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Multiple-input multiple-output channel

transmitter receiver

I The transmitter sends a signal v ∈ CN by transmitting across
N = 3 antennas.

I The receiver detects Hv ∈ CN across its N antennas, where
each entry of the H ∈ CN×N depends on the signal path.

I If H is known and invertible, then the receiver can reconstruct
the message v .
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Multiple users of the same channel
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I K transmitter-receiver
pairs using the same
channel.

I Determined by K 2

channel matrices Hij of
size N × N.

I Reciever 1 only cares
about transmitter 1’s
message, etc.
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Strategies for interference alignment

I Each transmitter has a subspace Vj ⊂ CN to transmit in.

I Each receiver has a subspace Ui ⊂ CN and only pays
attention to its signal modulo Ui .

In order for this to work, we need:

I For i 6= j , HijVj ⊂ Uj .

I (HiiVi ) ∩ Ui = ∅.

If each Hii is generic, the second condition is satisfied
automatically.
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Questions

I For which N, K , and (d1, . . . , dK ) will generic channel
matrices have a solution?

I What is the information capacity of this channel?

I How to parametrize spaces of solution strategies?
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Incidence correspondence

(
CN×N

)K(K−1)
×

K∏
i=1

Gr(di ,N)× Gr(N − di ,N)

Subvariety of those

(H12, . . . ,HK−1,K ,V1, . . . ,VK ,U1, . . . ,UK )

such that
HijVj ⊂ Ui for 1 ≤ i 6= j ≤ K

This is a vector bundle over a product of Grassmannians.

Question
Is the projection onto

(
CN×N)K(K−1)

surjective?
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Existence of solutions

Theorem
Assume that d = d1 = · · · = dK and K ≥ 3. Then a generic set of
channel matrices has a solution if and only if

2N ≥ d(K + 1).

If so, the dimension of the solution variety is

dK
(
2N − d(K + 1)

)

For non-constant di , we have the necessary conditions:

di + dj ≤ N for all i , j∑
i∈S

2di (N − di ) ≥
∑
i 6=j∈S

didj for all subsets S ⊂ {1, . . . ,K}
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K = 3

The threshold case for feasibility is

(d1, d2, d3) = (d , d ,N − d),

where d1 ≤ N/2.

=

I After change of coordinates, can assume that all but one
channel matrix is the identity.

I For dimension reasons, inclusions become equalities:

V1 = U3 = V2 ⊂ U1 = V3 = U2 ⊃ H21V1
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An eigenvector-like problem

Given generic N × N matrix H, find

I V ⊂ CN , subspace of dimension d

I U ⊂ CN , subspace of dimension e = N − d

such that
V ⊂ U and HV ⊂ U

I For d = e = 1, this is equivalent to V = U being the span of
an eigenvector.

I More generally, for d = e > 1, take V = U to be spanned by
d eigenvectors. In particular,

(N
d

)
solutions.

I For e > d , variety of solutions of dimension(
N − (e − d)

)
(e − d)



An eigenvector-like problem

Given generic N × N matrix H, find

I V ⊂ CN , subspace of dimension d

I U ⊂ CN , subspace of dimension e = N − d

such that
V ⊂ U and HV ⊂ U

I For d = e = 1, this is equivalent to V = U being the span of
an eigenvector.

I More generally, for d = e > 1, take V = U to be spanned by
d eigenvectors. In particular,

(N
d

)
solutions.

I For e > d , variety of solutions of dimension(
N − (e − d)

)
(e − d)



An eigenvector-like problem

Given generic N × N matrix H, find

I V ⊂ CN , subspace of dimension d

I U ⊂ CN , subspace of dimension e = N − d

such that
V ⊂ U and HV ⊂ U

I For d = e = 1, this is equivalent to V = U being the span of
an eigenvector.

I More generally, for d = e > 1, take V = U to be spanned by
d eigenvectors. In particular,

(N
d

)
solutions.

I For e > d , variety of solutions of dimension(
N − (e − d)

)
(e − d)



An eigenvector-like problem

Given generic N × N matrix H, find

I V ⊂ CN , subspace of dimension d

I U ⊂ CN , subspace of dimension e = N − d

such that
V ⊂ U and HV ⊂ U

I For d = e = 1, this is equivalent to V = U being the span of
an eigenvector.

I More generally, for d = e > 1, take V = U to be spanned by
d eigenvectors. In particular,

(N
d

)
solutions.

I For e > d , variety of solutions of dimension(
N − (e − d)

)
(e − d)



Parametrizing the solution variety

Recall: Want to find V , U such that V ⊂ U and HV ⊂ U.

I Set ` :=

⌊
d

e − d

⌋
I Choose S ⊂ CN of dimension d − `(e − d).

I Choose S + HS ⊂ T ⊂ CN of dimension e − `(e − d).

I Set

U = S + T + . . .H`−1T

V = T + . . . + H`T

Structure of whole variety seems complicated: when e = d + 1,
then it is the toric variety for the Minkowski sum of hypersimplices
∆e,N + ∆N,d .
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Numbers of solutions

Return to
K ≥ 3 d = d1 = . . . = dk

Zero-dimensional when N = d(K+1)
2 . The number of solutions is:

K
d 3 4 5 6 7

1 2 - 216 - 1,975,560
2 6 3700 388,407,960
3 20 - -
4 70
...

...

d
(2d
d

)



Number of solutions when d = 1

Assume d = d1 = · · · dK = 1 and 2N = K + 1.
Degenerate each Hij to a rank 1 matrix:

HijVj ⊂ Uj ⇐⇒ Vj ⊂ kerHij or Uj ⊃ imHij

Theorem
Number of solutions = number of balanced orientations of the
graph G
G has edges tj − si whenever i 6= j . Balanced orientation means
that

in degree(v) = out degree(v) =
K − 1

2

for all vertices v of G.
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Further questions

I If the di are not necessarily all equal, when does a feasible
strategy exist?

I Can we parametrize the solution variety in more cases?

I What if the receivers and transmitters have different numbers
of antennas?

I What if the channel matrices have the form

Hij =


H̃ij 0 · · · 0

0 H̃ij 0
...

. . .
...

0 0 · · · H̃ij

?
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