Mustafin Varieties

Dustin Cartwright, Mathias Häbich, Bernd Sturmfels and Annette Werner
University of California, Berkeley

Abstract

A Mustafin variety is a degeneration of projective space induced by a point configuration in a Bruhat-Tits building. The special fiber is reduced and Cohen-Macaulay, and its irreducible components form interesting combinatorial patterns. For configurations that lie in one apartment, these patterns are regular mixed subdivisions of scaled simplices, and the Mustafin variety is a twisted Veronese variety buitt from such a subdivision. This connects our study to
tropical and toric geometry. For general configurations, the irre ducible components of the special fiber are rational varieties, and any blow-up of projective space along a linear subspace arrange ment can arise. A detailed study of Mustafin varieties is under taken for configurations in the Bruhat-Tits tree of PGL(2) and in the two-dimensional building of $P G L(3)$. The latter yields the clas sification of Mustafin triangles into 38 combinatorial types.

1. Degenerations of projective space

K : field
$v:$ discrete valuation $K^{*} \rightarrow \mathbb{Z}$
R : ring of integers in
k : residue field of R
V vector space of dimension $d \geq 2$
$\mathbb{P}(V)=$ Proj Sym V^{*} : projective space of lines in V L : lattice, free R-module in V of rank d
$\mathbb{P}(L)=\operatorname{Proj} \operatorname{Sym} L^{*}$: projective space over R
Definition 1. Let $\Gamma=\left\{L_{1}, L_{n}\right\}$ be a set of lattices in V. The open immersions $\mathbb{P}(V) \hookrightarrow \mathbb{P}\left(L_{i}\right)$ give rise to a map

$$
\mathbb{P}(V) \longrightarrow \mathbb{P}\left(L_{1}\right) \times_{R} \cdots \times_{R} \mathbb{P}\left(L_{n}\right) .
$$

Let $\mathcal{M}(\Gamma)$ be the closure of the image endowed with the reduced scheme structure. We call $\mathcal{M}(\Gamma)$ the Mustafin variety associated generic fiber is $\mathbb{P}(V)$.
Examples of Mustafin varieties:

信 classes of the lattices ($L_{i} \sim \alpha L_{i}$ for all $\alpha \in K^{\times}$). The BruhatTits building \mathfrak{B}_{d} is an infinite simplicial complex whose vertices are homothety classes of lattices.
Theorem 2. The Mustafin variety $\mathcal{M}(\Gamma)$ is an integral, normal, Cohen-Macaulay scheme which is flat and projective over R. Its special fiber $\mathcal{M}(\Gamma)_{k}$ is reduced, Cohen-Macaulay and connected. All irreducible components of $\mathcal{M}(\Gamma)_{k}$ are rational varieties, and their number is at most $\left({ }^{n+d-2}\right)$, where $n=|\Gamma|$.

Theorem 3. If Γ is a convex subset consisting of n lattice points in the building \mathfrak{B}_{d}, then the Mustafin variety $\mathcal{M}(\Gamma)$ is regular, and its special fiber $\mathcal{M}(\Gamma)_{k}$ consists of n smooth irreducible components that intersect transversely.

2. Trees ($d=2$)

For $d=2, \mathfrak{B}_{d}$ is an infinite tree. Any finite set of vertices Γ is contained in a unique smallest tree T_{Γ}, which is finite.
The irreducible components of a 1 -dimensional scheme are the vertices of its reduction complex and the points of intersection are its edges.

Theorem 4. The maximal simplices of the reduction complex of $\mathcal{M}(\Gamma)$ correspond to the connected components of the punctured tree $T_{\Gamma} \backslash \Gamma$. The vertices in each maximal cell are the elements of F in the closure of the corresponding component.

A configuration $\Gamma \subset T_{\Gamma}$ and its special fiber $\mathcal{M}(\Gamma)_{k}$

The corresponding special fiber consists of eight projective lines. The special fiber is defined by a monomial, represented by the following directed graph

3. Points in one apartment

An apartment consists of all lattices of the form $\pi^{m_{1}} R e_{1}+\cdots+$ $\pi^{m_{d}} R e_{d}$, for e_{1}, e_{d} a basis of V. Any pair of lattices are con tained in a single apartment.
Theorem 5. If a configuration Γ is contained in a single apart ment, then it defines a tropical polynomial P_{Γ}. The Mustafin va-
riety $\mathcal{M}(\Gamma)$ is isomorphic to the twisted nth Veronese embedding of the projective space \mathbb{P}_{R}^{d-1} determined by the tropical polyno mial P_{Γ}. In particular, the special fiber $\mathcal{M}(\Gamma)_{k}$ equals the union of projective toric varieties corresponding to the cells in the regular mixed subdivision Δ_{Γ} of the simplex $n \cdot \Delta_{d-1}$.
 a singular toric 3 -fold.

4. Components of the special fiber

Definition 6 . An irreducible component of $\mathcal{M}(1){ }_{k}$ mapping bira tionally to the special fiber of the factor $\mathbb{P}\left(L_{i}\right)$ for some $\left[L_{i}\right] \in \Gamma$ is called a primary componen. All cial fiber are called secondary components.
Definition 7. Let W_{1}, \ldots, W_{m} be linear subspaces in \mathbb{P}_{k}^{d-1}. Le $X_{0}=\mathbb{P}_{k}^{d-1}$ and inductively define X_{i} to be the blowup of X_{i-1} at the preimage of W_{i} under $X_{i-1} \rightarrow \mathbb{P}_{k}^{d-1}$. We say that X is a blow up of \mathbb{P}_{k}^{d-1} at a collection of linear subspaces if X is isomorphi up of \mathbb{P}_{k}^{k} at a collection of linear subspaces in X is iso
to the variety X_{m} obtained by this sequence of blow-ups.
Theorem 8. A projective variety X arises as a primary componen points in the Bruhat-Tits building \mathfrak{B}_{d} if and only if X is the blow-up of \mathbb{P}_{k}^{d-1} at a collection of $n-1$ linear subspaces.
The configuration of linear spaces can be described in terms of the configuration Γ. Fix an index i and let C be the primary com ponent of $\mathcal{M}(\Gamma)_{k}$ corresponding to the lattice class $\left[L_{i}\right]$. For any other point $\left[L_{j}\right]$ in Γ we choose the unique representative L_{j} such that $L_{j} \supset \pi L_{i}$ but $L_{j} \not \supset L_{i}$. Then the image of $L_{j} \cap L_{i}$ in the
quotient $L_{i} / \pi L_{i}$ is a proper, non-trivial k-vector subspace, and we denote by W_{j} the corresponding linear subspace in $\mathbb{P}\left(L_{i}\right)_{k}$. The component C is the blow-up of $\mathbb{P}\left(L_{i}\right)_{k}$ at the linear subspaces W_{j} for all $j \neq i$.

5. Mustafin triangles

Theorem 9.There are precisely 38 combinatorial types of in one apartment) and $\mathbf{2 0}$ non-planar types.

	Number of bent lines			
Number of components	0	1	2	3
3	$2+\mathbf{0}$	$1+\mathbf{0}$		
4			$3+\mathbf{3}$	$1+\mathbf{0}$

The 18 planar types are depicted as follows:
1.6 components, 3 bent lines, corresponding to vertices of the secondary polytope:

2. 5 components, 2 bent lines, corresponding to edges of the sec ondary polytope
$180=3$

3 components, 3 or 2 bent lines, corresponding to edges of the secondary polytope:
6 (3 bends) 36 (2 bends)

4 . 4 components, 1 bent line, corresponding to 2 -faces of the sec

5. 3 components, 1 or 0 bent lines, corresponding to 2 -faces or 18 (1 bend, 2 -face) 36 (0 bends, 2 -face) 12 (0 bends, facet)

The two combinatorial types of Mustatin triangles with three ben

 lines and two secondary components arangles with three benplanes: planes:
planes

