Abstract

A Mustafin variety is a degeneration of projective space induced by a point configuration in a Bruhat-Tits building. The special fiber is reduced and Cohen-Macaulay, and its irreducible components form interesting combinatorial patterns. For configurations that lie in one apartment, these patterns are regular mixed subdivisions of scaled simplices, and the Mustafin variety is a twisted Veronese variety built from such a subdivision. This connects our study to tropical and toric geometry. For general configurations, the irreducible components of the special fiber are rational varieties, and any blow-up of projective space along a linear subspace arrangement can arise. A detailed study of Mustafin varieties is undertaken for configurations in the Bruhat-Tits tree of PGL(2) and in the two-dimensional building of PGL(3). The latter yields the classification of Mustafin triangles into 38 combinatorial types.

1. Degenerations of projective space

K : field

v: discrete valuation $K^* \to \mathbb{Z}$

R : ring of integers in K

k : residue field of R

V: vector space of dimension $d \ge 2$

 $\mathbb{P}(V) = \operatorname{Proj} \operatorname{Sym} V^*$: projective space of lines in V

L: lattice, free *R*-module in *V* of rank *d*

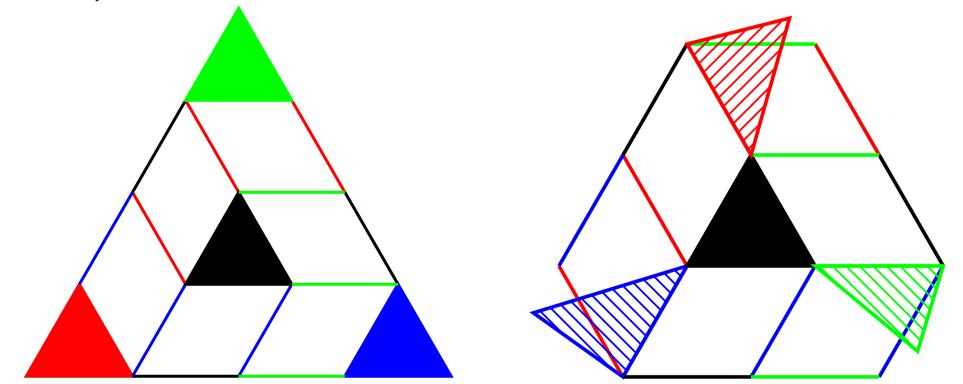
 $\mathbb{P}(L) = \operatorname{Proj} \operatorname{Sym} L^*$: projective space over R

Definition 1. Let $\Gamma = \{L_1, \ldots, L_n\}$ be a set of lattices in V. The open immersions $\mathbb{P}(V) \hookrightarrow \mathbb{P}(L_i)$ give rise to a map

 $\mathbb{P}(V) \longrightarrow \mathbb{P}(L_1) \times_R \ldots \times_R \mathbb{P}(L_n).$

Let $\mathcal{M}(\Gamma)$ be the closure of the image endowed with the reduced scheme structure. We call $\mathcal{M}(\Gamma)$ the **Mustafin variety** associated to the set of lattices Γ . Note that $\mathcal{M}(\Gamma)$ is a scheme over R whose generic fiber is $\mathbb{P}(V)$.

Examples of Mustafin varieties:



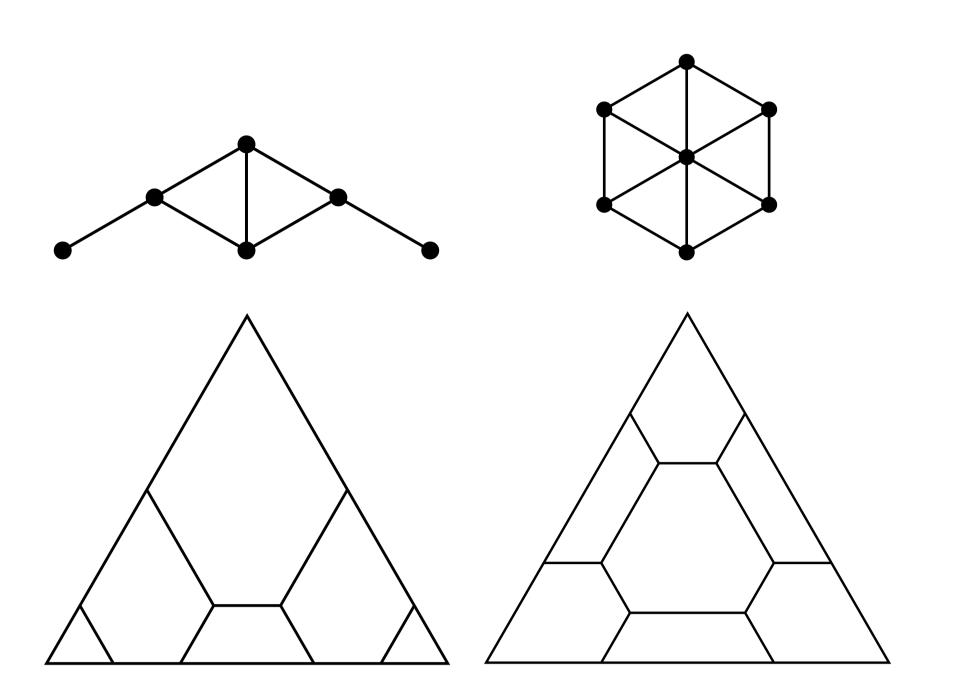
The Mustafin variety $\mathcal{M}(\Gamma)$ depends only on the homothety classes of the lattices $(L_i \sim \alpha L_i \text{ for all } \alpha \in K^{\times})$. The **Bruhat**-**Tits building** \mathfrak{B}_d is an infinite simplicial complex whose vertices are homothety classes of lattices.

Theorem 2. The Mustafin variety $\mathcal{M}(\Gamma)$ is an integral, normal, Cohen-Macaulay scheme which is flat and projective over R. Its special fiber $\mathcal{M}(\Gamma)_k$ is reduced, Cohen-Macaulay and connected. All irreducible components of $\mathcal{M}(\Gamma)_k$ are rational varieties, and their number is at most $\binom{n+d-2}{d-1}$, where $n = |\Gamma|$.

Mustafin Varieties

Dustin Cartwright, Mathias Häbich, Bernd Sturmfels and Annette Werner

University of California, Berkeley



Theorem 3. If Γ is a convex subset consisting of n lattice points in the building \mathfrak{B}_d , then the Mustafin variety $\mathcal{M}(\Gamma)$ is regular, and its special fiber $\mathcal{M}(\Gamma)_k$ consists of *n* smooth irreducible components that intersect transversely.

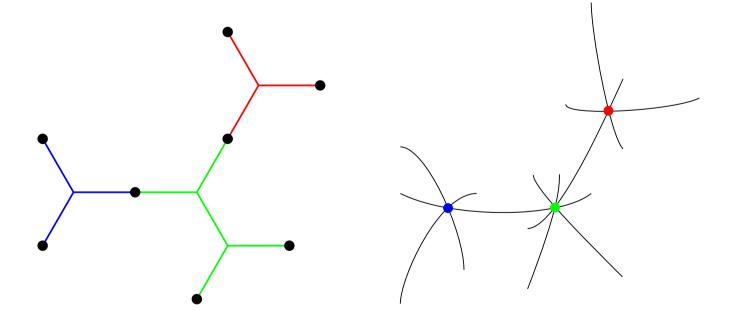
2. Trees (d = 2**)**

For d = 2, \mathfrak{B}_d is an infinite tree. Any finite set of vertices Γ is contained in a unique smallest tree T_{Γ} , which is finite.

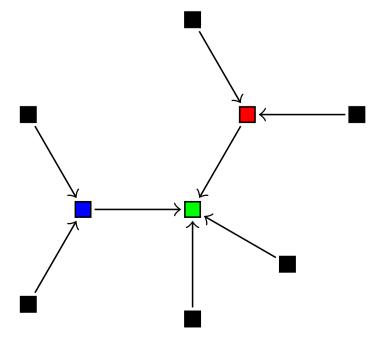
The irreducible components of a 1-dimensional scheme are the vertices of its **reduction complex** and the points of intersection are its edges.

Theorem 4. The maximal simplices of the reduction complex of $\mathcal{M}(\Gamma)$ correspond to the connected components of the punctured tree $T_{\Gamma} \setminus \Gamma$. The vertices in each maximal cell are the elements of Γ in the closure of the corresponding component.

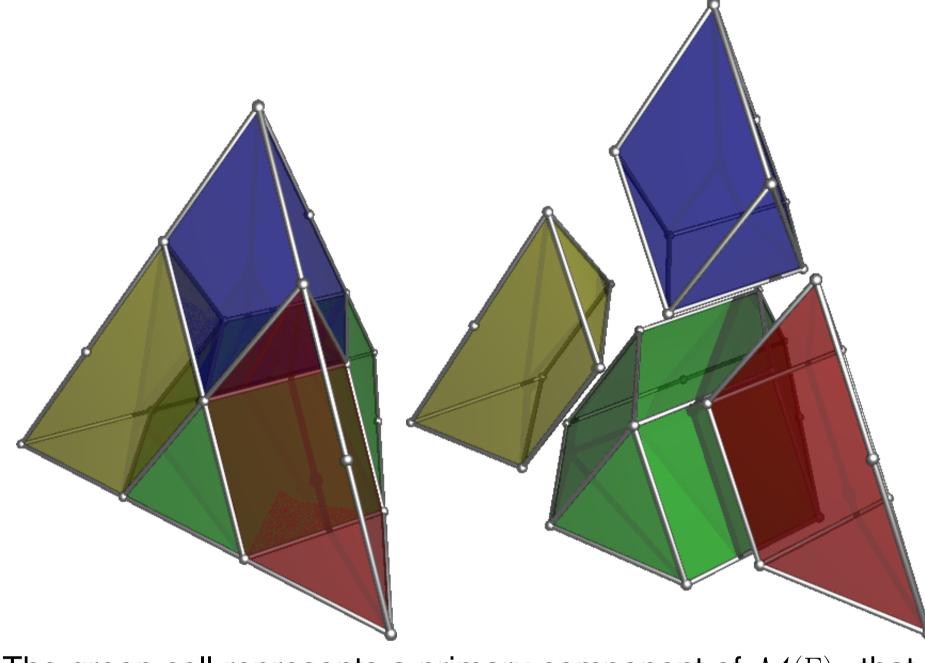
A configuration $\Gamma \subset T_{\Gamma}$ and its special fiber $\mathcal{M}(\Gamma)_k$:



The corresponding special fiber consists of eight projective lines. The special fiber is defined by a monomial, represented by the following directed graph:



An **apartment** consists of all lattices of the form $\pi^{m_1}Re_1 + \cdots + \pi^{m_2}Re_1 + \cdots + \pi^{m_2}Re_1$ $\pi^{m_d} Re_d$, for e_1, \ldots, e_d a basis of V. Any pair of lattices are contained in a single apartment. **Theorem 5.** If a configuration Γ is contained in a single apartment, then it defines a tropical polynomial P_{Γ} . The Mustafin variety $\mathcal{M}(\Gamma)$ is isomorphic to the twisted *n*th Veronese embedding of the projective space \mathbb{P}_{R}^{d-1} determined by the tropical polynomial P_{Γ} . In particular, the special fiber $\mathcal{M}(\Gamma)_k$ equals the union of projective toric varieties corresponding to the cells in the regular mixed subdivision Δ_{Γ} of the simplex $n \cdot \Delta_{d-1}$.



The green cell represents a primary component of $\mathcal{M}(\Gamma)_k$ that is a singular toric 3-fold.

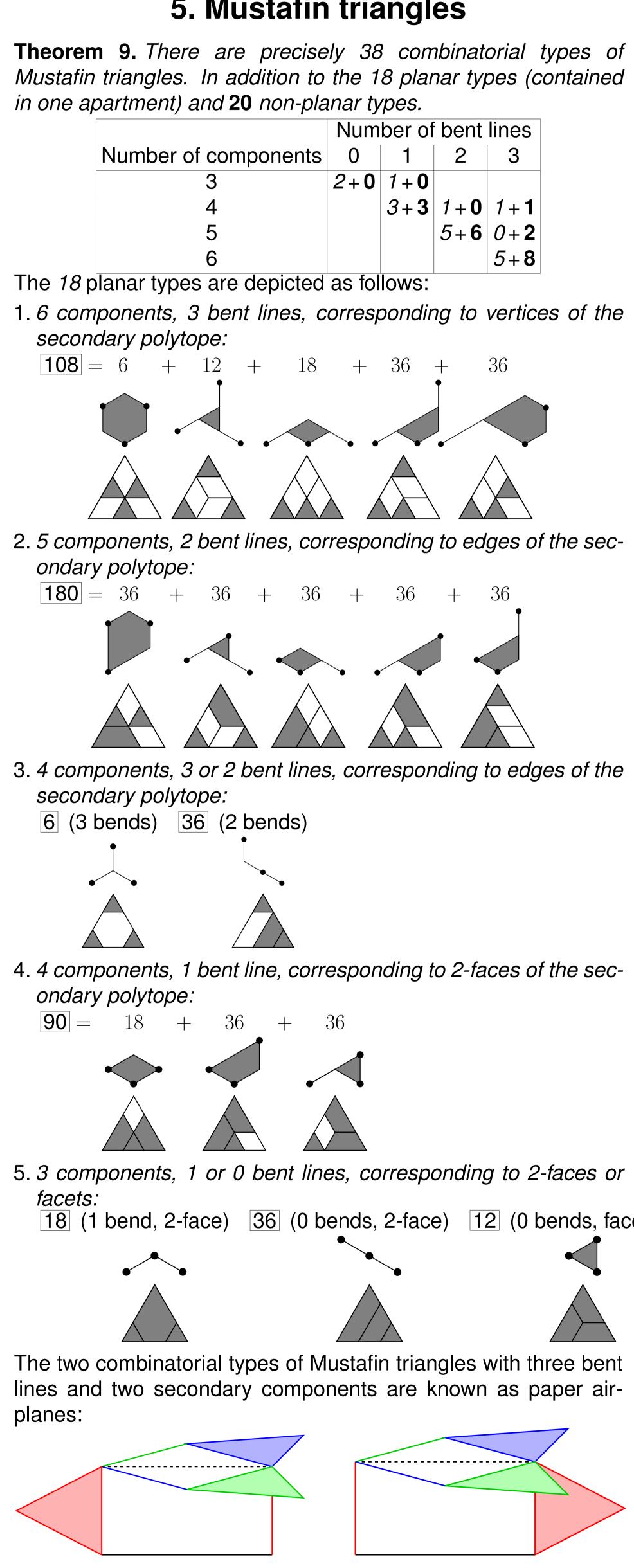
4. Components of the special fiber

Definition 6. An irreducible component of $\mathcal{M}(\Gamma)_k$ mapping birationally to the special fiber of the factor $\mathbb{P}(L_i)$ for some $[L_i] \in \Gamma$ is called a primary component. All other components of the special fiber are called **secondary components**. **Definition 7.** Let W_1, \ldots, W_m be linear subspaces in \mathbb{P}^{d-1}_k . Let

the preimage of W_i under $X_{i-1} \to \mathbb{P}_k^{d-1}$. We say that X is a *blow*up of \mathbb{P}_{k}^{d-1} at a collection of linear subspaces if X is isomorphic to the variety X_m obtained by this sequence of blow-ups. **Theorem 8.** A projective variety X arises as a primary component of the special fiber $\mathcal{M}(\Gamma)_k$ for some configuration Γ of n lattice points in the Bruhat-Tits building \mathfrak{B}_d if and only if X is the blow-up of \mathbb{P}_{k}^{d-1} at a collection of n-1 linear subspaces. The configuration of linear spaces can be described in terms of the configuration Γ . Fix an index *i* and let *C* be the primary component of $\mathcal{M}(\Gamma)_k$ corresponding to the lattice class $[L_i]$. For any other point $[L_i]$ in Γ we choose the unique representative L_i such that $L_i \supset \pi L_i$ but $L_i \not\supseteq L_i$. Then the image of $L_i \cap L_i$ in the quotient $L_i/\pi L_i$ is a proper, non-trivial k-vector subspace, and we denote by W_i the corresponding linear subspace in $\mathbb{P}(L_i)_k$. The component C is the blow-up of $\mathbb{P}(L_i)_k$ at the linear subspaces W_i for all $j \neq i$.

3. Points in one apartment

 $X_0 = \mathbb{P}_k^{d-1}$ and inductively define X_i to be the blowup of X_{i-1} at



5. Mustafin triangles

2-face)	36 (0 bends, 2-face)	12 (0 bends, facet)
` •		
atorial types of Mustafin triangles with three bent econdary components are known as paper air-		