^N$, subspace of dimension d
- ▶ $U \subset \mathbb{C}^N$, subspace of dimension e = N d

such that

$$V \subset U$$
 and $HV \subset U$

- ▶ For d = e = 1, this is equivalent to V = U being the span of an eigenvector.
- More generally, for d = e > 1, take V = U to be spanned by d eigenvectors. In particular, (N/d) solutions.
- ▶ For e > d, variety of solutions of dimension

$$(N-(e-d))(e-d)$$

Recall: Want to find V, U such that $V \subset U$ and $HV \subset U$.

- $\blacktriangleright \text{ Set } \ell := \left\lfloor \frac{d}{e d} \right\rfloor$
- ▶ Choose $S \subset \mathbb{C}^N$ of dimension $d \ell(e d)$.

Recall: Want to find V, U such that $V \subset U$ and $HV \subset U$.

- $\blacktriangleright \mathsf{Set} \ \ell := \left| \frac{d}{e d} \right|$
- ▶ Choose $S \subset \mathbb{C}^N$ of dimension $d \ell(e d)$.
- ▶ Choose $S + HS \subset T \subset \mathbb{C}^N$ of dimension $e \ell(e d)$.

Recall: Want to find V, U such that $V \subset U$ and $HV \subset U$.

$$\blacktriangleright \mathsf{Set} \ \ell := \left| \frac{d}{e - d} \right|$$

- ▶ Choose $S \subset \mathbb{C}^N$ of dimension $d \ell(e d)$.
- ▶ Choose $S + HS \subset T \subset \mathbb{C}^N$ of dimension $e \ell(e d)$.
- Set

$$U = S + T + \dots H^{\ell-1}T$$
$$V = T + \dots + H^{\ell}T$$

Recall: Want to find V, U such that $V \subset U$ and $HV \subset U$.

$$\blacktriangleright \text{ Set } \ell := \left\lfloor \frac{d}{e - d} \right\rfloor$$

- ▶ Choose $S \subset \mathbb{C}^N$ of dimension $d \ell(e d)$.
- ▶ Choose $S + HS \subset T \subset \mathbb{C}^N$ of dimension $e \ell(e d)$.
- Set

$$U = S + T + \dots H^{\ell-1}T$$
$$V = T + \dots + H^{\ell}T$$

Structure of whole variety seems complicated: when e=d+1, then it is the toric variety for the Minkowski sum of hypersimplices $\Delta_{e,N}+\Delta_{N,d}$.

Numbers of solutions

Return to

$$K \geq 3$$
 $d = d_1 = \ldots = d_k$

Zero-dimensional when $N = \frac{d(K+1)}{2}$. The number of solutions is:

2					
			K		
d	3	4	5	6	7
1	2	-	216	-	1,975,560
2	6	3700	388,407,960		
3	20	-		-	
4	70				
:	:				
d	$\binom{2d}{d}$				

Number of solutions when d=1

Assume $d = d_1 = \cdots d_K = 1$ and 2N = K + 1. Degenerate each H_{ij} to a rank 1 matrix:

$$H_{ij}V_j\subset U_j \qquad \Longleftrightarrow \qquad V_j\subset \ker H_{ij} \ \ \text{or} \ \ U_j\supset \operatorname{im} H_{ij}$$

Number of solutions when d=1

Assume $d = d_1 = \cdots d_K = 1$ and 2N = K + 1. Degenerate each H_{ij} to a rank 1 matrix:

$$H_{ij}V_j\subset U_j \qquad \Longleftrightarrow \qquad V_j\subset \ker H_{ij} \ \ {
m or} \ \ U_j\supset {
m im}\ H_{ij}$$

Theorem

Number of solutions = number of $\frac{balanced\ orientations}{G}$ of the graph G

G has edges $t_j - s_i$ whenever $i \neq j$. Balanced orientation means that

in degree(v) = out degree(v) =
$$\frac{K-1}{2}$$

for all vertices v of G.

▶ If the *d_i* are not necessarily all equal, when does a feasible strategy exist?

- ▶ If the *d_i* are not necessarily all equal, when does a feasible strategy exist?
- ► Can we parametrize the solution variety in more cases?

- ▶ If the *d_i* are not necessarily all equal, when does a feasible strategy exist?
- ► Can we parametrize the solution variety in more cases?
- What if the receivers and transmitters have different numbers of antennas?

- ▶ If the *d_i* are not necessarily all equal, when does a feasible strategy exist?
- Can we parametrize the solution variety in more cases?
- What if the receivers and transmitters have different numbers of antennas?
- What if the channel matrices have the form

$$H_{ij} = egin{bmatrix} ilde{H}_{ij} & 0 & \cdots & 0 \ 0 & ilde{H}_{ij} & & 0 \ dots & & \ddots & dots \ 0 & 0 & \cdots & ilde{H}_{ii} \ \end{bmatrix}$$
?